Managing Cone Formation and Leader Growth in Fraser Fir Christmas Tree Plantations with Plant Growth Regulators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Paclobutrazol Trials
2.2. Foliar-Applied PGR Trials
2.3. Statistical Analyses
3. Results
3.1. Paclobutrazol Trials
3.2. Foliar-Applied PGR Trial
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Powell, G.R. Biennial strobilus production in balsam fir: A review of its morphogenesis and a discussion of its apparent physiological basis. Can. J. For. Res. 1977, 7, 547–555. [Google Scholar] [CrossRef]
- Beck, D.E. Abies fraseri (Pursh) Poir. Fraser fir. IN Silvics of North America, 1, Conifers. In Agriculture Handbook; Burns, R.M., Honkala, B.H., Eds.; USDA Forest Service: Washington, DC, USA, 1990; pp. 47–51. [Google Scholar]
- Crain, B.A.; Cregg, B.M. Regulation and management of cone induction in temperate conifers. For. Sci. 2018, 64, 82–101. [Google Scholar] [CrossRef]
- Wheeler, N.C.; Wample, R.L.; Pharis, R.P. Promotion of flowering in the Pinaceae by gibberellins: IV. Seedlings and sexually mature grafts of lodgepole pine. Physiol. Plant. 1980, 50, 340–346. [Google Scholar] [CrossRef]
- Bockstette, S.W.; Thomas, B.R. Impact of genotype and parent origin on the efficacy and optimal timing of GA4/7 stem injections in a lodgepole pine seed orchard. New For. 2020, 51, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, X.; Zhao, M.H.; Pang, Z.Y.; Wei, J.T.; Tigabu, M.; Chiang, V.L.; Sederoff, H.; Sederoff, R.; Zhao, X.Y. An overview of the practices and management methods for enhancing seed production in conifer plantations for commercial use. Horticulturae 2021, 7, 252. [Google Scholar] [CrossRef]
- Owens, J.N.; Chandler, L.M.; Bennett, J.S.; Crowder, T.J. Cone enhancement in Abies amabilis using GA4/7, fertilizer, girdling and tenting. For. Ecol. Manag. 2001, 154, 227–236. [Google Scholar] [CrossRef]
- Pharis, R.P.; Kuo, C.G. Physiology of gibberellins in conifers. Can. J. For. Res. 1977, 7, 299–325. [Google Scholar] [CrossRef]
- Rademacher, W. Plant growth regulators: Backgrounds and uses in plant production. J. Plant Growth Regul. 2015, 34, 845–872. [Google Scholar] [CrossRef]
- Crain, B.A.; Cregg, B.M. Gibberellic acid inhibitors control height growth and cone production in Abies fraseri. Scand. J. For. Res. 2017, 32, 391–396. [Google Scholar] [CrossRef]
- Landgren, C.; Cregg, B.; Rouse, R.; Kowalski, J. Controlling leader growth on noble and Turkish Fir with S-ABA. Forests 2022, 13, 212. [Google Scholar] [CrossRef]
- Martens, H.J.; Sørensen, S.; Burow, M.; Veierskov, B. Characterization of top leader elongation in Nordmann fir (Abies nordmanniana). J. Plant Growth Regul. 2019, 38, 1354–1361. [Google Scholar] [CrossRef] [Green Version]
- Nzokou, P.; Cregg, B.M.; O’Donnell, J. Field note: Alternative leader growth control for Fraser fir and Korean fir Christmas trees. North. J. Appl. For. 2008, 25, 52–54. [Google Scholar] [CrossRef] [Green Version]
- McMullan, E.E. Effect of applied growth regulators on cone production in Douglas-fir, and relation of endogenous growth regulators to cone production capacity. Can. J. For. Res. 1980, 10, 405–414. [Google Scholar] [CrossRef]
- Duck, M.W.; Cregg, B.M.; Fernandez, R.T.; Heins, R.D.; Cardoso, F.F. Controlling growth of tabletop Christmas trees with plant growth retardants. HortTechnology 2004, 14, 528–532. [Google Scholar] [CrossRef]
- Wheeler, N.C. Effect of paclobutrazol on Douglas fir and loblolly pine. J. Hortic. Sci. 1987, 62, 101–106. [Google Scholar] [CrossRef]
- Owens, J.N.; Molder, M. Vegetative bud development and cone differentiation in Abies amabilis. Can. J. Bot. 1977, 55, 992–1008. [Google Scholar] [CrossRef]
- Owens, J.N.; Singh, H. Vegetative bud development and the time and method of cone initiation in subalpine fir (Abies lasiocarpa). Can. J. Bot. 1982, 60, 2249–2262. [Google Scholar] [CrossRef]
- Rutledge, M.E.; Frampton, J.; Blank, G.; Hinesley, L.E. Naphthaleneacetic acid reduces leader growth of Fraser fir Christmas trees. HortScience 2009, 44, 345–348. [Google Scholar] [CrossRef]
- Cregg, B.; Ellison, D.; O’Donnell, J. Post-emergent control of nuisance cones in Fraser fir Christmas tree plantations. Forests 2018, 9, 233. [Google Scholar] [CrossRef]
Cones per Tree Location | ||||||
---|---|---|---|---|---|---|
Treatment | Allegan | Manton | Horton | Sidney | Overall 1 | |
2017 | Control | 47.9 (0.0) | 4.1 (0.0) | 10.0 (0.0) | 3.6 (0.0) | 16.4a (0.0) |
Soil 100 mL | 43.3 (−9.6) | 2.8 (−31.7) | 10.6 (+6.0) | 2.9 (−19.4) | 14.9ab (−9.1) | |
Soil 200 mL | 46.8 (−2.3) | 2.6 (−36.6) | 10.9 (+9.0) | 4.3 (+19.4) | 16.2a (−1.2) | |
Soil 300 mL | 32.2 (−32.8) | 1.7 (+58.5) | 7.4 (−26.0) | 1.8 (−50.0) | 10.8ab (−34.1) | |
Foliar | 27.8 (−42.0) | 0.8 (−80.5) | 8.3 (−27.0) | 1.1 (−69.4) | 9.5b (−42.1) | |
2018 | Control | 84.2 (0.0) | 14.6 (0.0) | 12.7 (0.0) | 19.1 (0.0) | 32.6a (0.0) |
Soil 100 mL | 76.5 (9.1) | 12.9 (−11.6) | 10.1 (−20.5) | 19.1(0.0) | 29.7ab (−8.9) | |
Soil 200 mL | 72.2 (14.3) | 4.8 (−67.1) | 8.7 (−31.5) | 12.2 (−36.1) | 24.5abc (−24.8) | |
Soil 300 mL | 54.2 (−35.6) | 6.2 (−57.5) | 6.3 (−50.4) | 4.4 (−77.0) | 17.8c (−45.4) | |
Foliar | 50.6 (−39.9) | 7.9 (−45.9) | 8.2 (−35.4) | 14.2 (−25.7) | 20.2bc (−38.0) | |
2019 | Control | 87.6 (0.0) | 62.9 (0.0) | 42.3 (0.0) | 42.7 (0.0) | 58.8a (0.0) |
Soil 100 mL | 80.5 (−8.1) | 44.5 (−29.3) | 29.6 (−30.0) | 43.2 (+1.2) | 49.7ab (−15.5) | |
Soil 200 mL | 83.8 (−4.3) | 33.5 (−46.7) | 24.7 (−41.6) | 27.2 (−36.3) | 42.3b (−28.1) | |
Soil 300 mL | 66.7 (−23.9) | 51.4 (−18.3) | 18.0 (−57.4) | 15.4 (−63.9) | 37.9b (−35.5) | |
Foliar | 70.7 (−19.3) | 35.8 (−43.1) | 28.6 (−32.4) | 51.9 (21.5) | 46.7ab (−20.6) | |
2020 | Control | NA | 46.7 (0.0) | 58.8 (0.0) | NA | NA |
Soil 100 mL | 36.9 (−41.3) | 34.1 (−19.4) | ||||
Soil 200 mL | 24.7 (−60.7) | 23.9 (−43.5) | ||||
Soil 300 mL | 52.4 (−16.7) | 26.7 (−36.9) | ||||
Foliar | 58.6 (−6.8) | 31.3 (−26.0) | ||||
Cumulative 2 | Control | 219.7 (0.0) | 77.3 (0.0) | 64.7 (0.0) | 65.3 (0.0) | 106.8a (0.0) |
Soil 100 mL | 200.8 (−8.6) | 60.1 (−22.1) | 50.2 (−22.4) | 65.3 (0.0) | 94.1ab (−11.9) | |
Soil 200 mL | 202.8 (−7.7) | 40.8 (−47.2) | 42.5 (−34.3) | 43.7 (−33.1) | 82.5abc (−22.8) | |
Soil 300 mL | 153.1 (−30.3) | 59.3 (−23.3) | 31.7 (−51.0) | 21.6(−66.9) | 66.4c (−37.8) | |
Foliar | 149.1 (32.1) | 44.5 (−42.4) | 45.6 (−29.5) | 67.5 (3.4) | 76.4bc (−28.5) |
Cones per Tree Location | ||||||
---|---|---|---|---|---|---|
Treatment | Allegan | Manton | Horton | Sidney | Overall 1 | |
2018 | Control | 2.2 (0.0) | 20.8 (0.0) | 4.6 (0.0) | 17.1 (0.0) | 11.2 (0.0) |
Soil 100 mL | 4.5 (+104.5) | 21.5 +(3.8) | 2.2 (−52.2) | 15.6 (−8.8) | 10.9 (−2.7) | |
Soil 200 mL | 6.6 (+200.0) | 23.6 (+13.5) | 3.5 (−23.9) | 8.7 (−49.1) | 10.6 (−5.4) | |
Soil 300 mL | 7.0 (+218.2) | 11.8 (−43.3) | 3.1 (−32.6) | 15.0 (−12.3) | 9.2 (−17.9) | |
Foliar | 1.1 (−50.0) | 21.0 (+1.0) | 3.3 (−28.3) | 12.8 (−25.1) | 9.5 (−15.2) | |
2019 | Control | 12.8 (0.0) | NA | 16.6 (0.0) | 56.8 (0.0) | 28.8 (0.0) |
Soil 100 mL | 10.7 (−16.4) | 10.1 (−39.2) | 36.2 (−36.3) | 19.0 (−34.0) | ||
Soil 200 mL | 18.5 (+44.5) | 8.4 (−49.4) | 29.7 (−47.7) | 19.0 (−34.0) | ||
Soil 300 mL | 13.1 (+2.3) | 7.6 (−54.2) | 37.5 (−34.0) | 19.4 (−32.6) | ||
Foliar | 6.3 (−50.8) | 7.5 (−54.8) | 40.0 (−29.6) | 17.9 (−37.8) | ||
2020 | Control | 26.6 (0.0) | NA | 20.8 (0.0) | 53.7 (0.0) | 33.7a (0.0) |
Soil 100 mL | 11.4 (−57.1) | 11.6 (−44.2) | 29.9 (−44.3) | 17.7b (−47.5) | ||
Soil 200 mL | 25.5 (−4.1) | 9.3 (−55.3) | 35.1 (−34.6) | 23.4ab (−30.6) | ||
Soil 300 mL | 15.8 (−40.6) | 8.4 (−59.6) | 31.5 (−41.3) | 18.5b (−45.1) | ||
Foliar | 11.1 (−58.3) | 11.9 (−42.9) | 34.5 (−35.8) | 19.2b (−43.0_ | ||
Cumulative 2 | Control | 41.0 (0.0) | NA | 42.0 (0.0) | 127.6 (0.0) | 70.2a (0.0) |
Soil 100 mL | 26.6 (−35.1) | 23.9 (−43.1) | 77.8 (−39.0) | 42.7b (−39.2) | ||
Soil 200 mL | 50.6 (−23.4) | 21.3 (−49.3) | 70.1 (−45.1) | 47.3ab (−32.6) | ||
Soil 300 mL | 35.6 (−13.2) | 19.1 (−54.5) | 82.6 (−35.3) | 45.8ab (−34.8) | ||
Foliar | 18.2 (−55.6) | 22.7 (−46.0) | 88.2 (−30.9) | 43.0b (−38.7) |
Cones per Tree | ||||
---|---|---|---|---|
Location | Treatment | Cones 2019 | Cones 2020 | Cumulative |
Allegan | Control | 122.5a (0.0) | 122.0a (0.0) | 244.4a (0.0) |
Chlormequat chloride | 79.4b (−35.2) | 71.8b (−41.1) | 151.2b (−38.1) | |
Uniconazole-p | 63.1b (−48.5) | 75.1ab (−38.4) | 138.2b (−43.5) | |
Daminozide | 66.9b (−45.4) | 67.5b (−44.7) | 134.4b (−45.0) | |
Paclobutrazol | 64.9b (−47.0) | 60.9b (−50.1) | 125.6b (−48.6) | |
Sidney | Control | 49.8 (0.0) | 46.0 (0.0) | 95.8 (0.0) |
Chlormequat chloride | 30.1 (−39.5) | 44.2 (−3.9) | 73.5 (−23.3) | |
Uniconazole-p | 23.5 (−52.8) | 43.1 (+6.3) | 66.1 (−31.0) | |
Daminozide | 42.3 (−15.1) | 33.8 (−26.5) | 76.1 (−20.6) | |
Paclobutrazol | 34.9 (−29.9) | 28.9 (−37.2) | 65.3 (−31.8) | |
Manton | Control | NA | 89.3a (0.0) | |
Chlormequat chloride | 63.9ab (−28.4) | |||
Uniconazole-p | 75.7ab (−15.2) | |||
Daminozide | 67.0ab (−25.0) | |||
Paclobutrazol | 28.9b (−67.6) | |||
Horton | Control | 38.6 (0.0) | NA | |
Chlormequat chloride | 31.2 (−19.2) | |||
Uniconazole-p | 40.2 (+4.1) | |||
Daminozide | 52.2 (+35.2) | |||
Paclobutrazol | 39.9 (+3.4) | |||
All farms * | Control | 70.8a (0.0) | 86.8a (0.0) | 118.4a (0.0) |
Chlormequat chloride | 46.9b (−33.8) | 60.0ab (−30.9) | 80.2b (−32.3) | |
Uniconazole-p | 42.4b (−40.1) | 65.1bc (−25.0) | 80.3b (−32.2) | |
Daminozide | 53.8ab (−24.0) | 56.1bc (−35.4) | 82.4b (−30.4) | |
Paclobutrazol | 46.5b (−34.3) | 39.7c (−54.3) | 64.6b (−45.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cregg, B.; Ellison-Smith, D.; Rouse, R. Managing Cone Formation and Leader Growth in Fraser Fir Christmas Tree Plantations with Plant Growth Regulators. Forests 2023, 14, 25. https://doi.org/10.3390/f14010025
Cregg B, Ellison-Smith D, Rouse R. Managing Cone Formation and Leader Growth in Fraser Fir Christmas Tree Plantations with Plant Growth Regulators. Forests. 2023; 14(1):25. https://doi.org/10.3390/f14010025
Chicago/Turabian StyleCregg, Bert, Dana Ellison-Smith, and Riley Rouse. 2023. "Managing Cone Formation and Leader Growth in Fraser Fir Christmas Tree Plantations with Plant Growth Regulators" Forests 14, no. 1: 25. https://doi.org/10.3390/f14010025
APA StyleCregg, B., Ellison-Smith, D., & Rouse, R. (2023). Managing Cone Formation and Leader Growth in Fraser Fir Christmas Tree Plantations with Plant Growth Regulators. Forests, 14(1), 25. https://doi.org/10.3390/f14010025