™ forests

Article

Crown Profile Modeling and Prediction Based
on Ensemble Learning

Yuling Chen 2, Chen Dong 34* and Baoguo Wu 5

Citation: Chen, Y.; Dong, C.; Wu, B.
Crown Profile Modeling and
Prediction Based on Ensemble
Learning. Forests 2022, 13, 410.
https://doi.org/10.3390/f13030410

Academic Editors: Karol Bronisz and
Olga Viedma

Received: 1 January 2022
Accepted: 1 March 2022
Published: 3 March 2022

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional
claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

1 School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou 311300, China;
chenyuling92@163.com

2 State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China

3 College of Mathematics and Computer Sciences, Zhejiang A & F University, Hangzhou 311300, China

4 Zhejiang Provinical Key Laboratory of Forestry Intelligent Monitoring and Information Technology,
Zhejiang A&F University, Hangzhou 311300, China

5 School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China;
wubg@bijfu.edu.cn

* Correspondence: dongchen@zafu.edu.cn; Tel.: +86-15867180919

Abstract: Improving prediction accuracy is a prominent modeling issue in relation to forest simula-
tions, and ensemble learning is a new effective method for improving the precision of crown profile
model simulations in order to overcome the disadvantages of statistical modeling. Background: En-
semble learning (a machine learning paradigm in which multiple learners are trained to achieve
better performance) has strong nonlinear problem learning ability and flexibility in terms of analyz-
ing longitudinal data, and it remains rarely explored so far in the field of crown profile modeling
forest science. In this study, we explored the application of ensemble learning to the modeling and
prediction of crown profiles. Methods: We evaluated the performance of ensemble learning proce-
dures and marginal model in modeling crown profile using the crown profile database from China
fir plantations in Fujian, in southern China. Results: The ensemble learning approach for the crown
profile model appeared to have better performance and higher efficiency (R?>0.9). The crown equa-
tion model 18 showed an intermediate performance in its estimation, whereas GBDT (MAE = 0.3250,
MSE = 0.2450) appeared to have the best performance and higher efficiency. Conclusions: The en-
semble learning method can combine the advantages of multiple learners and has higher model
accuracy, robustness and overall induction ability, and is thus an effective technique for crown pro-
file modeling and prediction.

Keywords: crown profile model; ensemble learning; marginal model

1. Introduction

With the increasingly frequent need to meet multi-resource objectives in plantation
forestry, forest growth and yield modeling has increasingly focused on modeling individ-
ual trees [1]. Crown size and crown dimensions are important variables for imparting
biological realism to individual-tree growth models [2]. The crown profile (crown width
at any point in the crown [3]) affects the tree’s physiological processes, principally photo-
synthesis, respiration, and transpiration, due to the utilization of light and precipitation,
reflecting the crown size and crown dimensions [4-6]. Crown size is commonly used as
both a predictor variable and a response variable in forest growth and yield models and
biomass models [2,7-11]. Crown dimensions are useful in modeling individual tree forms
[12-21], characterizing stand density [7,10,22], predicting subject tree growth [4,23,24],
providing insights into various ecophysiological processes [25,26], and portraying com-
petition among neighboring trees [24,27-30].
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A variety of equations have been used to describe crowns, such as simple geometric
shapes [31-38], segmented equations [39-43], variable-exponent equations [3,6,44—46] and
distribution functions [6,11,46,47]. These crown profile equations have shown their re-
spective advantages under different regional conditions and with different tree species.
In particular, variable-exponent equations, which are used to obtain different entire-
crown shapes by changing the value of the parameters for different data sets and tree
species, are characterized by great adaptability and flexibility, and have been widely used
in the study of crown profile models [4,5]. A large number of studies have shown that the
fitting of the crown profile model can generally be accomplished using ordinary least
squares or nonlinear least-squares methods, but in forest surveys, the crown profile data-
base contains multiple measurements for each sample tree crown (i.e., hierarchical data),
which violates the fundamental least-squares assumption of independence and constant
variance, resulting in biased and inconsistent estimates of parameter variances, even
though the parameter estimates are still unbiased [48,49]. The related studies showed that
there are two methods to deal with the autocorrelation and heteroscedasticity in the crown
profile equations—(i) Direct Variance-Covariance Modeling (nonlinear least squares
model + CAR(x)), considering that observations within a tree are not equally distributed,
in this method the error term is expanded by using an autoregressive continuous model
(CAR(x)), which can be applied to irregularly spaced, unbalanced data [3,4,44]. (ii) Indi-
rect Variance-Covariance Modeling: the nonlinear mixed-effects models, have been in-
creasingly used for crown profile modeling [8-10,43,46,50-53], providing an indirect
means to characterize variances and covariances by using random effects. Despite their
undeniable academic interest, these two approaches are hardly applicable to forestry prac-
tice. In the former method, the error term uncertainty affects the prediction accuracy, and
regarding the latter method, additional measurements of tree diameters are seldom avail-
able, unless the random effects are predicted at a lower hierarchy level. Meanwhile, the
marginal model, which involves computing mean predictions from a mixed effects model
over the distribution of random effects, that is, providing marginal predictions from a
conditional model [54-56], has the advantage of allowing for the modeling of the covari-
ance matrix of the correlated data. Thus, in this study, we aimed to explore a marginal
model that overcomes the disadvantages of low accuracy and a limited scope of applica-
tion [10]. The nonlinear marginal model method remains rarely explored so far in the field
of crown profile modeling in forest science.

In addition to the parametric regression approach for crown profile modeling, the
crown profile model can also be developed via artificial intelligence (AI) procedures and
directly modeled. Artificial intelligence procedures have been increasingly adopted to
overcome problems related to a lack of statistical assumptions [57]. Machine learning
methods have been introduced into the study of crown profile [58], and can be used to
establish the relationship between crown width at any point in the crown and tree factors
in the absence of continuous data, as well as showing a strong nonlinear problem learning
ability and the flexibility to analyze longitudinal data. Thus, machine learning is an effec-
tive technique in improving the crown profile prediction accuracy. However, single ma-
chine learning methods are prone to showing inadequate performance when using non-
linear and large-representation -space data, and are prone to over-fitting [59], which
makes it difficult to take the crown into full consideration, as profile variation features
lead to low estimation accuracy and low model robustness. However, ensemble learning
(a machine learning paradigm in which multiple learners are trained to achieve better
performance) can combine the advantages of multiple learners and has demonstrated
higher model accuracy robustness and overall induction ability. So far, this technique has
rarely been applied in crown profile research.

The objectives of the study were twofold: (1) To explore the application of artificial
intelligence procedures in the modeling and prediction of crown profiles; (2) to compare
the properties of modeling and prediction for crown profiles between the ensemble learn-
ing method and the nonlinear marginal model method using the crown profile database
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from China fir (Cunninghamia lanceolata) plantations in Fujian, in southern China. This
study is expected to provide theoretical basis and technical support for the improvement
of Chinese fir plantation management in Fujian.

2. Materials and Methods
2.1. Data

The data for this work came from the Dali and Lanxia forest farms in Fujian province,
China. During the exploratory analysis, some obvious data errors were removed (25
trees). A total of 340 trees, with crowns distributed evenly over 65 pure, even-aged, and
unthinned temporary plots (30 m x 30 m) were selected to determine the crown shape
estimate of Chinese fir trees. For each tree, we measured the sample crown height from
its top to crown base (CH, m) and measured the crown radius (CR, m) at each sampling
height. (see Figure 1).
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Figure 1. Tree crown measurement diagram for Chinese fir.

The crown data used in this study consisted of 1427 measured values, form 340 trees
from Chinese fir stands with age ranging from 5 to 35 years. The tree factors used to
establishment crown profile model should be selected according to the factors affecting
the growth of trees. According to the relevant literature[2—4,6,11,34,35,37,38,44,47,51], the
crown profile model is mainly affected by AGE, N, TH, DBH, LCL, CW, HCB, HLCR. In
addition, in this study,we also defined the following composite tree factors: the tree crown
length ratio, the HT to DBH ratio, and the tree crown fullness ratio. All the factors related
to the crown and their descriptions are shown in Table 1.
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Table 1. Summary statistics of tree characteristic data for 340 sample trees.

Variable Mean Std Dev Min Max
AGE(year) 17 7 5 35
DBH(cm) 16.3 5.5 6.1 31.3
TH(m) 12.3 3.8 3.0 22.8
HCB(m) 6.5 3.2 0.3 16.3
CW(m) 3.5 1.0 1.1 7.3
LCL(m) 5.9 2.2 1.1 16.5
LCR(m) 1.8 0.5 0.5 3.7
TSC 0.8 0.1 04 1.3
CLR 0.5 0.2 0.2 0.9
CFR 0.7 0.3 0.1 2.0
CH(m) 2.9 2.1 0.0 124
CR(m) 1.8 1.9 0.0 6.6
RCH 0.41 0.31 0.00 0.90
RCR 1.00 0.70 0.00 3.27

A detailed visual examination of the crown profiles suggested that sample trees from
different age groups appeared to have a different crown form (Figure 2). Further research
is required to improve the prediction effect of adding age variables in the crown profile
equations or algorithms.

6+ All forests
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Figure 2. CR and CH plotted with a local regression loess smoothing curve (all forests:5-35 years,
young forest: <10 years, middle aged forest: 11-20 years, near-mature forest: 21-25 years, mature
forest:26-35 years).
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2.2. Parametric Regression Approach for the Crown Profile Model

We initially selected 25 crown profile models proposed in the literature with different
numbers of parameters that had previously shown good performance (Table 2). The
crown profile equations were estimated using nonlinear least-squares estimates through
a Gauss-Newton algorithm, implemented in PROC MODEL (SAS Institute Inc., Cary, NC,
USA, 2013) and we then compared the goodness-of-fit values. We screened for the param-
eters that passed t-test, and which had R-squared (R?) values greater than 60%, and se-
lected these as the basic models.

Three different mean-covariance models were considered for estimation of means
and covariances. The first is a saturated one in which all means and covariances are model
parameters. The other two structured mean-covariance models use the same CR function
to approximate means while characterizing covariances directly by using variance and
correlation functions or indirectly via random effects within the framework of mixed-ef-
fects modeling [60]. For the nonlinear marginal model, parameters estimates and the sub-
sequent analysis of the residual variance-covariance matrix were performed using the SAS
macro %NLINMIX (SAS Institute, Inc., Cary, NC, USA, 2004). The %NLINIMX macro ex-
tends the fitting algorithm used in the GENMOD procedure by using a quadratic instead
of a simple method in the moment estimation equation for the correlation parameters [61].
For the screened basic crown profile models, its parameter estimates and the subsequent
analysis of the residual variance-covariance matrix were performed using the SAS macro
%NLINMIX. To account for heteroscedastic, autocorrelated errors, the CAR(1) error struc-
ture was added to each CR equation for crown profile models(type = SP(POW)(RCH) spec-
ifies the covariance structure in Equation (1)), and the residuals were used to calculate
weights (weight = 1/sqrt(6?)).

1 pd1z ...pd1m
SPPOW(c-listi= 02| P 1 (1)
pdmlpdlmz 1
where, o2 represents variances; p represents correlation parameters; d; ; the covariance
between two observations depends on a distance metric; The c-list contains the names of
the numeric variables used as coordinates to determine distance.

2.3. Artificial Intelligence Procedures for the Crown Profile Model

Six machine learning algorithms were used to construct the crown profile model of
China fir trees in this paper, namely, artificial neural network (ANN), support vector re-
gression (SVR), random forest (RF), adaptive boosting (AdaBoost), gradient boosting de-
cision tree (GBDT) and extreme gradient boost (XGBoost) methods. Among these, RF,
AdaBoost, GBDT and XGBoost belong to ensemble learning method. The objective is to
predict CR (crown radius) at different relative crown height RCH.

CR = f(RCH; X,) @)

where, f(RCH;X;) shows that some model or algorithm can depend on other variables
X; describing the tree.
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From the model accuracy analysis, we should build the crown profile model that use
all relevant variables (X;: DBH, TH, AGE, HCB, CW, LCL, LCR, TSC, CLR, CFR, CH) as
input. From the model practicality analysis, we should train an Al algorithm that would
use only standard forestry measures (X;: TH, DBH and AGE) as input. Considering dif-
ferent application scenarios, we trained these Al algorithms with two strategies for input
variables: one is multivariable RCH, DBH, TH, AGE, HCB, CW, LCL, LCR, TSC, CLR,
CFR, CH as inputs, and the other is only standard forestry measures as inputs.

ANN: ANN, also called a Multi-Layer Perceptron (MLP), achieves the goal of predic-
tion through building a multilayer network. A typical neural network usually consists of
an input layer, hidden layer and output layer. Based on different learning tasks, the num-
ber of hidden layers can reach any depth, and the output of each hidden layer is trans-
formed by the activation function [62,63].

SVR: Support vector regression assumes that the allowable deviation between f(x)
and y is at most ¢, and the loss is calculated only when the absolute value of the difference
between f(x) and y is greater than e. At this time, it is equivalent to building an interval
band with a width of 2e with f(x) as the center. If the training sample falls into the interval
band, the prediction is considered correct. It specifies the epsilon-tube within which no
penalty is associated in the training loss function with points predicted within a distance
efrom the actual value.

RF: RF is an ensemble learner consisting of a collection of weak base learners (deci-
sion trees). By combining several weak base learners, the result can be achieved through
voting or taking the mean value, which makes the results of the overall model have high
accuracy and generalization performance [64].

AdaBoost: AdaBoost is also an ensemble learning method that combines several
weak learners into one strong learner to improve regression accuracy [65].
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Table 2. Crown profile equations.

Model Equation Variable Parameter Reference
1 CR = LCR(1 — RCH)% RCH, LCR a, [34]
2 CR = LCR(1 — (1 — RCH)?)% RCH, LCR a, [35]
3 CR = agRCH*1(1 — RCH)% RCH o, a1, ; [37]
4 _ CH RCH g, 4y [23]

CR = q, (RCH — 2) + a;RCH
5 CR =ay+ a;H+ a,CH? + a; * DBH x CH + a,DBH x CH? CH, DBH, TH, LCL Qg, A4, Ay, A3, Ay, [2]

+ asTH x CH + a,TH x CH? + a,LCL as, ag, a;
6 CR = LCR(exp(ay + a;(1 — RCH) + a,(1 — RCH)?)) RCH, LCR Qg, Ay, Ay [3]
RCH

7 CR = LCR(ao (zo=) + a;RCH) RCH, LCR ag, ay [4]
8 _ RCH ) az) RCH, LCR Ay, Ay [48]

CR = LCR (ao (RCH — ) + a1 (RCH)
9 CR = LCR(ag + a,(1 — RCH) + ay(1 — RCH)? + a5(1 — RCH)?) RCH, LCR o, Gy, az, A3 [4]
10 (1 — RCH)®~1RCH%1 RCH o, Ay, as [51]

CR =q,

B(ay, az)

11 ay\ /1 — RCH\%! 1 — RCH\*® RCH o, Ay, ay [51]

= () (Y (1

a, a, a;
12 CR = ayRCH%*exp(a, * RCH) RCH ay, aq,a, [45]
13 CR = DBH%RCH%*%2CLRex p((az + a,TSC)RCH) RCH, DBH, CLR, TSC g, Ay, Az, A3, Ay [45]
14 1—(1—RCH)%5 RCH, DBH, CLR, TSC ag, A4, Ay, A3, Ay, A [45]
R = DBHM)| ————————— 1—-RCH P T
C (aO )(1 —(achRa3)0'5 +a4( C )
1
+ as (exp (m) (1 - RCH))

15 CR = (ag + a, * DBH)RCH + (a, + a;CLR)RCH? RCH, DBH, CLR g, Ay, Ay, A3 [45]
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16

17
18
19

20
21

22
23
24
25

CR
=(ao+a
(a, + asCLR 4+ a,TSC)\ ; 1 —RCH \(@2*asCLR+a,TS0)-1
* DBH) ( as + agDBH ) (as + aGDBH)
1—RCH (az+a3zCLR+a4TSC)
ep <_ (as + a6DBH) )

CR = LCR(agLCR** + a,LCR*3(1 — RCH) + a,(1 — RCH)?)
CR = LCR(ay + a, exp(a,LCR* (1 — RCH)))

CR = LCR (ao « HCB® ( + a,HCB% (RCH)%)

RCH — 2)
CR = LCR(ay + a; HCB® (1 — RCH)%)

CR = LCR((ap + a;AGE)((1 — RCH) — 1) + a,((1 — RCH)?* — 1)
+ a3((1 — RCH)® — 1) + a,((1 — RCH)* — 1))

CR = (ag + &;LCR)RCH + RCH?
CR = ao(1 — exp(—(a, + a,LCR)RCH))
CR = (ay + a,LCR)RCH @2+ a3LCR)

(1 — RCH)%1RCH(@s+aslCR)~1
B(a,, (az + a,LCR))

CR = (ao + alLCR)

RCH,DBH,CLR,TSC

RCH,LCR
RCH,LCR
RCH,LCR, HCB

RCH,LCR,HCB
RCH,LCR,AGE

RCH,LCR
RCH,LCR
RCH,LCR
RCH,LCR

ao, al, az, a3, a4,
as, Qg

ao, al, az, a3,a4
ao, al, az,a3

ao, al, az, a3, a4

Ag,Aq,09,03

Ap,Aq,05,03,04

ao, a1
ao, al, az
ao, al, az, a3

ao, al, az, a3,a4

[11]

[66]
[66]
[66]

[66]
[66]

N
—_

—_ — — =
[*)}
—_
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GBDT: GBDT is a boosting ensemble learning algorithm, but its the specific process
is different from that of AdaBoost. The goal of GBDT is to continuously reduce the loss of
each iteration [66].

XGBoost: XGBoost is an optimized distributed gradient boosting machine learning
algorithms under the Gradient Boosting framework. A regularization technique is used in
the XGBoost regression model. In the iterative optimization process, XGBoost uses the
second-order approximation of the Taylor expansion of the objective function. Support
parallelism is the flash point of XGBoost [67].

In terms of hyperparameter optimization, the grid search and random search are two
generic approaches to parameter search, which are provided in scikit-learn by
GridSearchCV and RandomizedSearchCV. Given the finite set of values for each hyperpa-
rameter, GridSearchCV exhaustively considers all hyperparameter sets combinations,
whereas RandomizedSearchCV can sample a given number of candidates from a hy-
perparameter space with a specified distribution [68]. Considering the characteristics of
different methods, in this paper we chose the strategy of combining the random and net-
work search to simplify the required number of experimental iterations. Firstly, a random
search was used to obtain the general direction in a large range of parameter space. Then,
the results of random parameter selection were used as the basis for the following grid
search. Different parameters and different preprocessing schemes were repeatedly com-
pared, and the optimal hyperparameter set was finally screened out.

2.4. Model Evaluation and Validation

The way of dividing training set and test set judged whether the model has over fit-
ting or under fitting problems. To assess the predictive accuracy of the estimated crown
profile models, the leave-one-out approach based on tree level was selected for model
validation. For N sample trees, each model was fitted N times. Each time, all the data
points of one tree were removed from the fitting process, and predicted the values of CR
were obtained for these using the coefficients estimated from the remaining data.

The performance indicators were calculated for both training and validation datasets.
The evaluation criteria included the mean deviation (ME, Equation (3)), the mean absolute
deviation (MAE, Equation (4)) [53] and the mean squared error (MSE, Equation (5)). We
compared the goodness-of-fits using the root mean squared error (RMSE, Equation (6)),
the R-squared value (R? Equation (7)), the Akaike Information Criterion (AIC, Equation
(8)) and the Bayesian Information Criterion (BIC, Equation (9)).

_ToGi =)

ME - 3)
MAE = w )
MSE — Z;‘;l(yi - 5’:)2 (5)

n
RMSE = \/Z?:l(yrll_y\z)z (6)

2 _1_ Y —9)?

A TN CE T E @
AIC = nIn(MSE) + 2k 8)

BIC = nIn(MSE) + kin(n) )



Forests 2022, 13, 410

10 of 24

A

where i represents the observed value; Vi is the predicted value; n is the number

Y

of tree points,
the model.

is the mean value for the observed, and is the number of parameters in

3. Results
3.1. Parametric Regression Approach for the Crown Profile Model

A nonlinear OLS summary of residual errors for all crown profile models is given in
Table 3. It can be seen from the table that the basic models screened were model 6, model
7, model 16, model 17, model 18, model 19, model 20, model 22, model 23 and model 24.

Table 3. Nonlinear OLS summary of residual errors for 25 crown profile models.

Model MSE RMSE R2 Parameter ¢-Test
MODELI1 1.2111 1.1005 0.3720 significant
MODEL2 1.0864 1.0423 0.1336 significant
MODEL3 0.9890 0.9945 0.2128 significant
MODEL4 0.7950 0.8916 0.5881 significant
MODEL5 0.6233 0.7895 0.6784 non-significant
MODEL6 0.5113 0.7151 0.7352 significant
MODEL? 0.4330 0.6580 0.7756 significant
MODELS 0.9680 0.9838 0.2295 significant
MODEL9 0.4082 0.6389 0.7888 non-significant
MODELI10 0.9890 0.9945 0.2128 significant
MODELI11 0.9201 0.9592 0.5236 significant
MODEL12 0.9902 0.9951 0.2119 significant
MODEL13 0.7161 0.8462 0.4310 significant
MODEL14 0.8138 0.9021 0.5795 significant
MODEL15 0.6020 0.7759 0.6885 non-significant
MODEL16 0.7246 0.8512 0.6258 significant
MODEL17 0.3999 0.6324 0.7932 significant
MODEL18 0.3911 0.6254 0.7976 significant
MODELI19 0.4809 0.6935 0.6179 significant
MODEL20 0.3973 0.6303 0.7944 significant
MODEL21 0.3838 0.6195 0.8016 non-significant
MODEL22 0.6815 0.8255 0.6469 significant
MODEL23 0.4328 0.6579 0.7759 significant
MODEL24 0.4748 0.6891 0.6224 significant
MODEL25 0.4828 0.6948 0.6164 non-significant

Notes: non-significant, at least one parameter is non-significant.

The screened basic crown profile models were estimated using the SAS macro
%NLINMIX (code in Appendix A). Goodness-of-fit statistics for the crown profile models,
accounting for a heteroscedastic, autocorrelated error structure, are given in Table 4. Mod-
els that %NLINMIX did not converge (e.g., model 16, model 19, model 24) and for which
the parameters were not significantly different from zero (a= 0.05) (e.g., model 20 and
model 24) were removed from the model and are not shown in this table. All five crown
profile models are accurate as indicated by the fit statistics for the entire crown, with
model 18 showing slightly better results (Table 4).
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Table 4. Goodness-of-fit statistics of %NLINMIX for crown profile models.

Model RMSE R? AIC BIC

MODELS6 0.7146 0.7350 -953.04 -937.25
MODEL7 0.6594 0.7744 -1184.63 -1174.10
MODEL17 0.6381 0.7887 -1272.19 -1245.87
MODEL18 0.6257 0.7969 -1330.29 -1309.23
MODEL23 0.6664 0.7695 -1152.19 -1136.40

However, comparing the two fitting results of the PROC MODEL and the
%NLINMIX macro, it can be seen that the %NLINMIX macro tended to have less predic-
tion accuracy than the PROC MODEL. Comparing the fitting parameters of model 18 un-
der the two methods, we found that by comparing the parameters obtained by fitting the
PROC MODEL and the %NLINMIX macro (Table 5), the CV values of the former param-
eters a0, al, a2 and a3 were smaller, indicating that these parameters are more stable and
credible. Consequently, we choose the %NLINMIX macro over the PROC MODEL be-
cause of its suitability for hierarchically structured data (e.g., multiple measurements
within a tree and multiple trees within a sample plot).

Table 5. The parameter estimates for model 18 using the PROC MODEL and the %NLINMIX macro.

PROC MODEL %NLINMIX Macro
Parameter ; X
Estimate S.E. Ccv Estimate S.E. Ccv
a0 1.7650 0.0111 0.0063 1.7619 0.0345 0.0196
al -0.0969 0.0047 —-0.0488 -0.0900 0.0152 -0.1689
a2 2.8884 0.0428 0.0148 3.0174 0.1567 0.0519
a3 -0.0015 0.0005 -0.3367 -0.0238 0.0118 —0.4952

Notes: S.E., standard error; CV, coefficient of variation.

3.2. Artificial Intelligence Procedures for the Crown Profile Model

Table 6 presents the hyper-parameter optimization results obtained from the six ma-
chine learning algorithms used to construct the crown profile model. For the MLP, some
hyper-parameter values of the two strategies are consistent. For example, there were nine
hidden layers, the number of neurons in each hidden layer was 180, and the activation
function for the hidden layer was the rectified linear unit function (‘relu’). For the SVR
from the model accuracy analysis (Strategy 1), the ‘rbf’ kernel type was used in the algo-
rithm. The two free parameters C and epsilon in the SVR model took the values of 1 and
0.1, respectively. From the model practicality analysis (Strategy 2), The three free param-
eters kernel, C and epsilon in the SVR model took the values of ‘linear’, 1 and 0.1, respec-
tively. For the four ensemble learning methods, there are obvious differences in the value
of hyper-parameter between the algorithms of strategy 1 and strategy 2. Ensemble learn-
ing algorithms combine several decision tree models to help reduce bias and variance, the
hyper-parameters ‘n_estimators’, ‘max_depth’, ‘min_samples_leaf’, min_samples_split’
and ‘'max_features’” all appear in the ensemble learning models. The proper combination
of these hyper-parameters improved the prediction accuracy of the model.
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Table 6. The hyper-parameter optimization of artificial intelligence procedures for the crown profile

model.

Model

Python Package

Hyper-Parameter Value

(Strategy 1)

Hyper-Parameter Value
(Strategy 2)

MLP

SVR

RF

AdBoost

GBDT

XGBoost

sklearn.neural_network.MLPRegressor

sklearn.svm.SVR

sklearn.ensemble.RandomForestRegressor

sklearn.ensemble. AdaBoostRegressor

sklearn.ensemble.GradientBoostingRegressor

xgboost. XGBRegressor

hidden_layer_sizes = (180,
180, 180, 180, 180, 180, 180,
180, 180),
activation = ‘relu’,
solver = ‘adam’,
learning_rate_init =0.01,
max_iter = 247
kernel = ‘rbf’,
epsilon=0.1,

C=1
n_estimators = 218,
max_depth =10,
min_samples_leaf =1,
min_samples_split =2,
max_features = ‘sqrt’,
bootstrap = True
n_estimators = 1215,
max_depth =18,
min_samples_split =5,
min_samples_leaf =11,
max_features =‘sqrt’,
learning_rate =0.01
n_estimators = 804,
max_depth =5,
min_samples_leaf =7,
min_samples_split =3,
learning_rate = 0.01,
loss =‘1s’
n_estimators = 894,
max_depth =6,
colsample_bytree = 0.9,
min_child_weight =4,
gamma =1,
learning_rate = 0.01,
reg_alpha =107,
subsample = 0.5

hidden_layer_sizes = (180,
180, 180, 180, 180, 180, 180,
180, 180),
activation = ‘relu’,
solver =‘adam’,
learning_rate_init = 0.007,
max_iter =90
kernel = ‘linear’,
epsilon =0.01,
C=1
n_estimators = 216,
max_depth =8§,
min_samples_leaf =1,
min_samples_split="7,
max_features = ‘sqrt’,
bootstrap = True
n_estimators = 924,
max_depth =15,
min_samples_split =2,
min_samples_leaf = 10,
max_features = ‘auto’,
learning_rate = 0.01
n_estimators = 100,
max_depth =2,
min_samples_leaf =1,
min_samples_split =2,
learning_rate =0.1,
loss = “huber’
n_estimators = 959,
max_depth=1,
colsample_bytree =0.1,
min_child_weight =5,
gamma =0.1,
learning_rate =0.01,
reg_alpha =107,
subsample = 0.5

Table 7 summarizes the performance indicators of MLP, SVR, RF, AdaBoost, GBDT
and XGBoost for training. As shown in Table 7, artificial intelligence procedures for the
crown profile model appeared to have the best performance and the highest efficiency
from the model accuracy analysis (Strategy 1). The most striking result to emerge from
the data is that the four ensemble learning approaches also presented the best perfor-
mance for crown profile estimation for all the evaluated criteria. Surprisingly, AdaBoost
had a high goodness of fit (R2 = 0.9330) from the model practicality analysis (Strategy 2).
After the hyperparameter optimization of the random search and grid search, the good-
ness of fit of the model was more than 0.9.
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Table 7. Fitting statistics for 6 artificial intelligence procedures (MLP, SVR, RF, AdaBoost, GBDT
and XGBoost).

Strategy Model RMSE R? AIC BIC Rank
MLP 0.5303 0.8540 -1764.08  -1643.02 5
SVR 0.6144 0.8041 -1368.21 -1310.32 6
Strategy 1 RF 0.2664 0.9632 -3740.97  -3651.49 2
AdaBoost 0.2933 0.9554 -3470.86  -3391.91 3
GBDT 0.2592 0.9652 -3811.89  -3701.36 1
XGBoost 0.2996 0.9534 339342  -3272.36 4
MLP 0.7862 0.6793 -640.54 -519.49 5
SVR 0.8934 0.5858 -299.74 -241.84 6
Strategy 2 RF 0.4676 0.8866 -2135.6 -2046.12 2
AdaBoost 0.3594 0.9330 -2890.92  -2811.97 1
GBDT 0.6036 0.8109 -1398.53  -1288.01 3
XGBoost 0.7442 0.7126 -797.12 —676.06 4

Note: Rank is the rating of the test statistic(RMSE, R2, AIC and BIC), the smaller the rating value,
the better the model prediction result.

3.3. Evaluation of Prediction Accuracy
3.3.1. Prediction Accuracy of the Crown Profile Model

The original data (340 trees) were randomly divided into two groups, 80% for the
training set, and the other 20% as the validation set. The R? of the six crown profile models
based on artificial intelligence procedures were shown in Table 8. The test results showed
that the RF, AdaBoost, GBDT and XGBoost had no over-fitting phenomenon; MLP and
SVR algorithms were slightly over fitted.

Table 8. Evaluation results of dataset splitting of the six crown profile models based on artificial
intelligence procedures.

Model Training Dataset Validation Dataset
MLP 0.8884 0.5095
SVR 0.8234 0.7159
RF 0.9624 0.9014
AdaBoost 0.9613 0.8915
GBDT 0.9717 0.9397
XGBoost 0.9580 0.9060

From the model accuracy analysis, Table 9 presents the leave-one-out results based
on tree-level cross validation for the crown profile models. We summarized the model
efficiency estimates of the parametric regression approach and artificial intelligence pro-
cedures. The crown equation designated as model 18 showed an intermediate perfor-
mance in terms of estimation, whereas GBDT and XGBoost appeared to have the best per-
formance and higher efficiency.

As for ME, the validation results showed that the crown equation was the most pre-
cise and efficient modeling technique for estimation, with an ME of —0.0016 m for model
18, 0.0082 m for XGBoost and 0.0093 m for MLP. In terms of the MAE and the MSE, the
prediction effect of model 18 (the best model in the parametric regression approach) was
slightly worse than that of these ensemble learning models, but better than that of the
other machine learning models (MLP and SVR). The model 18 had the smallest ME, and
GBDT had the smallest MAE and MSE for the entire crown. The single most striking ob-
servation to emerge from the data comparison was that the ensemble learning models
appeared to have the best performance and the highest efficiency.
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Further comparison among the four ensemble learning models showed that the RF
method also presented the worst performance in terms of estimations for all the evaluated
criteria. Among the other three models, XGBoost had the smallest ME (0.0082), GBDT had
the smallest MAE (0.3250) and MSE (0.2450).

Table 9. Comparison of test results of crown profile models for China fir trees with different mod-
eling methods.

Model ME (Rank) MAE (Rank) MSE (Rank) Sum Rank (Rank)

MODELI8  -0.0016 (1) 0.4235 (5) 0.3918 (5) 1)
MLP 0.0093 (3) 0.4292 (6) 0.4138 (6) 15 (5)
SVR 0.0975 (7) 0.5336 (7) 0.5423 (7) 21 (6)

RF 0.0171 (5) 0.3396 (4) 0.2623 (4) 13 (4)
AdaBoost  0.0203 (6) 0.3306 (3) 0.2506 (3) 12 (3)
GBDT 0.0113 (4) 0.3250 (1) 0.2450 (1) 6 (1)
XGBoost 0.0082 (2) 0.3291 (2) 0.2464 (2) 6 (1)

Note: Rank is the rating of the test statistic(ME, MAE and MSE), the smaller the rating value, the
better the model prediction result.

Figure 3 shows the features importance of each variable of the four ensemble learning
algorithms (RF, GBDT, XGBoost and AdaBoost). Variable CH had the highest importance
among the four algorithms. For the RF algorithm, the features (variables) that had a great
impact on the construction of the crown profile model were CH, RCH, CW and LCR. For
the XGBoost algorithm and the AdaBoost algorithm, in addition to CH, RCH, CW and
LCR, other variables also have a certain degree of impact on crown contours. CH, CW and
LCR were important features affecting crown profile model based on the GBDT algorithm.
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Figure 3. Feature importance for the four ensemble learning models (RF, GBDT, XGBoost and Ada-
Boost).
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3.3.2. Performance of the Crown Profile Model

Combined with the fitting and testing effects, we selected four models model 18,
GBDT, XGBoost and AdaBoost to analyze the performance of the crown profile model.
We plotted the residuals of CR predictions versus CR predictions (Predicted CR) for
MODEL18, GBDT, XGBoost and AdaBoost (Figure 4). The residual graphs of the four
models showed no heteroscedasticity except for the special point at CH = 0 at the top of
the tree canopy. It can be seen intuitively that among the four models, model 18 had a

large residual range. The residuals of algorithms GBDT, XGBoost and AdaBoost were con-
centrated between -1 and 1.

& 8o

o

o0
[e]
O

Residual
Residual

Residual
Residual

Predicted CR Predicted CR

Figure 4. Scatterplots of CR predictions residuals for four models.

The residual results of the optimal model (GBDT) in each period of Chinese fir
growth are shown in Figure 5. The optimal model in each period met the statistical test
requirements, and the residuals in each growth period of Chinese fir were all distributed
between +2.0, which was smaller than the statistical range. It can also be seen intuitively
that the model performed better in young forest, middle aged forest and near-mature for-
est. The residuals globally increased with tree age. Therefore, the optimal model in each

growth period could fully represent the crown profile of different age groups of Chinese
fir trees.
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Figure 5. CR residuals plotted against predicted values for the optimal crown profile model of Chi-
nese fir trees in four age groups (young forest: <10 years, middle aged forest: 11-20 years, near-
mature forest: 21-25 years, mature forest:26-35 years).

Four trees (a young forest tree, middle aged forest tree, near-mature forest tree and
mature forest tree) with different sizes from three plots with different stand age were se-
lected and the fitted outer crown profile curves against the observed crown radius of these
four trees are shown in Figure 6. We can see that the crown profile tends to expand with
age. Atayoung age and in middle age, the overall crown profile is straight, and at a young
age, the crown length is the longest out of the whole growth period. In the near-mature
period, the middle and lower crown are more prominent, and the overall shape is fuller
and similar to parabolic shape. In the mature forest period, the lower part is prominent,
and the crown length is the shortest in the whole growth process of the Chinese fir.
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Figure 6. Theoretical and actual values of crown profile for Chinese fir trees in four age groups
(young forest tree: DBH = 9.9, TH = 8.5, AGE = 8; middle aged forest tree: DBH = 13.0, TH = 10.0,
AGE = 14; near-mature forest tree: DBH =17.7, TH = 12.0, AGE = 23; mature forest tree: DBH =19.2,
TH =17.5, AGE = 35).

3.3.3. Application of the Crown Profile Model

We have presented two approaches to crown profile model for application in forestry
practice. For the mathematical equation (model 18), the variable LCR (half the CW) is not
a commonly used measurement factor, and the form of the equation predicting CW from
DBH follows that of Qiao Chen (Equation (10), R?2=0.6606) [51]. Then once the DBH of the
tree is known, the crown profile of the corresponding tree is obtained.

CW = 0.8367DBH507° (10)

Compared with traditional equation models, the biggest problem with procedural
models is how to simplify calls and make it easier to use. For artificial intelligence proce-
dures (GBDT, XGBoost and AdaBoost), we developed Web programs based on the re-
quirement of a lightweight design, and Tornado was used as a Web server to simplify and
improve the access and application of the crown profile models. When invoking the
model, one enters the interactive page of the Chinese fir plantation crown profile calcula-
tion as shown in Figure 7; imports the file information, including the crown model’s in-
dependent variables, in the file dialog box; selects GBDT, XGBoost, or AdaBoost Model;
and clicks the “Predict” button to obtain the prediction results.
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Figure 7. Model information and calculation interface.

4. Discussion

The most obvious finding to emerge from the analysis was that ensemble learning
method has strong nonlinear problem learning ability and the flexibility to analyze longi-
tudinal data relating to crown profiles. In forest surveys, the crown profile database or
stem form database belongs to the category of hierarchical data, which produces multi-
collinearity, autocorrelation and heteroscedasticity [48,69-71]. These problems may seri-
ously affect the standard errors of the coefficients, thereby invalidating statistical tests us-
ing t or F distributions and confidence intervals [72,73]. Artificial Intelligence procedures
for the crown profile model offer some advantages when compared to statistical modeling
techniques. Firstly, there is no need to assume an underlying data distribution (as is usu-
ally done in statistical modeling). Secondly, it can implicitly detect complex nonlinear re-
lationships between output and input variables [74]. Compared with artificial Intelligence
procedures (Tables 7 and 9), the ensemble learning approaches presented the best perfor-
mance in both training and evaluation. Table 8 showed that the performance of the GBDT,
XGBoost and AdaBoost ensemble learning algorithms for the Chinese fir crown profile
models was superior to that of the other algorithms. It is important to mention, however,
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some barriers to the widespread successful application of artificial intelligence in forestry.
One limitation is that artificial intelligence algorithms can easily incur problems of data
overfitting [74,75]. Another serious limitation is that the black-box operation without an
explanation mechanism make the process of establishing causation between inputs and
outputs unclear, implying limited ecological interpretability [76,77].

There is an age variable in the crown profile model (model 21). As explained above,
the related literature shows that age has a certain influence on the crown profile. Figure 5
showed that the residuals in each growth period of Chinese fir trees were obviously dif-
ferent. Moreover, the fitted outer crown profile curves showed different shape character-
istics in the four age periods (Figure 6). The age variable significantly contributed to the
variations in the crown profile model. For plantation, it is necessary to study the dynamic
crown profile model because of the easy availability of age data and its close correlation
with crown profile. The prediction bias can be reduced through the integration of all kinds
of variability into the crown width models [78,79]. Thus, we selected TH, CH, DBH, LCL,
RCH, CW, LCR, TSC, CLR, CFR and AGE variables on the tree level as the input variables.
The results (Table 9) showed that crown profile models with these variables presented
better fittings than simpler models with few variables. Moreover, current models may be
biased when applied at a large scale as the crown profile is largely influenced by site qual-
ity, stand density, and random variabilities caused by various stochastic factors that vary
from stand to stand [10]. This suggests that the most suitable model may consider multiple
factors.

Crown profile 3D visualization is useful for forest crown stretch space determination,
tree crown competition index establishment, and reference construction to analyze tree
crown production efficiency [38]. 3D crown profile displays based on the proposed mod-
els represent an operational method. Driven by the crown profile model, the constructed
digital 3D model can intuitively display the size of the tree crown under different growth
conditions and the degree of overlap of tree crowns among individual trees, which is es-
pecially suitable for qualitative and quantitative descriptions of tree crown morphology
and the analysis of trees’ spatial distribution patterns in the visualization process of plan-
tation forest management [38,46]. Crown profile models and 3D tree visualization can be
closely combined and applied to forest management visualization, which is a direction of
follow-up research.

5. Conclusions

Based on an analysis of the disadvantages of crown profile modeling, in this study
we developed two promising modeling methods (a nonlinear marginal model and ensem-
ble learning), which represent new and essential explorations in the study of parametric
and nonparametric methods. We concluded that (1) the parameters of the nonlinear mar-
ginal model were more stable and credible; (2) the ensemble learning approaches, espe-
cially AdaBoost, GBDT and XGBoost, presented the best performance for crown profile
estimation for all the evaluated criteria;(3) the leave-one-out cross validation results
showed that the crown equation model 18 (the best model in the parametric regression
approach) displayed an intermediate performance for estimation, whereas the GBDT
method appeared to have the best performance and the highest efficiency. In conclusion,
the following are the highlights of the study:

e For the crown profile equation, parameter estimates for the nonlinear marginal
model were performed using the SAS macro %NLINMIX.

e  Ensemble learning procedures can deal with complex nonlinear relationship and
show strong prediction ability when predicting the crown profile.

e  We compared the properties of modeling and predictions for crown profiles between
the ensemble learning method and the nonlinear marginal model method.

It should be pointed out that crown profiles based on artificial intelligence proce-
dures should be used in systems to realize the dynamic updating of models. Our next
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research goal is to develop a prototype of an expert-assisted afforestation decision support
system, based online, with the main function of realizing model invocation and automatic
updates, which could be widely used in forestry practice. For ensemble learning regres-
sion, this study aimed to explore the application of bootstrap ensemble learning regres-
sion on the modeling and prediction of crown profiles. Further research can explore the
stacking of ensemble learning regression or deep learning regression algorithm for crown
profile models.
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Notation

TH total tree height in m;

CH crown height from treetop, 0 <H<TH in m;
DBH diameter at breast height (1.3 m) in cm;
LCL =TH-HCB, largest crown length in m;

RCH =CH/LCL, relative crown height;

CR crown radius in m at relative crown height RCH;
CW crown width in m;

LCR =CW /2, largest crown radius in m;

RCR =CR/LCR, relative crown radius;

TSC =TH/DBH, height diameter ratio;

CLR =LCL/TH, crown length ratio;

CFR =CW/LCL, crown fullness ratio;

HCB height above ground to crown base in m;
HLCR height above ground to LCR in m;

AGE Age

N the number of trees in each ha

Appendix A

The model 18 crown profile model estimated in the SAS macro %NLINMIX, and an ex-
ample of the SAS code. Line [1] refers to a macro %NLINMIX definition. Lines [2] to [28]
call the %NLINMIX macro. In Lines [7] to [10], starting values for fixed effects are listed
in the parms argument. The model and parms arguments in % NLINMIX are similar to
those in PROC NLIN. Lines [11] to [16] The derivs argument is used to specify the variance
weights but it may also be used to specify partial derivatives with respect to parameters.
If they are not specified, these are calculated using the finite difference method. Lines [18]
to [23] The stmts argument specifies the PROC MIXED statements to be executed for each
iteration. The response variable must be declared as pseudo_y where y is the response
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variable in the input dataset i.e., d. In the model statement the options noint, notest, solu-
tion and cl must be specified. Line [21] The SP(POW) correlation structure declares the
CAR(1) process for the within-tn residuals. Lines [5] and [22] the residuals were used to
calculate weights (weight = 1/sqrt(62)).Line [24]: The expand argument is used to employ
a first-order Taylor expansion around the current estimates of fixed effects and the condi-
tional modes of the random effects. The procopt option is used for numerical specifica-
tions in regard to the PROC MIXED call.

Notes: in SAS code, “*”represents the multiplier operator and “* *’represents the power
operator.

[1] %INCLUDE”.\CROWN \NLINMIX2004.SAS";

[2] %nlinmix(Data= CROWN.MODEL18R,

[3] Model = %Str(

[4] Predv=LCR*(a0 + al*exp(a2*LCR**(a3)*(1-RCH)));

[5] weight=1/sqrt(rr);

61

[71 Parms = %str(a0 =1.761939

[8] al=-0.08999

[9] a2=3.017426

[10] a3 =-0.02383),

[11] derivs = %str(

[12] CR_a0=LCR;

[13] CR_al = LCR*exp(a2*LCR**(a3)*(1-RCH));

[14] CR_a2 = LCR*al*exp(a2*LCR**(a3)*(1-RCH))*LCR**(a3)*(1-RCH);
[15] CR_a3 = exp(a2*LCR**(a3)*(1-RCH))*a2*(1-RCH)*LCR**(a3)*log(LCR);
[16] ),

[17] tol =1e-5,

[18] stmts = %str(

[19] class TREE;

[20] model pseudo_CR =CR_a0 CR_al CR_a2 CR_a3/noint solution cl;
[21] repeated/sub = TREE type = SP(POW)(RCH);

[22] weight weight;

23] ),

[24] procopt = empirical

[25] );

[26] run;
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