A Study on the Soundscape Preferences of the Elderly in the Urban Forest Parks of Underdeveloped Cities in China
Abstract
:1. Introduction
2. Methodology
2.1. Research Context
2.2. Research Design
2.3. Reliability and Validity Assessment
2.3.1. Reliability Analysis
2.3.2. Validity Analysis
2.3.3. Component Matrix after Transposition
3. Results
3.1. Descriptive Statistics of the Elders’ Preferences for Forest Park Soundscape
3.2. Correlation between Landscape and Soundscape Preference
3.3. Influence of Living Conditions on Soundscape Preference
3.4. Participants
3.4.1. Gender
3.4.2. Age
3.4.3. Occupation
3.4.4. Education Background
3.4.5. Living Conditions
4. Regression Coefficient Model of Soundscape Preference
5. Discussion
6. Conclusions, Reflection, Limitations and Future Work
6.1. Conclusions
6.1.1. Landscape Design Recommendations to Enhance the Soundscape Experience
- (1)
- Overall Landscape Design
- (2)
- Green Environment Design
6.1.2. Soundscape Design for the Elderly
6.2. Reflection
6.3. Limitations
6.4. Future Work
- (1)
- To maximize the understanding of the influences on the soundscape preferences of older adults, the relevant literature was comprehensively and profoundly reviewed, which generated rich implications for the design and administration of the questionnaire.
- (2)
- To determine the key factors that influence the soundscape preference of the elderly, a regression coefficient model and an automatic linear model were established which effectively guaranteed the accuracy of the data analysis and interpretation.
- (3)
- To bring light to the construction and maintenance of forest parks aimed at improving the well-being of elderly people, well-grounded recommendations were provided for landscape designers on how to cater to the soundscape preferences of different elderly groups.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, M.; Cui, C.; Lin, L.; Di, S.; Zhao, Z.; Wang, Y. Residents’ Spatial Preference for Urban Forest Park Route during Physical Activities. Int. J. Environ. Res. Public Health 2021, 18, 11756. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Hoehn, R.E.; Bodine, A.R.; Greenfield, E.J.; O’Neil-Dunne, J. Urban forest structure, ecosystem services and change in Syracuse, NY. Urban Ecosyst. 2016, 19, 1455–1477. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Y.; Li, X. Urban forests’ recreation and habitat potentials in China: A nationwide synthesis. Urban For. Urban Green. 2021, 66, 127376. [Google Scholar] [CrossRef]
- Li, X.; Chen, C.; Wang, W.; Yang, J.; Innes, J.L.; Ferretti-Gallon, K.; Wang, G. The contribution of national parks to human health and well-being: Visitors’ perceived benefits of Wuyishan National Park. Int. J. Geoheritage Park. 2021, 9, 1–12. [Google Scholar] [CrossRef]
- Giannakopoulos, T.; Perantonis, S. Recognizing the quality of urban sound recordings using hand-crafted and deep audio features. In Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Rhodes, Greece, 5–7 June 2019; pp. 323–324. [Google Scholar]
- He, M.; Wang, Y.; Wang, W.J.; Xie, Z. Therapeutic plant landscape design of urban forest parks based on the Five Senses Theory: A case study of Stanley Park in Canada. Int. J. Geoheritage Park. 2022, 10, 97–112. [Google Scholar] [CrossRef]
- Liu, H.; Li, F.; Li, J.; Zhang, Y. The relationships between urban parks, residents’ physical activity, and mental health benefits: A case study from Beijing, China. J. Environ. Manag. 2017, 190, 223–230. [Google Scholar] [CrossRef]
- Chen, B.; Qi, X. Protest response and contingent valuation of an urban forest park in Fuzhou City, China. Urban For. Urban Green. 2018, 29, 68–76. [Google Scholar] [CrossRef]
- Van De Vliert, E.; Rentfrow, P.J. Who is more prone to depression at higher latitudes? Islanders or mainlanders? Curr. Res. Ecol. Soc. Psychol. 2021, 2, 100012. [Google Scholar] [CrossRef]
- Ratwatte, P.; Wehling, H.; Kovats, S.; Landeg, O.; Weston, D. Factors associated with older adults’ perception of health risks of hot and cold weather event exposure: A scoping review. Front. Public Health 2022, 10, 939859. [Google Scholar] [CrossRef]
- Dzhambov, A.M.; Dimitrova, D.D. Elderly visitors of an urban park, health anxiety and individual awareness of nature experiences. Urban For. Urban Green. 2014, 13, 806–813. [Google Scholar] [CrossRef]
- Kumar, L.; Kahlon, N.; Jain, A.; Kaur, J.; Singh, M.; Pandey, A.K. Loss of smell and taste in COVID-19 infection in adolescents. Int. J. Pediatr. Otorhinolaryngol. 2021, 142, 110626. [Google Scholar] [CrossRef]
- Han, F.; Lu, X.; Xiao, C.; Chang, M.; Huang, K. Estimation of Health Effects and Economic Losses from Ambient Air Pollution in Undeveloped Areas: Evidence from Guangxi, China. Int. J. Environ. Res. Public Health 2019, 16, 2707. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Li, D.; Wu, C.; Wu, H. Urban park facility use and intensity of seniors’ physical activity—An examination combining accelerometer and GPS tracking. Landsc. Urban Plan. 2021, 205, 103950. [Google Scholar] [CrossRef]
- Yu, W.; Sun, B.; Hu, H. Sustainable Development Research on the Spatial Differences in the Elderly Suitability of Shanghai Urban Parks. Sustainability 2019, 11, 6521. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.; Yang, J.; Yang, D.; Xu, R.; He, Y.; Aragon, A.; Qiu, H. Human Mobility to Parks under the COVID-19 Pandemic and Wildfire Seasons in the Western and Central United States. GeoHealth 2021, 5, e2021GH000494. [Google Scholar] [CrossRef]
- Perry, M.; Cotes, L.; Horton, B.; Kunac, R.; Snell, I.; Taylor, B.; Wright, A.; Devan, H. “Enticing” but Not Necessarily a “Space Designed for Me”: Experiences of Urban Park Use by Older Adults with Disability. Int. J. Environ. Res. Public Health 2021, 18, 552. [Google Scholar] [CrossRef]
- Kaur, S.; Bhalla, A.; Kumari, S.; Singh, A. Assessment of functional status and daily life problems faced by elderly in a North Indian city. Psychogeriatrics 2019, 19, 419–425. [Google Scholar] [CrossRef]
- Magnani, P.E.; Zanellato, N.F.G.; Genovez, M.B.; Alvarenga, I.C.; Faganello-Navega, F.R.; de Abreu, D.C.C. Usual and dual-task gait adaptations under visual stimulation in older adults at different ages. Aging Clin. Exp. Res. 2022, 34, 383–389. [Google Scholar] [CrossRef]
- Fowler, M.D. Soundscape as a design strategy for landscape architectural praxis. Des. Stud. 2013, 34, 111–128. [Google Scholar] [CrossRef]
- Haver, S.M.; Fournet, M.E.H.; Dziak, R.P.; Gabriele, C.; Gedamke, J.; Hatch, L.T.; Haxel, J.; Heppell, S.A.; McKenna, M.F.; Mellinger, D.K.; et al. Comparing the Underwater Soundscapes of Four U.S. National Parks and Marine Sanctuaries. Front. Mar. Sci. 2019, 6, 500. [Google Scholar] [CrossRef] [Green Version]
- Shu, S.; Ma, H. Restorative effects of urban park soundscapes on children’s psychophysiological stress. Appl. Acoust. 2020, 164, 107293. [Google Scholar] [CrossRef]
- Zhao, W.; Li, H.; Zhu, X.; Ge, T. Effect of Birdsong Soundscape on Perceived Restorativeness in an Urban Park. Int. J. Environ. Res. Public Health 2020, 17, 5659. [Google Scholar] [CrossRef] [PubMed]
- Nojiri, N.; Meng, Z.; Saho, K.; Duan, Y.; Uemura, K.; Aravinda, C.V.; Prabhu, G.A.; Shimakawa, H.; Meng, L. Apathy Classification Based on Doppler Radar Image for the Elderly Person. Front. Bioeng. Biotechnol. 2020, 8, 553847. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Albert, C.; Von Haaren, C. The elderly in green spaces: Exploring requirements and preferences concerning nature-based recreation. Sustain. Cities Soc. 2018, 38, 582–593. [Google Scholar] [CrossRef]
- Ben Jemaa, A.; Irato, G.; Zanela, A.; Brescia, A.; Turki, M.; Jaïdane, M. Congruent auditory display and confusion in sound localization: Case of elderly drivers. Transp. Res. Part F Traffic Psychol. Behav. 2018, 59, 524–534. [Google Scholar] [CrossRef]
- Tan, S.; Zhong, Y.; Yang, F.; Gong, X. The impact of Nanshan National Park concession policy on farmers’ income in China. Glob. Ecol. Conserv. 2021, 31, e01804. [Google Scholar] [CrossRef]
- Ali, M.J.; Rahaman, M.; Hossain, S.I. Urban green spaces for elderly human health: A planning model for healthy city living. Land Use Policy 2022, 114, 105970. [Google Scholar] [CrossRef]
- Kweon, B.-S.; Sullivan, W.C.; Wiley, A.R. Green Common Spaces and the Social Integration of Inner-City Older Adults. Environ. Behav. 1998, 30, 832–858. [Google Scholar] [CrossRef]
- Salgado, M.; Madureira, J.; Mendes, A.S.; Torres, A.; Teixeira, J.P.; Oliveira, M.D. Environmental determinants of population health in urban settings: A systematic review. BMC Public Health 2020, 20, 853. [Google Scholar] [CrossRef]
- Liu, J.; Xu, J.; Wu, Z.; Cheng, Y.; Gou, Y.; Ridolfo, J. Soundscape Preference of Urban Residents in China in the Post-pandemic Era. Front. Psychol. 2021, 12, 750421. [Google Scholar] [CrossRef]
- Xiao, Y.-H.; Liu, S.-R.; Tong, F.-C.; Kuang, Y.-W.; Chen, B.-F.; Guo, Y.-D. Characteristics and Sources of Metals in TSP and PM2.5 in an Urban Forest Park at Guangzhou. Atmosphere 2014, 5, 775–787. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Ikei, H.; Miyazaki, Y. Effects of forest-derived visual, auditory, and combined stimuli. Urban For. Urban Green. 2021, 64, 127253. [Google Scholar] [CrossRef]
- Lu, S.; Wu, F.; Wang, Z.; Cui, Y.; Chen, C.; Wei, Y. Evaluation system and application of plants in healing landscape for the elderly. Urban For. Urban Green. 2021, 58, 126969. [Google Scholar] [CrossRef]
- Drieger, P. Semantic Network Analysis as a Method for Visual Text Analytics. Procedia Soc. Behav. Sci. 2013, 79, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Kong, L.; Wang, J. The deformation and permeability of Yanji mudstone under cyclic loading and unloading. J. Mt. Sci. 2019, 16, 2907–2919. [Google Scholar] [CrossRef]
- Giroud, N.; Hirsiger, S.; Muri, R.; Kegel, A.; Dillier, N.; Meyer, M. Neuroanatomical and resting state EEG power correlates of central hearing loss in older adults. Brain Struct. Funct. 2018, 223, 145–163. [Google Scholar] [CrossRef]
- Hartig, T.; Kahn, P.H. Living in cities, naturally. Science 2016, 352, 938–940. [Google Scholar] [CrossRef]
- Hedblom, M.; Gunnarsson, B.; Iravani, B.; Knez, I.; Schaefer, M.; Thorsson, P.; Lundström, J.N. Reduction of physiological stress by urban green space in a multisensory virtual experiment. Sci. Rep. 2019, 9, 10113. [Google Scholar] [CrossRef] [Green Version]
- Leavell, M.A.; Leiferman, J.A.; Gascon, M.; Braddick, F.; Gonzalez, J.C.; Litt, J.S. Nature-Based Social Prescribing in Urban Settings to Improve Social Connectedness and Mental Well-Being: A Review. Curr. Environ. Health Rep. 2019, 6, 297–308. [Google Scholar] [CrossRef]
- Levinger, P.; Cerin, E.; Milner, C.; Hill, K.D. Older people and nature: The benefits of outdoors, parks and nature in light of COVID-19 and beyond–where to from here? Int. J. Environ. Health Res. 2022, 32, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- The Seventh National Population Census. Available online: https://www.gov.cn/guoqing/2021-05/13/content_5606149.htm (accessed on 1 May 2023).
- Meneses-Barriviera, C.; Bazoni, J.; Doi, M.; Marchiori, L. Probable Association of Hearing Loss, Hypertension and Diabetes Mellitus in the Elderly. Int. Arch. Otorhinolaryngol. 2018, 22, 337–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, M.; Shah, S.S.; Wang, Q.; Meng, F. Response of Soil Bacterial Community Structure to Land-Use Conversion of Natural Forests in Maoershan National Forest Park, China. Mol. Microbiol. Res. 2017, 7. [Google Scholar] [CrossRef]
- Song, C.; Ikei, H.; Miyazaki, Y. Physiological effects of forest-related visual, olfactory, and combined stimuli on humans: An additive combined effect. Urban For. Urban Green. 2019, 44, 126437. [Google Scholar] [CrossRef]
- de Keijzer, C.; Bauwelinck, M.; Dadvand, P. Long-Term Exposure to Residential Greenspace and Healthy Ageing: A Systematic Review. Curr. Environ. Health Rep. 2020, 7, 65–88. [Google Scholar] [CrossRef]
- Li, X.; Fan, L.; Leng, S.X. The Aging Tsunami and Senior Healthcare Development in China: Aging and Geriatrics Development in China. J. Am. Geriatr. Soc. 2018, 66, 1462–1468. [Google Scholar] [CrossRef]
- Mediastika, C.E.; Sudarsono, A.S.; Kristanto, L.; Tanuwidjaja, G.; Sunaryo, R.G.; Damayanti, R. Appraising the sonic environment of urban parks using the soundscape dimension of visually impaired people. Int. J. Urban Sci. 2020, 24, 216–241. [Google Scholar] [CrossRef]
- Li, A.; Zhao, P.; Haitao, H.; Mansourian, A.; Axhausen, K.W. How did micro-mobility change in response to COVID-19 pandemic? A case study based on spatial-temporal-semantic analytics. Comput. Environ. Urban Syst. 2021, 90, 101703. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, M.; Zhao, B. Audio-visual interactive evaluation of the forest landscape based on eye-tracking experiments. Urban For. Urban Green. 2019, 46, 126476. [Google Scholar] [CrossRef]
- Lyu, Y.; Lu, S. Evaluation of Landscape Resources of Urban Forest Park Based on GIS—Take Beijing Tongzhou Grand Canal Forest Park as an Example. In Proceedings of the 2019 International Conference on Robots & Intelligent System (ICRIS), Haikou, China, 15–16 June 2019; pp. 418–424. [Google Scholar]
- McCordic, J.A.; DeAngelis, A.I.; Kline, L.R.; McBride, C.; Rodgers, G.G.; Rowell, T.J.; Smith, J.; Stanley, J.A.; Stokoe, A.; Van Parijs, S.M. Biological Sound Sources Drive Soundscape Characteristics of Two Australian Marine Parks. Front. Mar. Sci. 2021, 8, 669412. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Haklay, M. Participatory soundscape sensing. Landsc. Urban Plan. 2018, 173, 64–69. [Google Scholar] [CrossRef]
- Fan, Q.; He, Y.; Hu, L. Soundscape evaluation and construction strategy of park road. Appl. Acoust. 2021, 174, 107685. [Google Scholar] [CrossRef]
Classification | Percentage | |
---|---|---|
Gender | Female | 48.70% |
Male | 51.30% | |
Age | 60–64 | 43.30% |
65–69 | 34.90% | |
70–74 | 12.00% | |
75–79 | 9.70% | |
80–84 | 0.10% | |
Education | Junior High School and Below | 48.00% |
High School or Vocational school | 42.90% | |
Junior College or Undergraduate | 9.00% | |
Master’s degree and Above | 0.10% | |
Pension | EUR 0–100 | 26.10% |
EUR 101–300 | 73.70% | |
EUR > 300 | 0.10% | |
Occupation | Experts, technicians and related workers | 4.40% |
Government officials and business managers | 4.60% | |
Sales professionals | 17.00% | |
Service professionals | 24.80% | |
Agricultural, animal husbandry and forestry workers, fishermen and hunters | 20.40% | |
Manufacturers and production-related workers, transportation equipment operators and workers | 18.80% | |
Workers who cannot be classified by occupation | 10.10% | |
Physical Condition | Completely self-reliant | 89.80% |
In need of care | 10.20% |
Variable | Abbreviations | Cronbach Alpha | Number of Items |
---|---|---|---|
Vehicle Sound | VS | 0.938 | 12 |
Bird Song | BS | 0.928 | 8 |
Livestock Sound | LS | 0.938 | 9 |
Atmospheric Sound | AS | 0.885 | 5 |
Musical Sound | MS | 0.870 | 3 |
Natural Sound | NS | 0.874 | 4 |
Other Sound | OS | 0.934 | 9 |
Vision of Park Stands | VPS | 0.885 | 6 |
Vision of Other Things | VOT | 0.872 | 6 |
Vision of Signs | VOS | 0.834 | 2 |
KMO Values | 0.922 | |
---|---|---|
Bartlett test | Approximate cardinality | 30,920.235 |
Degree of freedom | 2016 | |
Significance | <0.001 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
Measure question items | VS1 | LS1 | OS1 | BS1 | VPS1 | VOT1 | AS1 | NS1 | MS1 | VOS1 |
VS2 | LS2 | OS2 | BS2 | VPS2 | VOT2 | AS2 | NS2 | MS2 | VOS2 | |
VS3 | LS3 | OS3 | BS3 | VPS3 | VOT3 | AS3 | NS3 | MS3 | ||
VS4 | LS4 | OS4 | BS4 | VPS4 | VOT4 | AS4 | NS4 | |||
VS5 | LS5 | OS5 | BS5 | VPS5 | VOT5 | AS5 | ||||
VS6 | LS6 | OS6 | BS6 | VPS6 | VOT6 | |||||
VS7 | LS7 | OS7 | BS7 | |||||||
VS8 | LS8 | OS8 | BS8 | |||||||
VS9 | LS9 | OS9 | ||||||||
VS10 | ||||||||||
VS11 | ||||||||||
VS12 | ||||||||||
Cumulative variance contribution rate | 67.02% |
Sound Category | Code | Sound Source | Average | Total Average |
---|---|---|---|---|
Vehicle Sound | 1 | Car | 2.22 | 2.35 |
2 | Bus | 2.34 | ||
3 | Express train | 2.35 | ||
4 | Aircraft | 2.36 | ||
5 | Fighter | 2.34 | ||
6 | Motorcycle | 2.35 | ||
7 | Tractor | 2.36 | ||
8 | Bicycle | 2.38 | ||
9 | Truck | 2.34 | ||
10 | Police siren | 2.35 | ||
11 | Ambulance siren | 2.37 | ||
12 | Fire engine siren | 2.39 | ||
Bird Song | 13 | Pigeon | 3.61 | 3.50 |
14 | Wild goose | 3.55 | ||
15 | Swallow | 3.48 | ||
16 | Eagle | 3.49 | ||
17 | Hawk | 3.49 | ||
18 | Swan | 3.50 | ||
19 | Egret | 3.45 | ||
20 | Sparrow | 3.46 | ||
Livestock Sound | 21 | Cattle | 3.64 | 3.54 |
22 | Horse | 3.50 | ||
23 | Sheep/Goat | 3.50 | ||
24 | Chicken | 3.54 | ||
25 | Dog | 3.52 | ||
26 | Pig | 3.54 | ||
27 | Duck | 3.58 | ||
28 | Cat | 3.54 | ||
29 | Goose | 3.46 | ||
Atmospheric Sound | 30 | Rain | 2.24 | 2.34 |
31 | Wind | 2.35 | ||
32 | Snow | 2.33 | ||
33 | Thunder | 2.38 | ||
34 | thunderstorm | 2.38 | ||
Musical Sound | 35 | Instrumental | 3.50 | 3.45 |
36 | Vocal | 3.43 | ||
37 | Electronic | 3.42 | ||
Natural Sound | 38 | Leaves | 3.78 | 3.66 |
39 | Falling stone | 3.60 | ||
40 | Flying dust | 3.61 | ||
41 | Flowing water | 3.64 | ||
Other Sound | 42 | Mechanical | 2.36 | 2.48 |
43 | Construction site | 2.48 | ||
44 | Handwork | 2.51 | ||
45 | Human activities | 2.48 | ||
46 | Mobile ringtones | 2.50 | ||
47 | Children playing | 2.44 | ||
48 | Street performance | 2.54 | ||
49 | Sneezing | 2.51 | ||
50 | Nonlocal dialect | 2.52 |
Sound Category | Code | Sound Source | Q21: Which Environment Do You Prefer to Stay in the Forest Park? | Q14: How Do You Get to the Forest Park Now? | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
In Sunlit Areas | In the Shade of Trees | Near a Snack Stall | In Secluded Areas | On the Waterside | In Lounge Areas | In Open Pavements | On Roadside Seats | In Higher Places | In Park Buildings | On the Open Lawn | On Foot | By Bus | By Car | By Bike | |||
Vehicle Sound | 1 | Car | 0.100 ** | 0.110 ** | 0.072 | 0.134 ** | 0.064 | −0.061 | −0.003 | −0.073 | 0.071 | −0.004 | −0.008 | −0.061 | 0.080 * | 0.114 ** | 0.015 |
2 | Bus | 0.087 * | 0.029 | 0.038 | 0.102 ** | 0.083 * | −0.011 | 0.018 | −0.038 | 0.102 ** | −0.001 | −0.026 | −0.055 | 0.058 | 0.129 ** | 0.004 | |
3 | Express train | 0.057 | 0.072 | 0.060 | 0.059 | 0.012 | −0.021 | −0.033 | −0.044 | 0.040 | −0.026 | 0.002 | −0.055 | 0.024 | 0.066 | 0.028 | |
4 | Aircraft | 0.053 | 0.088 * | 0.047 | 0.110 ** | 0.027 | −0.034 | 0.021 | −0.059 | 0.026 | −0.002 | −0.030 | −0.026 | 0.041 | 0.038 | 0.043 | |
5 | Fighter | 0.038 | 0.020 | 0.008 | 0.079 * | 0.046 | −0.076 * | −0.004 | −0.061 | 0.025 | 0.050 | 0.081 * | −0.009 | 0.030 | 0.060 | 0.011 | |
6 | Motorcycle | 0.064 | 0.092 * | 0.077 * | 0.049 | 0.033 | −0.041 | 0.021 | −0.052 | 0.040 | −0.014 | −0.026 | −0.041 | 0.052 | 0.085 * | −0.001 | |
7 | Tractor | 0.046 | 0.068 | 0.045 | 0.128 ** | 0.054 | −0.078 * | 0.012 | −0.041 | 0.040 | 0.024 | 0.023 | −0.005 | 0.030 | 0.086 * | 0.035 | |
8 | Bicycle | 0.086 * | 0.066 | 0.000 | 0.084 * | 0.016 | −0.023 | 0.053 | −0.019 | 0.023 | −0.016 | −0.011 | −0.033 | 0.042 | 0.064 | 0.055 | |
9 | Truck | 0.057 | −0.023 | 0.006 | 0.020 | 0.031 | 0.025 | 0.031 | −0.001 | 0.010 | −0.013 | −0.045 | 0.015 | 0.047 | 0.018 | 0.042 | |
10 | Police siren | 0.069 | 0.087 * | 0.067 | 0.125 ** | 0.044 | −0.039 | −0.032 | −0.074 * | 0.072 | −0.027 | 0.031 | −0.076 * | 0.075 * | 0.077 * | 0.045 | |
11 | Ambulance siren | 0.113 ** | 0.122 ** | 0.071 | 0.124 ** | 0.076 * | −0.098 ** | −0.046 | −0.126 ** | 0.073 | −0.003 | 0.007 | −0.075 * | 0.082 * | 0.115 ** | 0.036 | |
12 | Fire engine siren | 0.091 * | 0.132 ** | 0.097 ** | 0.114 ** | 0.021 | −0.027 | 0.010 | −0.100 ** | 0.022 | 0.034 | −0.036 | −0.071 | 0.051 | 0.110 ** | 0.049 | |
Bird Song | 13 | Pigeon | −0.118 ** | −0.191 ** | −0.191 ** | −0.207 ** | −0.178 ** | 0.127 ** | 0.007 | 0.133 ** | −0.037 | −0.057 | 0.081 * | 0.094 * | −0.104 ** | −0.099 ** | −0.099 ** |
14 | Wild goose | −0.124 ** | −0.186 ** | −0.176 ** | −0.158 ** | −0.158 ** | 0.127 ** | −0.028 | 0.091 * | −0.017 | −0.050 | 0.064 | 0.115 ** | −0.090 * | −0.114 ** | −0.080 * | |
15 | Swallow | −0.141 ** | −0.140 ** | −0.157 ** | −0.152 ** | −0.146 ** | 0.145 ** | 0.024 | 0.113 ** | −0.027 | −0.068 | 0.077 * | 0.090 * | −0.066 | −0.088 * | −0.096 ** | |
16 | Eagle | −0.121 ** | −0.127 ** | −0.133 ** | −0.112 ** | −0.098 ** | 0.089 * | 0.029 | 0.081 * | −0.042 | −0.046 | 0.039 | 0.102 ** | −0.094 * | −0.079 * | −0.064 | |
17 | Hawk | −0.115 ** | −0.151 ** | −0.174 ** | −0.155 ** | −0.194 ** | 0.102 ** | 0.013 | 0.109 ** | −0.013 | −0.022 | 0.104 ** | 0.104 ** | −0.097 ** | −0.069 | −0.116 ** | |
18 | Swan | −0.167 ** | −0.166 ** | −0.112 ** | −0.141 ** | −0.116 ** | 0.092 * | 0.022 | 0.131 ** | 0.000 | −0.083 * | 0.073 * | 0.085 * | −0.058 | −0.068 | −0.093 * | |
19 | Egret | −0.092 * | −0.143 ** | −0.152 ** | −0.128 ** | −0.115 ** | 0.110 ** | 0.022 | 0.081 * | −0.011 | −0.043 | 0.017 | 0.047 | −0.103 ** | −0.044 | −0.060 | |
20 | Sparrow | −0.104 ** | −0.200 ** | −0.169 ** | −0.146 ** | −0.145 ** | 0.083 * | −0.039 | 0.115 ** | 0.002 | −0.068 | 0.088 * | 0.104 ** | −0.109 ** | −0.087 * | −0.082 * | |
Livestock Sound | 21 | Cattle | −0.075 * | −0.071 | −0.148 ** | −0.163 ** | −0.107 ** | 0.113 ** | 0.008 | 0.124 ** | −0.024 | −0.011 | 0.013 | 0.057 | −0.039 | −0.148 ** | −0.100 ** |
22 | Horse | −0.058 | −0.057 | −0.086 * | −0.128 ** | −0.141 ** | 0.103 ** | 0.021 | 0.096 * | 0.000 | −0.024 | 0.016 | 0.070 | −0.017 | −0.118 ** | −0.079 * | |
23 | Sheep/Goat | −0.059 | −0.071 | −0.104 ** | −0.133 ** | −0.111 ** | 0.074 * | −0.006 | 0.145 ** | −0.087 * | −0.023 | 0.053 | 0.060 | −0.060 | −0.091 * | −0.072 | |
24 | Chicken | −0.062 | −0.048 | −0.102 ** | −0.194 ** | −0.124 ** | 0.101 ** | 0.052 | 0.156 ** | −0.017 | −0.039 | 0.001 | 0.062 | −0.037 | −0.102 ** | −0.108 ** | |
25 | Dog | −0.030 | −0.103 ** | −0.111 ** | −0.147 ** | −0.096 ** | 0.110 ** | 0.010 | 0.100 ** | −0.030 | −0.037 | 0.009 | 0.040 | −0.057 | −0.064 | −0.116 ** | |
26 | Pig | −0.069 | −0.044 | −0.065 | −0.136 ** | −0.108 ** | 0.080 * | 0.011 | 0.110 ** | 0.012 | −0.003 | −0.004 | 0.027 | 0.002 | −0.094 * | −0.049 | |
27 | Duck | −0.063 | −0.064 | −0.144 ** | −0.137 ** | −0.126 ** | 0.070 | 0.032 | 0.057 | −0.019 | −0.041 | 0.028 | 0.067 | −0.056 | −0.114 ** | −0.098 ** | |
28 | Cat | −0.008 | −0.064 | −0.115 ** | −0.175 ** | −0.121 ** | 0.056 | 0.003 | 0.091 * | −0.017 | 0.009 | 0.039 | 0.024 | −0.037 | −0.104 ** | −0.084 * | |
29 | Goose | −0.050 | −0.103 ** | −0.087 * | −0.151 ** | −0.079 * | 0.064 | 0.006 | 0.087 * | −0.041 | −0.057 | −0.002 | 0.057 | 0.007 | −0.104 ** | −0.137 ** | |
Atmospheric Sound | 30 | Rain | 0.089 * | 0.084 * | 0.100 ** | 0.108 ** | 0.090 * | −0.044 | −0.019 | −0.073 * | 0.035 | 0.093 * | −0.027 | −0.022 | 0.035 | 0.054 | 0.085 * |
31 | Wind | 0.071 | 0.071 | 0.073 * | 0.070 | 0.068 | −0.037 | 0.036 | −0.063 | 0.010 | 0.038 | 0.001 | 0.001 | 0.026 | 0.034 | 0.060 | |
32 | Snow | 0.058 | 0.083 * | 0.031 | 0.068 | 0.043 | −0.035 | 0.016 | −0.051 | −0.005 | 0.064 | −0.019 | 0.002 | 0.005 | 0.082 * | 0.041 | |
33 | Thunder | 0.016 | 0.090 * | 0.078 * | 0.048 | 0.067 | −0.026 | −0.012 | −0.038 | −0.008 | 0.035 | −0.032 | 0.019 | 0.030 | 0.017 | 0.006 | |
34 | Thunderstorm | 0.029 | 0.027 | 0.040 | 0.086 * | 0.083 * | −0.016 | −0.036 | −0.024 | −0.008 | 0.060 | −0.003 | −0.019 | 0.026 | 0.080 * | 0.026 | |
Musical Sound | 35 | Instrumental | −0.086 * | −0.112 ** | −0.093 * | −0.135 ** | −0.145 ** | 0.120 ** | 0.029 | 0.041 | −0.014 | −0.058 | 0.075 * | 0.032 | −0.064 | −0.046 | −0.106 ** |
36 | Vocal | −0.031 | −0.085 * | −0.109 ** | −0.102 ** | −0.116 ** | 0.094 * | 0.025 | 0.039 | −0.010 | 0.005 | 0.052 | −0.006 | −0.056 | −0.069 | −0.037 | |
37 | Electronic | −0.038 | −0.112 ** | −0.110 ** | −0.109 ** | −0.088 * | 0.081 * | 0.062 | 0.044 | 0.019 | −0.054 | 0.092 * | 0.051 | −0.053 | −0.049 | −0.081 * | |
Natural Sound | 38 | Leaves | −0.094 * | −0.111 ** | −0.201 ** | −0.244 ** | −0.158 ** | 0.047 | 0.046 | 0.054 | −0.035 | −0.009 | 0.095 * | 0.047 | −0.093 * | −0.161 ** | −0.102 ** |
39 | Falling stone | −0.054 | −0.120 ** | −0.137 ** | −0.191 ** | −0.120 ** | 0.062 | −0.005 | 0.032 | −0.006 | −0.043 | 0.071 | 0.006 | −0.036 | −0.126 ** | −0.072 | |
40 | Flying dust | −0.082 * | −0.133 ** | −0.156 ** | −0.186 ** | −0.146 ** | 0.074 * | 0.051 | 0.056 | −0.007 | −0.079 * | 0.079 * | 0.062 | −0.049 | −0.111 ** | −0.101 ** | |
41 | Flowing water | −0.062 | −0.144 ** | −0.143 ** | −0.198 ** | −0.106 ** | 0.066 | 0.031 | 0.034 | −0.008 | −0.034 | 0.059 | 0.012 | −0.039 | −0.127 ** | −0.103 ** | |
Other Sound | 42 | Mechanical | 0.086 * | 0.113 ** | 0.130 ** | 0.019 | −0.022 | −0.027 | −0.004 | −0.044 | 0.054 | −0.026 | −0.051 | −0.023 | 0.046 | 0.043 | 0.024 |
43 | Construction site | 0.095 * | 0.087 * | 0.102 ** | 0.045 | −0.012 | −0.015 | −0.014 | −0.049 | 0.044 | −0.010 | −0.024 | −0.024 | 0.009 | 0.055 | 0.003 | |
44 | Handwork | 0.095 * | 0.080 * | 0.094 * | 0.013 | 0.028 | −0.021 | −0.021 | −0.024 | 0.057 | −0.024 | −0.037 | −0.023 | 0.053 | 0.019 | 0.026 | |
45 | Human activities | 0.084 * | 0.077 * | 0.097 ** | 0.030 | 0.036 | −0.075 * | −0.005 | −0.057 | 0.017 | −0.023 | −0.075 * | −0.027 | 0.117 ** | 0.050 | 0.010 | |
46 | Mobile ringtones | 0.122 ** | 0.055 | 0.133 ** | 0.040 | −0.005 | −0.028 | −0.006 | −0.042 | 0.046 | −0.031 | −0.036 | −0.030 | 0.051 | 0.027 | 0.030 | |
47 | Children playing | 0.076 * | 0.080 * | 0.105 ** | 0.066 | 0.025 | −0.067 | −0.019 | −0.053 | 0.013 | −0.027 | −0.041 | −0.051 | 0.064 | 0.056 | 0.053 | |
48 | Street performance | 0.109 ** | 0.088 * | 0.090 * | 0.047 | 0.043 | −0.045 | −0.002 | −0.029 | −0.001 | 0.046 | −0.047 | 0.014 | 0.010 | 0.042 | 0.005 | |
49 | Sneezing | 0.051 | 0.089 * | 0.089 * | 0.016 | −0.013 | −0.017 | −0.046 | −0.035 | 0.028 | 0.011 | −0.071 | −0.017 | 0.028 | 0.067 | 0.021 | |
50 | Nonlocal dialect | 0.100 ** | 0.110 ** | 0.072 | 0.134 ** | 0.064 | −0.061 | −0.003 | −0.073 | 0.071 | −0.004 | −0.008 | −0.061 | 0.080 * | 0.114 ** | 0.015 |
Sound Category | Code | Sound Source | Q12 | Q13 | Question 15 | ||||
---|---|---|---|---|---|---|---|---|---|
Exercise | Dog walking | Playing Chess | Square Dancing | Socializing | |||||
Vehicle Sound | 1 | Car | 0.178 ** | 0.192 ** | −0.041 | 0.074 * | 0.092 * | 0.068 | −0.044 |
2 | Bus | 0.154 ** | 0.158 ** | −0.037 | 0.047 | 0.064 | 0.052 | −0.013 | |
3 | Express train | 0.152 ** | 0.121 ** | 0.011 | 0.010 | 0.011 | 0.023 | −0.062 | |
4 | Aircraft | 0.132 ** | 0.153 ** | −0.048 | 0.025 | 0.057 | 0.043 | −0.037 | |
5 | Fighter | 0.144 ** | 0.150 ** | −0.009 | 0.001 | −0.013 | 0.050 | 0.016 | |
6 | Motorcycle | 0.028 | 0.102 ** | −0.019 | 0.006 | 0.013 | 0.016 | −0.036 | |
7 | Tractor | 0.173 ** | 0.147 ** | −0.057 | 0.075 * | 0.110 ** | 0.075 * | −0.053 | |
8 | Bicycle | 0.105 ** | 0.144 ** | −0.007 | 0.007 | 0.022 | 0.072 | −0.072 | |
9 | Truck | 0.091 * | 0.070 | −0.067 | 0.014 | 0.028 | 0.092 * | −0.050 | |
10 | Police siren | 0.122 ** | 0.183 ** | −0.029 | 0.038 | 0.062 | 0.030 | −0.032 | |
11 | Ambulance siren | 0.144 ** | 0.180 ** | −0.028 | 0.134 ** | 0.099 ** | 0.022 | −0.057 | |
12 | Fire engine siren | 0.117 ** | 0.125 ** | −0.008 | 0.058 | 0.099 ** | 0.023 | −0.048 | |
Bird Song | 13 | Pigeon | −0.211 ** | −0.303 ** | 0.049 | −0.155 ** | −0.182 ** | −0.102 ** | 0.035 |
14 | Wild goose | −0.183 ** | −0.233 ** | 0.038 | −0.139 ** | −0.185 ** | −0.073 * | 0.015 | |
15 | Swallow | −0.101 ** | −0.255 ** | 0.009 | −0.159 ** | −0.157 ** | −0.054 | 0.042 | |
16 | Eagle | −0.162 ** | −0.235 ** | −0.011 | −0.123 ** | −0.148 ** | −0.060 | 0.013 | |
17 | Hawk | −0.170 ** | −0.224 ** | 0.024 | −0.175 ** | −0.198 ** | −0.034 | −0.015 | |
18 | Swan | −0.155 ** | −0.262 ** | 0.028 | −0.100 ** | −0.164 ** | −0.024 | 0.049 | |
19 | Egret | −0.183 ** | −0.251 ** | 0.012 | −0.103 ** | −0.148 ** | −0.043 | −0.004 | |
20 | Sparrow | −0.147 ** | −0.189 ** | 0.041 | −0.125 ** | −0.161 ** | −0.064 | 0.019 | |
Livestock Sound | 21 | Cattle | −0.254 ** | −0.219 ** | 0.111 ** | −0.224 ** | −0.127 ** | −0.056 | 0.028 |
22 | Horse | −0.202 ** | −0.199 ** | 0.047 | −0.141 ** | −0.076 * | −0.047 | 0.031 | |
23 | Sheep/Goat | −0.202 ** | −0.199 ** | 0.087 * | −0.164 ** | −0.080 * | −0.073 * | 0.032 | |
24 | Chicken | −0.222 ** | −0.170 ** | 0.073 * | −0.143 ** | −0.088 * | −0.063 | 0.025 | |
25 | Dog | −0.228 ** | −0.151 ** | 0.110 ** | −0.185 ** | −0.100 ** | −0.068 | 0.014 | |
26 | Pig | −0.216 ** | −0.184 ** | 0.151 ** | −0.144 ** | −0.106 ** | −0.086 * | 0.001 | |
27 | Duck | −0.213 ** | −0.127 ** | 0.070 | −0.184 ** | −0.116 ** | −0.035 | 0.034 | |
28 | Cat | −0.251 ** | −0.189 ** | 0.065 | −0.162 ** | −0.084 * | −0.038 | −0.042 | |
29 | Goose | −0.202 ** | −0.136 ** | 0.071 | −0.156 ** | −0.094 * | −0.043 | 0.023 | |
Atmospheric Sound | 30 | Rain | 0.182 ** | 0.209 ** | −0.100 ** | 0.220 ** | 0.126 ** | 0.032 | 0.043 |
31 | Wind | 0.110 ** | 0.133 ** | −0.126 ** | 0.172 ** | 0.095 * | 0.019 | 0.046 | |
32 | Snow | 0.151 ** | 0.104 ** | −0.081 * | 0.074 * | 0.052 | 0.076 * | 0.055 | |
33 | Thunder | 0.070 | 0.111 ** | −0.059 | 0.109 ** | 0.053 | 0.038 | 0.056 | |
34 | Thunderstorm | 0.131 ** | 0.195 ** | −0.049 | 0.109 ** | 0.066 | 0.015 | 0.020 | |
Musical Sound | 35 | Instrumental | −0.195 ** | −0.248 ** | 0.066 | −0.142 ** | −0.116 ** | −0.076 * | −0.022 |
36 | Vocal | −0.133 ** | −0.219 ** | 0.073 * | −0.121 ** | −0.095 * | −0.046 | −0.026 | |
37 | Electronic | −0.124 ** | −0.193 ** | 0.085 * | −0.116 ** | −0.093 * | −0.057 | −0.041 | |
Natural Sound | 38 | Leaves | −0.287 ** | −0.306 ** | 0.083 * | −0.150 ** | −0.184 ** | −0.076 * | −0.039 |
39 | Falling stone | −0.254 ** | −0.290 ** | 0.093 * | −0.141 ** | −0.179 ** | −0.110 ** | −0.009 | |
40 | Flying dust | −0.241 ** | −0.248 ** | 0.060 | −0.092 * | −0.158 ** | −0.047 | −0.051 | |
41 | Flowing water | −0.245 ** | −0.248 ** | 0.085 * | −0.162 ** | −0.198 ** | −0.070 | −0.016 | |
Other Sound | 42 | Mechanical | 0.139 ** | 0.173 ** | −0.034 | 0.077 * | 0.098 ** | 0.003 | 0.030 |
43 | Machine noise | 0.127 ** | 0.167 ** | 0.003 | 0.099 ** | 0.076 * | 0.010 | 0.014 | |
44 | Construction noise | 0.051 | 0.137 ** | −0.008 | 0.123 ** | 0.118 ** | −0.044 | −0.019 | |
45 | Exercise sound | 0.077 * | 0.156 ** | 0.000 | 0.070 | 0.079 * | 0.014 | 0.021 | |
46 | Mobile ringtones | 0.105 ** | 0.123 ** | −0.075 * | 0.069 | 0.084 * | −0.007 | 0.014 | |
47 | Children playing | 0.144 ** | 0.148 ** | −0.075 * | 0.079 * | 0.115 ** | 0.024 | 0.049 | |
48 | Footstep | 0.105 ** | 0.192 ** | −0.063 | 0.115 ** | 0.119 ** | 0.028 | 0.019 | |
49 | Vehicle noise | 0.143 ** | 0.117 ** | −0.048 | 0.035 | 0.077 * | 0.047 | 0.021 | |
50 | Bus noise | 0.178 ** | 0.192 ** | 0.001 | −0.246 ** | −0.260 ** | −0.303 ** | −0.253 ** |
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | Durbin–Watson |
---|---|---|---|---|---|
1 | 0.272 a | 0.074 | 0.073 | 0.373 | |
2 | 0.322 b | 0.104 | 0.101 | 0.367 | |
3 | 0.345 c | 0.119 | 0.115 | 0.365 | |
4 | 0.363 d | 0.132 | 0.127 | 0.362 | |
5 | 0.377 e | 0.142 | 0.136 | 0.360 | |
6 | 0.389 f | 0.152 | 0.145 | 0.358 | |
7 | 0.399 g | 0.160 | 0.151 | 0.357 | |
8 | 0.406 h | 0.165 | 0.155 | 0.356 | |
9 | 0.412 i | 0.170 | 0.159 | 0.356 | 1.865 |
Model | Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|---|
1 | Regression | 8.039 | 1 | 8.039 | 57.701 | 0.000 a |
Residual | 100.723 | 723 | 0.139 | |||
Total | 108.761 | 724 | ||||
2 | Regression | 11.257 | 2 | 5.628 | 41.678 | 0.000 b |
Residual | 97.504 | 722 | 0.135 | |||
Total | 108.761 | 724 | ||||
3 | Regression | 12.942 | 3 | 4.314 | 32.460 | 0.000 c |
Residual | 95.820 | 721 | 0.133 | |||
Total | 108.761 | 724 | ||||
4 | Regression | 14.314 | 4 | 3.579 | 27.280 | 0.000 d |
Residual | 94.447 | 720 | 0.131 | |||
Total | 108.761 | 724 | ||||
5 | Regression | 15.434 | 5 | 3.087 | 23.782 | 0.000 e |
Residual | 93.327 | 719 | 0.130 | |||
Total | 108.761 | 724 | ||||
6 | Regression | 16.499 | 6 | 2.750 | 21.400 | 0.000 f |
Residual | 92.262 | 718 | 0.128 | |||
Total | 108.761 | 724 | ||||
7 | Regression | 17.355 | 7 | 2.479 | 19.447 | 0.000 g |
Residual | 91.407 | 717 | 0.127 | |||
Total | 108.761 | 724 | ||||
8 | Regression | 17.914 | 8 | 2.239 | 17.649 | 0.000 h |
Residual | 90.847 | 716 | 0.127 | |||
Total | 108.761 | 724 | ||||
9 | Regression | 18.459 | 9 | 2.051 | 16.240 | 0.000 i |
Residual | 90.302 | 715 | 0.126 | |||
Total | 108.761 | 724 |
Model 9 | B | Std. Error | Beta | t | Sig. | Tolerance | VIF |
---|---|---|---|---|---|---|---|
(Constant) | 3.203 | 0.072 | 44.752 | 0.000 | |||
Q11 | −0.045 | 0.017 | −0.109 | −2.676 | 0.008 | 0.700 | 1.429 |
Q28 | −0.039 | 0.019 | −0.083 | −2.051 | 0.041 | 0.709 | 1.410 |
Q16C | −0.090 | 0.039 | −0.087 | −2.303 | 0.022 | 0.809 | 1.237 |
Q13 | −0.044 | 0.014 | −0.117 | −3.082 | 0.002 | 0.810 | 1.235 |
Q46_1 | 0.039 | 0.012 | 0.118 | 3.237 | 0.001 | 0.880 | 1.136 |
Q21E | −0.174 | 0.068 | −0.095 | −2.578 | 0.010 | 0.851 | 1.174 |
Q18A | 0.071 | 0.027 | 0.091 | 2.654 | 0.008 | 0.993 | 1.007 |
Q29 | −0.050 | 0.024 | −0.074 | −2.116 | 0.035 | 0.948 | 1.055 |
Q20C | −0.069 | 0.033 | −0.075 | −2.077 | 0.038 | 0.900 | 1.112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, L.; Zhang, Q.; Mao, Y.; Peng, Y.; Wang, T.; Xu, J. A Study on the Soundscape Preferences of the Elderly in the Urban Forest Parks of Underdeveloped Cities in China. Forests 2023, 14, 1266. https://doi.org/10.3390/f14061266
Luo L, Zhang Q, Mao Y, Peng Y, Wang T, Xu J. A Study on the Soundscape Preferences of the Elderly in the Urban Forest Parks of Underdeveloped Cities in China. Forests. 2023; 14(6):1266. https://doi.org/10.3390/f14061266
Chicago/Turabian StyleLuo, Lei, Qi Zhang, Yingming Mao, Yanyan Peng, Tao Wang, and Jian Xu. 2023. "A Study on the Soundscape Preferences of the Elderly in the Urban Forest Parks of Underdeveloped Cities in China" Forests 14, no. 6: 1266. https://doi.org/10.3390/f14061266
APA StyleLuo, L., Zhang, Q., Mao, Y., Peng, Y., Wang, T., & Xu, J. (2023). A Study on the Soundscape Preferences of the Elderly in the Urban Forest Parks of Underdeveloped Cities in China. Forests, 14(6), 1266. https://doi.org/10.3390/f14061266