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Abstract: Mapping plucking areas of tea plantations is essential for tea plantation management and
production estimation. However, on-ground survey methods are time-consuming and labor-inten-
sive, and satellite-based remotely sensed data are not fine enough for plucking area mapping that
is 0.5-1.5 m in width. Unmanned aerial vehicles (UAV) remote sensing can provide an alternative.
This paper explores the potential of using UAV-derived remotely sensed data for identifying pluck-
ing areas of tea plantations. In particular, four classification models were built based on different
UAV data (optical imagery, digital aerial photogrammetry, and lidar data). The results indicated
that the integration of optical imagery and lidar data produced the highest overall accuracy using
the random forest algorithm (94.39%), while the digital aerial photogrammetry data could be an
alternative to lidar point clouds with only a ~3% accuracy loss. The plucking area of tea plantations
in the Huashan Tea Garden was accurately measured for the first time with a total area of 6.41 ha,
which accounts for 57.47% of the tea garden land. The most important features required for tea
plantation mapping were the canopy height, variances of heights, blue band, and red band. Further-
more, a cost-benefit analysis was conducted. The novelty of this study is that it is the first specific
exploration of UAV remote sensing in mapping plucking areas of tea plantations, demonstrating it
to be an accurate and cost-effective method, and hence represents an advance in remote sensing of
tea plantations.

Keywords: UAV lidar; tea plantation identification; plucking area; digital aerial photogrammetry;
machine learning

1. Introduction

Tea plants grow globally, especially in China, India, Sri Lanka, and Kenya [1]. The
area under tea cultivation globally was 500 x 10* ha in 2019, which was seven times greater
than the area measured in 1946 (66 x 104 ha) [2]. To ensure the healthy growth of tea plants
and maintain or increase the yield per unit area, it is necessary to regularly monitor the
distribution and evaluate the status of tea plants to develop better management strategies.
Tea plantation monitoring and management have traditionally relied on regular field sur-
veys. This type of on-ground data collection is important because it provides first-hand
information on tea plantations. However, these surveys are time- and labor-consuming
and logically cannot be applied to large hilly or mountainous areas where tea plantations
grow. Moreover, the structural characteristics of tea plants, such as the tree height and
leaf area index, cannot be obtained continuously using traditional methods, and these
characteristics determine the yield of tea plantations.

Remote sensing techniques, on the other hand, provide fast, repeatable, and cost-
effective methods for mapping tea plants and estimating the biophysical and biochemical
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parameters of tea plants. Currently, various types of remote sensing platforms (satellite-,
airborne-, and terrestrial-based) and various types of sensors (spectral, radar, lidar, pho-
togrammetric, etc.) can be used for tea plantation monitoring depending on the scale and
aim of the study. For example, Wang [3] mapped tea plantations from multiseasonal
Landsat-8 images using a random forest classifier. Snapir et al. [4] monitored tea shoot
growth using X-Band Synthetic Aperture Radar (SAR) images. Bian et al. [5] predicted the
foliar biochemistry of tea based on hyperspectral technology. However, due to the elon-
gated shapes of tea plantations (which have a typical width of 0.5-1.5 m, as illustrated in
Figure 1), remotely sensed satellite data might not be suitable for the regular monitoring
of tea plantations at finer scales, such as at the scale of a cluster or the plucking area [6].
Although manned aircraft data can provide the high resolution and high precision re-
quired for finer-scale monitoring, these data are expensive, not widely available, and not
suitable for small area plantations (such as plantations < 300 ha).

(a)

Figure 1. (a) A close-up photo of Huashan Tea Garden (the study area); (b) illustration of tea plan-
tation area and plucking area.

Unmanned aerial vehicles (UAVs) paired with digital cameras and lidar scanners
have the potential to (1) provide imagery with very high spatial resolutions (<0.20 m) and
high-density lidar point clouds (footprint: 0.05-0.25 m, density: >20 points/m?), hence
making the plucking area of tea plantations accessible [7]; (2) increase the efficiency of on-
ground surveys by collecting full horizontal and vertical coverage information in less time
than traditional field surveys [8]; and (3) provide high-mobility, cost-effective, widely
available methods that serve as alternatives to manned aircraft surveys while maintaining
and even increasing the resolution and accuracy of the obtained data [9,10].

UAV-derived remotely sensed data have been widely used to obtain precision agri-
culture and forest inventories over the past decade. Husson et al. [11] used visible images
from UAVs to identify riparian species compositions in northern Sweden and rapidly
mapped the distribution of vegetation along a shoreline. Senthilnath et al. [12] fused Sen-
tinel-2 data with UAV images to map crop distributions at a finer spatial scale. Wang et
al. [13] used UAV lidar as a sampling tool and combined it with Sentinel-2 images to esti-
mate and map the height and aboveground biomass of mangrove forests on Hainan Is-
land. Pourshamsi et al. [14] integrated PolInSAR and lidar data to obtain better estimates
of forest canopy height. With the rapid development of sensors and UAVs, the implemen-
tation of very high-resolution data acquired from cost-effective UAVs will become an in-
creasingly valuable method used to map and evaluate various crops and forests.

Tea plucking areas are directly related to the tea yield and are important for tea gar-
den precision management. Despite the importance of accurately mapping tea plantations
and evaluating the status of tea plants at a finer scale, mapping the plucking area of tea
plantations has not been concerned and addressed to date [15]. Furthermore, to the best
of our knowledge, no studies have explored the potential of UAV-derived remotely
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sensed data for mapping the plucking area of tea plantations. Few studies have used sat-
ellite or airborne imagery to map tea plantations. Dihkan et al. [16], for example, employed
high-resolution multispectral digital aerial images to map tea plantation distributions.
Zhu et al. [17] developed a method for identifying tea plantations based on multitemporal
Sentinel-2 images and a multifeature random forest algorithm. Chuang and Shiu [18]
identified tea crops in a subtropical region with real-time high-resolution WorldView-2
imagery using random forest and support vector machine algorithms. The existing studies
have not paid attention to the plucking area of tea plantations, and the previous study
areas have been limited to flat areas, which are not the main region in which tea plants
grow.

This study aimed to explore the potential of UAV remotely sensed data for mapping
the plucking area of tea plantations. To pursue this objective, we collected optical imagery,
digital aerial photogrammetry, and lidar data of a tea garden by UAV and designed four
classification models based on different UAV remotely sensed data. A recursive feature
elimination algorithm was applied to select the important features from optical imagery
and point clouds. Finally, a novel method for mapping the plucking area of tea plantations
based on UAV-derived data is proposed.

2. Materials and Methods
2.1. Study Area

The study area is located in Huashan (114°30'36.11" E, 30°33'50.39" N), Wuhan city,
China (Figure 2). As an ecological park, the Huashan Tea Garden not only is a recreation
and enjoyment area in which citizens can touch and experience tea plantations but also
produces the local specialty green tea called “Huashan Tender Bud”. Wuhan is character-
ized by a humid subtropical climate with an average daily temperature ranging from 4.0
°C (January) to 29.1 °C (July) and average annual precipitation of 1269 mm. The study
area is hilly, and the topography is high in the southwest and low in the northeast, with
the lowest elevation of 8.1 m and the highest elevation of 83.51 m.
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Figure 2. The study area is located in Huashan, Wuhan (digital images, 0.1 m resolution).
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2.2. UAV Data and Feature Extraction
2.2.1. Lidar Point Clouds

The lidar point clouds were acquired on 1 October 2019 using a Velodyne LiDAR
VLP-16 Puck sensor (Velodyne Lidar Inc, San Jose, CA, USA) mounted on a DJI M600
UAV. (DJI, Shenzhen, China) This laser sensor has 16 scanning channels and can generate
300,000 pulses per second with a range accuracy of 3 cm. The wavelength of the laser pulse
is 905 nm. We performed three flights in the study area with a flight altitude of 60 m above
ground level and a flight speed of 5 m/s (Figure 3). Overall, the average final point density
was 25 points/m2.

Figure 4 depicts the workflow followed in processing the UAV-derived remotely
sensed data. The main processing steps of the UAV-derived lidar data included global
navigation satellite system (GNSS)-aided aerotriangulation, point cloud denoising,
ground point identification, and point cloud normalization using a digital elevation
model (DEM). GNSS-aided aerotriangulation was used to calculate the exact geographic
locations of the point clouds based on the base station position (measured with a real-time
kinematic global navigation satellite system (RTK-GNSS)) and the positioning system
data of the UAV, which was performed using POSPac UAYV 8.1 software (Applanix, Rich-
mond Hill, Ontario, Canada). The point clouds were classified as ground or nonground
points using an improved progressive triangulated irregular network (TIN) densification
filtering algorithm [19]. The final ground point density was 0.84 points/m2. These ground
points were then used to generate a DEM using the TIN interpolation algorithm. We also
generated a digital surface model (DSM) based on all point clouds. To eliminate the influ-
ence of the ground topography on the point clouds, the nonground points were normal-
ized using the obtained DEM. Finally, a canopy height model (CHM) was produced by
subtracting the DEM from the DSM.

(b)
Figure 3. (a) Field survey; (b) UAV data acquisition in the field.
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Figure 4. Workflow of the UAV data acquisition, processing, and feature extraction.

We extracted 34 commonly used lidar metrics (21 for height, 3 for canopy volume,
and 10 for density), as represented in Table 1, based on previous studies related to crops
and forests [20-23]. For example, the leaf area index (LAI) is defined as half of the surface
area of all leaves projected on the surface area of a unit. LAI value was calculated accord-
ing to Equations (1) and (2) provided by Richardson et al. [24]:

LAl = — cos(angl)cxln (GF)/ (1)
GF _ ngr:lund, (2)

where ang is the average scan angle, k is the extinction coefficient and approximately
equals 0.5, and GF is the gap fraction which was calculated as the ratio of ground points
(Ngrouna) and total points (n). These metrics were computed for each segmented polygon
generated from the multiresolution segmentation algorithm (see details about the algo-
rithm in Section 2.2.2).
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Table 1. List of metrics derived from UAV lidar point clouds.

Height metrics

Canopy volume
metrics

Density metrics

Lidar Metrics Implication
HMean Mean of heights
HSD, HVAR Standard deviation of heights, variance of heights
HAAD Average absolute deviation of heights
HIQ Interquartile distance of percentile height, H75th-H25th

Percentile heights (H1, H5, H10, Height percentiles. Point clouds are sorted according to the ele-
H20, H25, H30, H40, H50, H60, H70,  vation. 15 height percentile metrics ranging from 1 to 99%

H75, H80, H90, H95, H99) height
. Value of CHM:
Canopy height model value CHM = DSM — DEM
CCoam Canopy cover above 0.2 m
Gap Canopy volume-related metric
Leaf area index Dimensionless quantity that characterizes plant canopies

Canopy return density (D0, D1, D2, The proportion of points above the quantiles to the total num-
D3, D4, D5, D6, D7, D8, D9) ber of points

2.2.2. Optical Imagery and Photogrammetric Point Clouds

Optical imagery was acquired by an EOS 5D camera mounted on a DJI M600 UAV
on 1 October 2019, the same day as that of the lidar data collection. We performed one
flight in the study area with a flight altitude of 300 m above ground level. The number of
bands was three, namely red, green, and blue. The spatial resolution was 0.1 m.

We segmented the images into individual objects and obtained the corresponding
feature parameters for the object-based image analysis. In addition to containing spectral
information, objects have rich internal spatial information, such as geometric and textural
information [25]. When conducting object-based image analyses, the multiresolution seg-
mentation of image objects at different levels can allow more descriptive features to be
obtained; these features express the actual characteristics of objects and effectively en-
hance the subsequent remote sensing classification. The images were segmented in the
eCognition Developer 9.0.1 (Trimble, Sunnyvale, CO, USA) by the multiresolution seg-
mentation algorithm. The multiresolution segmentation algorithm starts with pixel-sized
objects and grows iteratively by merging the objects in pairs with neighboring objects [26].
The sizes and shapes of the image objects are determined by user-defined parameters,
namely the scale, color/shape, and smoothness/compactness. The values of the image seg-
mentation parameters used in this study are shown in Table 2. Figure 5 delineates a com-
parison of the segmentation performance using four different segmentation parameter
sets. The image segmentation process was considered complete once an image object was
produced that visually corresponded to a meaningful real-world object of interest [27].
We finally segmented the tea plants using the following parameters: scale: 20, color: 0.7,
shape: 0.3, compactness: 0.5, and smoothness: 0.5. We extracted 10 features, as represented
in Table 3.

Table 2. Parameter values used in the multiresolution segmentation (MRS) algorithm.

Scale Shape/Color Compactness/Smoothness Number of Objects
20 0.3/0.7 0.5/0.5 145,945
20 0.2/0.8 0.5/0.5 153,366
20 0.1/0.9 0.5/0.5 149,075
30 0.3/0.7 0.5/0.5 63,705
30 0.2/0.8 0.5/0.5 67,822
30 0.1/0.9 0.5/0.5 67,152
40 0.3/0.7 0.5/0.5 35,660
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40 0.2/0.8 0.5/0.5 38,463
40 0.1/0.9 0.5/0.5 38,418
Image layers used: red band, green band, and blue band (weighted equally).

The photogrammetric point clouds were generated using image-matching algo-
rithms that operate in stereo or multi-image matching modes, depending on the image
acquisition parameters and the degree of image overlap [28]. Pix4Dmapper software
(Pix4D, Lausanne, Switzerland) was used to generate photogrammetric point clouds. This
software uses still images of stationary objects to generate point clouds. Automatic tie
points (ATPs) were first generated by automatic image detection and matching and pro-
duced a sparse point cloud. Then, a dense matching algorithm was used to generate the
final dense point clouds. The X, Y, Z position and the color information are stored for each
point of the Pix4D-derived point clouds. For details of photogrammetric point cloud gen-
eration, please refer to the support documentation of Pix4Dmapper (https://sup-
port.pix4d.com/hc/en-us/categories/360001503192 (accessed June 6, 2021)). The final pho-
togrammetric point density was 22 points/m2. The photogrammetric point clouds were
processed in the same way as the lidar point clouds, and the same 34 metrics were ex-
tracted from both datasets.

(b)

(c) (d)

Figure 5. Comparison of the image segmentation levels in the study area. (a) Digital image of the
sample at 0.1 m resolution; (b) image segmentation with MRS scale 20 (Shape/Color: 0.1/0.9); (c)
image segmentation with MRS scale 20 (Shape/Color: 0.3/0.7); (d) image segmentation with MRS
scale 40 (Shape/Color: 0.3/0.7).

Table 3. List of features derived from UAV digital imagery.

Feature Implication
Spectral mean The average of the spectral luminance values of all pixels in a wavelength band within an image ob-
values (RGB) ject.
Brightness Reflects the total spectral luminance difference among image objects.
Length/width Represented by a minimal outsourcing rectangle.

Shape index Used to reflect the smoothness of image object boundaries.
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Textural fea-
ture

Entropy, contrast, homogeneity, and correlation, calculated through gray-level co-occurrence matrix
(GLCM) with a distance of 1 [29]. GLCM is a matrix used to count the correlations between the gray

levels of two pixels at a given spacing and orientation in an image.

2.2.3. Feature Selection

A random forest (RF)-based recursive feature elimination (RFE) algorithm was used
in this study to select the important features from optical imagery and point clouds. The
RFE algorithm comprises a recursive process and compares the cross-validated classifica-
tion performance of feature datasets as the number of features is reduced [30,31]. The key
to the algorithm is to iteratively build the training model; then, the best feature dataset is
retained based on the out-of-bag error. We implemented the RFE algorithm using Python
3.6 (Python Software Foundation, DE, USA)and the RFECV function from the scikit-learn
0.23.2 library. Two hyperparameters are crucial in the RFECV function: step and cv. The
step parameter controls the number of features to be removed at each iteration. The cv
parameter determines the number of folds in cross-validation. In this study, the step was
set to 1, and the cv was set to 3. They were both the default values in the REECV function.

2.3. Classification Models

To systematically explore the potential of UAV remote sensing in mapping the pluck-
ing area of tea plantations, we designed four models for tea plucking area identification
based on different combinations of UAV remotely sensed data with different features and
compared their performance. The combination of multiple sources of data, and especially
the integration of horizontal and vertical information, can often improve classification
performance [32,33]. The study area was classified into four classes: tea, building, water,
and vegetation (no tea).

Model 1: spectral features (red, green, and blue bands) from digital images;

Model 2: spectral, geometric (brightness, length/width, and shape index), and tex-
tural features from digital images;

Model 3: spectral, geometric, and textural features from digital images and features
from photogrammetric point clouds;

Model 4: spectral, geometric, and textural features from digital images and features
from lidar point clouds.

Then, support vector machine (SVM) and random forest (RF) algorithms were used
in the classification models. Figure 6 shows a schematic graph of the tea plucking area
identification obtained with the four different models.
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Figure 6. A schematic graph of the tea plantation identification process with four different models.

2.4. Classification Algorithms

Due to the widespread use and consistent performances of support vector machine
(SVM) and random forest (RF) algorithms, this study used these two classical algorithms
to explore the potential of UAV-derived remotely sensed data in identifying tea plucking
areas [34,35].

A support vector machine is an algorithm used to improve a classification perfor-
mance based on the statistical learning theory of structural risk minimization (SRM). In
this method, a training dataset is mapped by the support vector machine to a higher-di-
mensional space nonlinearly (called a Hilbert space). The linearly indistinguishable da-
taset in the input space is mapped to a divisible dataset in the higher-dimensional space;
then, an optimal separating hyperplane with a maximum isolation distance is created [36].
An optimal nonlinear decision edge is created in the input space. The optimal separation
of hyperplanes reduces the experiential risk of the learning machine, resulting in smaller
generalization errors and minimal structural risks [37].

The random forest algorithm is a nonparametric statistical estimation technique com-
prising many decision trees [38]. Many decision trees are first built, and then the predicted
values of all trees are averaged to obtain the final estimate. Two parameters are crucial
when building the predictive model: ntree and mtry. The ntree parameter determines the
maximum number of decision trees, while mtry controls the number of randomly selected
features used to calculate the best partition for each node in the decision trees. In this
study, ntree was set to 500; this value was large enough to allow error convergence. The
mtry value was set to the default value, which is the square root of the number of input
features. Through the feature importance assessment in the RF algorithm, the contribution
of each feature was measured. The Gini index [39] or the out-of-bag (OOB) error rate [30]
can be used as an evaluation metric. In this study, the Gini index was used to evaluate the
feature importance.
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2.5. Accuracy Assessment

The overall classification accuracy (OA), producer accuracy (PA), user accuracy
(UA), and kappa coefficient were used to evaluate the classification accuracies. A classifi-
cation confusion matrix was used to evaluate these values [40]. The sample set of this
study was established using field survey data and optical images after multiresolution
segmentation. We selected 2784 samples of the four classes (tea, building, water, and veg-
etation) as the training set. A randomly selected validation set was used to assess the clas-
sification accuracies; this dataset was also tested in the field. The number of samples for
validation was 5076.

3. Results
3.1. Feature Selection

Figure 7 shows the feature selection results. The optimal numbers of features were
22 in Model 3 and 26 in Model 4. Ten features from digital images (red band, green band,
blue band, brightness, length/width, shape index, entropy, contrast, homogeneity, and
correlation) and 12 features from point clouds (Gap, CC0.2m, H10, H80, H90, H95, H99,
HIQ, HAAD, HMean, HSD, and CHM) were selected in Model 3. Ten features from digital
images (red band, green band, blue band, brightness, length/width, shape index, entropy,
contrast, homogeneity, and correlation) and 16 features from point clouds (D0, D9, LAI,
Gap, CC0.2m, H10, H80, H90, H95, H99, HVAR, HIQ, HAAD, HMean, HSD, and CHM)
were selected in Model 4.

0.96
0.92

g 088

§ 4

< 084

=

g 4

5 080
0.76
0.72 4 : | i :

0 10 20 30 40
Number of features selected

Figure 7. Variations in the overall accuracy with the number of features selected by the recursive
feature elimination (RFE) based on the random forest (RF) algorithm in Model 3 and Model 4.

Figures 8 and 9 portray the differences in the representative lidar and image features
among the four classes, respectively. The performance of these features differed signifi-
cantly among classes. The difference between tea and vegetation was small in the image
features, while it was large in the lidar features. The feature selection results showed that
lidar features might play important roles in separating tea from vegetation.
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Figure 9. The difference among classes in digital imagery features.

3.2. Accuracy Assessment

The classification accuracy results of the four models performed with the RF and
SVM algorithms are presented in Tables 4 and 5, respectively.

Overall, Model 4 achieved the highest classification accuracy, followed by Model 3,
Model 2, and Model 1. The SVM-based and RF-based classifications performed similarly
in terms of the overall classification accuracies. The highest accuracy (94.39%) was
achieved by Model 4 using the RF algorithm.

Table 4. Confusion matrices of Models 1, 2, 3, and 4 obtained using SVM based on the validation samples.

Model 1 SVM
Building Tea Vegetation Water UA
building 762 1 58 15 91.15%
tea 42 867 485 2 62.10%
vegetation 132 496 2164 4 77.40%
water 6 0 4 38 79.17%
PA 80.90% 63.56% 79.82% 64.40%
Kappa: 0.59 OA:75.47%
Model 2 SVM

Building Tea Vegetation Water UA
building 786 3 48 6 93.24%
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tea 45 1062 308 0 75.05%
vegetation 111 299 2355 2 85.11%
water 0 0 0 51 1
PA 83.44% 77.86% 86.87% 86.44%
Kappa: 0.73 OA: 83.80%
Model 3 SVM
Building Tea Vegetation Water UA
building 886 35 51 0 91.15%
tea 32 1142 97 0 89.85%
vegetation 22 192 2570 6 92.11%
water 3 1 3 53 88.33%
PA 93.96% 83.36% 94.45% 89.83%
Kappa: 0.86 OA: 91.32%
Model 4 SVM
Building Tea Vegetation Water UA
building 874 24 35 4 93.28%
tea 37 1143 103 0 89.09%
vegetation 131 197 2573 4 91.73%
water 0 0 0 51 1
PA 92.78% 83.80% 94.90% 86.30%
Kappa: 0.86 OA: 91.43%

Table 5. Confusion matrices of Models 1, 2, 3, and 4 obtained using RF based on the validation samples.

Model 1 RF
Building Tea Vegetation Water UA
building 690 4 151 0 81.66%
tea 109 1061 705 1 56.56%
vegetation 126 299 1852 4 81.20%
water 17 0 3 54 72.97%
PA 73.25% 77.79% 68.31% 91.53
Kappa: 0.56 OA: 72.04%
Model 2 RF
Building Tea Vegetation Water UA
building 799 15 157 0 82.29%
tea 95 1101 326 1 72.30%
vegetation 245 245 2222 5 88.80%
water 18 3 6 53 66.25%
PA 84.82% 80.72% 81.96% 100%
Kappa: 0.71 OA: 82.25%
Model 3 RF
Building Tea Vegetation Water UA
building 844 29 37 2 93.57%
tea 42 1209 122 3 87.86%
vegetation 55 142 2562 5 92.70%
water 3 0 0 49 96.08%
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PA 89.50% 88.25% 94.16% 83.05%
Kappa: 0.86 OA: 91.58%
Model 4 RF
Building Tea Vegetation Water UA

building 335 21 36 0 93.76%
tea 2 1281 78 0 91.90%
vegetation 1 62 2597 3 96.00%
water 4 0 0 56 88.89%

PA 97.95% 93.91% 95.80% 94.92%

Kappa: 0.91 OA:94.39%

Model 1 produced lower user accuracies for tea, vegetation, and water than those
produced by the other models. The classification results obtained using only the spectral
features (Model 1) showed that SVM and RF produced low overall accuracies (75.47% and
72.04%). In Model 2, with the textural features added, the accuracies of tea and vegetation
were improved but did not exceed 85%. In Model 2, RF could better identify buildings,
tea, and water than SVM, while SVM outperformed RF in identifying vegetation.

Regarding Model 3, with the photogrammetric point clouds further added, the clas-
sification accuracies of all four classes increased, with tea and vegetation showing the
most significant accuracy improvement effects. For Model 4, features from the lidar point
clouds were used instead of the photogrammetric point clouds used in Model 3. The SVM
and RF algorithms produced overall accuracies for Model 4 of 91.43% (kappa: 0.86) and
94.39% (kappa: 0.91), respectively. Model 4 had a slightly higher accuracy than Model 3.
The accuracies of Model 4 and Model 3 were similar when the SVM algorithm was used,
while the accuracy of Model 4 was 2.81% higher than that of Model 3 when the RF algo-
rithm was used.

Consequently, Tables 4 and 5 indicate that with the gradual addition of features, the
PA and UA of each class gradually and significantly improve overall. The PA and UA of tea
over 85% were only achieved using the random forest algorithm in Model 3 and Model 4.

Figure 10 shows a comparison of the overall accuracies of the four models as assessed
with the two machine learning algorithms. Overall, SVM and RF produced similar results.
For Model 1 and Model 2, SVM (OA: 75.47% and 83.80%, respectively) identified slightly
better accuracies than RF (OA: 72.04% and 82.25%, respectively); for Model 3 and Model
4, RF (91.58% and 94.39%, respectively) outperformed SVM (91.32% and 91.43%, respec-
tively).

100 4 7 svM

95 e

90 7

854

\N

80
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Figure 10. Comparison of the overall classification accuracies of the four object-based classification
models obtained using two machine learning algorithms: support vector machine (SVM) and ran-
dom forest (RF).
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3.3. Visual Assessment
3.3.1. Global Assessment

Figures 11 and 12 portray the classification results of the four models obtained using
the SVM and RF algorithms. Model 3 and Model 4 performed better than Model 1 and
Model 2. Both Model 3 and Model 4 obtained good classifications of tea and vegetation
and output almost no misclassification of water. In contrast, tea and vegetation were
roughly distinguished in the results of Model 1 and Model 2, but the two classes were
mixed and confused over the whole study area. The use of digital images alone (as in
Model 1 and Model 2) is not sufficient to distinguish tea and shrubs, and the addition of
combined features from photogrammetric or lidar point clouds can reduce the mix of tea
and vegetation. In addition, in Model 1 and Model 2, many nonwater areas were incor-
rectly identified as water. The main visual differences among the thematic maps gener-
ated by the four models lie in the identification of water in the central region of the study
area and the identification of vegetation in the northwestern region of the study area.
These two areas were further used for local visual comparisons.

- tea |:| building CI water |:| vegetation

Figure 11. The classification results derived from the four models using SVM. (a) Model 1; (b) Model 2; (c) Model 3; (d)

Model 4.
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- tea |:| building ‘: water vegetation

Figure 12. The classification results derived from the four models using RF. (a) Model 1; (b) Model 2; (c) Model 3; (d)

Model 4.

3.3.2. Local Assessment

The local visual assessment indicated that the classification maps of Model 4 were
more closely aligned with the realistic ground conditions than those of the other models
and significantly decreased the possibility of salt-and-pepper noise. After adding the features
from point clouds in Model 3 and Model 4, the results showed fewer errors in the classification
of complex vegetation in the northwest region of the study area (Figure 13a-d). Model 1 and
Model 2 misclassified shrubs as tea plants in these areas. The results indicated that the
combination of features from point clouds provided more discriminative information than
digital imagery used alone. When point cloud features were incorporated, the classifications
between tea and nontea plants became more accurate. The confusing phenomenon of tea
and vegetation observed in the outputs of Model 1 and Model 2 (Figure 13a,b,e f) was
greatly improved in Model 3 and Model 4 (Figure 13c,d,g h). In addition, water was well
identified by Model 3 and Model 4. Due to the lack of vertical information, some species
were incorrectly identified as water by Model 1 and Model 2. In Model 3 and Model 4, the
accuracy of water was enhanced by the incorporation of height metrics. Furthermore, the
visual effects of Model 4 were still better than those of Model 3, indicating that photo-
grammetric point clouds cannot be used as a complete substitute for lidar point clouds,
although the accuracy difference was not significant.
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Figure 13. Comparison of the recognition effects obtained using the four models in the northwest ((a-d) Models 1-4) and

middle ((e-h) Models 1-4) regions of the study area.

3.4. Feature Importance
The feature importance was assessed in Model 3 and Model 4 using the RF algorithm

(Figure 14). The results were similar between the two models. The canopy height model
derived from the point clouds and the blue band were the two most important features
for tea plucking area identification in both Model 3 and Model 4. In Model 3, the
length/width and the red band were ranked third and fourth, respectively. In Model 4, the
red band and HVAR were ranked third and fourth, respectively, followed by the bright-
ness and H95. The textural features and density features derived from the point clouds

were of low importance overall.
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Figure 14. The difference among classes in UAV lidar metrics. The importance of the features used
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in Model 3 (a) and Model 4 (b), obtained by running the random forest algorithm 20 times.
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3.5. Cost—Benefit Analysis

The equipment, time, and costs required to map the plucking area of a 10 km? tea
plantation four times (such as for monitoring changes over the four seasons) by Model 3,
Model 4, and traditional on-ground survey methods are listed in Table 6. The costs were
estimated in USD/km? based on the average salary provided for mapping and surveying
fields in China. Overall, the on-ground survey methods cost 61,700 USD/km?, while the
methods using UAV data perform more cost-effectively (14,397 USD/km? for UAV images
and 35,461 USD/km? for the integration of UAV images and lidar). The on-ground survey
method is similar to digital mapping and surveying, in which RTK is used to determine
the positions of feature points and the boundary of each tea plucking area. The time re-
quired for mapping a 10-km? tea plantation four times was 128 person-hours using the
UAYV image method and 448 person-hours using the method fusing UAV images and li-
dar. Furthermore, collecting and processing UAV lidar requires more time and higher
professional skills compared to UAV images alone. UAV-based methods had higher effi-
ciencies than on-ground measurements (1600 person-hours).

Table 6. Detailed costs and total costs of three different methods used for mapping the plucking area of a 10 km? tea
plantation four times (unit: USD).

Component Detailed Costs
UAV Images UAV Images and Lidar On-Ground Survey Method
UAV: 5384 UAV: 5384 Tape measures: 100
Equipment Camera: 3053 Lidar: 5000 Rangefinder: 600
RTK: 3000 Camera: 3053 RTK: 3000
RTK: 3000
Data collection staff salaries: 2560 staff salaries: 17,024 staff salaries: 48,000
vehicle hire cost: 400 vehicle hire cost: 2000 vehicle hire cost: 10,000
Time consumed 128 person-hours 448 person-hours 1600 person-hours
Total 14,397 35,461 61,700
Total (per km?) 360 886 1543

4. Discussion

This study has demonstrated the ability of UAV-derived remote sensing data to iden-
tify and map the plucking area of tea plantations. To systematically explore the potential
of UAV remote sensing in mapping the plucking area of tea plantations, four classification
models were designed based on different UAV remotely sensed data with different fea-
tures. The results indicated that the integration of UAV-derived digital images and point
clouds (photogrammetric point clouds or lidar point clouds) could accurately identify the
plucking area of tea plantations with accuracies higher than 90%. This is the first study
focusing on mapping the plucking area of tea plantations. Additionally, the costs of dif-
ferent UAV-based methods used to map the plucking area of tea plantations were calcu-
lated and discussed.

4.1. Model and Classification Algorithm Analyses

UAVs and digital cameras are currently widely available. However, the drawbacks
of digital imagery-based models (Model 1s and 2) were that there were obvious overesti-
mations of tea plantations in the resultant maps with moderate accuracies (70-83%). In
addition, tea trees and the surrounding woodlands (such as shrubs and some other woody
vegetation types) were easily confused by these models, especially in arbor—shrub—arbor
areas where shrubs grow between arbor trees (Figure 15b). In that case, the vegetation
was incorrectly identified as tea because of the interspersed growth of shrubs and arbor
trees. Similar spectral features and inconspicuous textural features led to misclassifica-
tions in Model 1 and Model 2. As a result, the measured plucking area of tea plantations
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might differ significantly from the actual situation. However, this phenomenon did not
occur in vast stretches of shrublands because of the significant differences in shrublands’
textural and spatial features compared with those of tea plantations. Additionally, the
digital imagery did not contain the near-infrared or red-edge bands that serve as essential
spectral information in demarcating vegetation [29]. With the launch of consumer-grade
multispectral UAVs, such as the DJI P4 Multispectral UAV (D], Shenzhen, China) with
red-edge and near-infrared bands, this problem can be solved.

The advantages of point cloud-based models (Models 3 and 4) were that they could
accurately demarcate tea plantations from other land cover types due to the point cloud
features added that describe forest structural information (Figure 13). The horizontal and
vertical information obtained from the point clouds led to significant improvements in
mapping the plucking area of tea plantations (Figures 11 and 12). The point clouds of the
tea trees appeared to be neatly and densely spaced (Figure 15c,e), while the point clouds
of the shrubs near the arbor trees were relatively scattered and sparse (Figure 15d,f) even
though the heights of tea trees and shrubs are similar. Therefore, Model 3 and Model 4
performed well in identifying tea plantations, and most arbor-shrub-arbor areas were
correctly classified as vegetation areas. Consequently, the synergy of optical imagery and
point clouds can increase the identification and extraction ability of the tea plucking area.
This finding is consistent with the results of previous studies on vegetation or plant spe-
cies classifications [41-44].

(a) (©) (e) (@) Z

11.34 m
Om

(b) (d) ® (h)

Figure 15. Comparison of tea trees and vegetation (incorrectly identified as tea trees in Model 2) based on UAV lidar data.
(a) Digital image of tea trees; (b) digital image of vegetation; (c) horizontal picture of tea trees; (d) horizontal picture of
vegetation; (e) vertical picture of tea trees; (f) vertical picture of vegetation; (g) 3D view of tea trees; (h) 3D view of vege-
tation.

Many studies have used lidar or photogrammetric point clouds for vegetation clas-
sifications and estimations [45,46]. However, no studies have used point clouds acquired
by UAVs for tea plantation mapping, and the performances of lidar and photogrammetric
point clouds for mapping the plucking area of tea plantations have not been explored and
compared. Although both digital aerial photogrammetry and lidar data can provide three-
dimensional information on plant structures, some differences exist between the two data
types in capturing the vertical distribution of a canopy [47], resulting in differences in the
performances of the datasets such as the classification differences observed between
Model 3 and Model 4 in the current study. Therefore, whether using RF or SVM, Model 4
performed better than Model 3. Compared with the photogrammetric point clouds, the
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lidar point clouds could more precisely describe the horizontal and vertical structural
complexities of the canopy due to the stronger penetration ability of laser beams. Addi-
tionally, optical imagery is influenced by plant shadows, leading to the necessity of col-
lecting data at a specific time of day. Consequently, photogrammetric point clouds tend
to be less accurate than lidar point clouds when mapping the plucking area of tea planta-
tions, but photogrammetric data are cost-saving and could satisfy the requirements of the
majority of tea plantation identification projects. The results of this study indicated that
low-cost photogrammetric point cloud data could map the plucking area of tea planta-
tions with similar accuracies to those provided by lidar point cloud data.

The importance of including spectral, geometric, and textural features and lidar met-
rics in tea plantation mapping has rarely been measured or discussed. The canopy height
model, blue band, length/width, red band, HVAR, brightness, and H99 were considered
the most important features in the tea plantation classifications conducted in this study.
Tea plantations have particularities in high-resolution remotely sensed images compared
with other crops. Tea trees are mostly planted in rows, displaying interlacing tea trees and
bare soils in images, as illustrated in Figure 1. Therefore, the textural and spatial features
of tea trees are useful when performing classifications between tea plantations and vege-
tation (Figure 14), which also explains why Model 2 performed better than Model 1. How-
ever, tea trees are easily confused with some other low vegetation types that have a similar
spectrum to tea crops, causing tea trees to be difficult to distinguish by spectral images
alone. The lidar features that contain vertical information can capture subtle morpholog-
ical differences among these vegetation classes, such as height strata and canopy volume
(Figure 15). Therefore, the features obtained from point clouds played more significant
roles than spectral, geometric, or textural features for mapping the plucking area of tea
plantations.

Regarding classification algorithms, when using the same data features, the SVM and
RF algorithms performed similarly concerning the overall classification accuracies. This
phenomenon was also found in a study by Chuang and Shiu [18], who employed
WorldView-2 pan-sharpened imagery to map tea crops and produced similar overall clas-
sification accuracies. Since the motivation of this study was to explore the potential of
UAV-derived remotely sensed data to map the plucking area of tea plantations and be-
cause these data are not limited to a specific type of machine learning algorithm, the RF
and SVM algorithms are utilized for the model validations only.

4.2. UAV Remote Sensing for Mapping the Plucking Area of Tea Plantations

The successful application of UAV remotely sensed data for mapping the plucking
area of tea plantations conducted in this study represents a significant operational ad-
vancement in identifying and monitoring tea crop distribution and growing conditions.
In this study, two types of UAV point clouds combined with digital imagery were applied
to detect and map the plucking area of tea plantations for the first time. The first tea plan-
tation distribution map was produced for the Huashan Tea Garden and could provide
insights into the scientific management of tea plantations. Additionally, this finer-scale
map could be used as basic data to estimate tea production in the Huashan Tea Garden.

Previous studies have employed the application of satellite imagery for mapping tea
plantations [17,18]. Nevertheless, these studies have some limitations, such as relatively
coarse scale, no structural information of plants, and spectral contamination by mist. UAV
remote sensing technology can solve these problems to a large extent. First, previous stud-
ies have all focused on tea lands at large scales and ignored the plucking areas of tea plan-
tations. In the tea plantation industry, the plucking area is one of the most important in-
dicators used to monitor and assess tea plants, and the plucking area is directly related to
the tea yield. Digital imagery and lidar point clouds have very high spatial resolutions
while still covering large areas and can identify the plucking areas of the tea garden (Fig-
ure 13). Second, previous research did not involve the use or evaluation of the vertical
structural information of vegetation, which is related to the growth status of tea trees.
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Third, tea trees tend to be planted in hilly or mountainous areas where mist frequently
exists and might influence the spectral reflection of tea plantations. Digital images ob-
tained by low-flying UAVs are less affected by thin clouds than satellite images are, while
lidar is not affected by thin clouds. Therefore, our study could solve the above-described
issues and represent an innovation and advance in finer-scale tea plantation identification.
As shown in Figure 16, the plucking area of tea plantations in the Huashan Tea Garden
was accurately measured with a total area of 6.41 ha, which accounted for 57.47% of the
tea plantation area (11.15 ha, by manual visual interpretation).

0 100 200 m
E—— I Tca plucking area

Figure 16. Illustration of tea plantation areas (from manual interpretation) and tea plucking areas in the Huashan Tea
Garden.

Tea plantation arca

UAVs also have corresponding drawbacks. The main drawback of UAV remote sens-
ing is the limited coverage obtained by a single flight compared to satellite-based imagery;
however, UAV remote sensing is adequate for tea plantations if several flight missions are
conducted. Additionally, UAV data acquisition and processing require some professional
knowledge background and skills, so these methods present some difficulties for nonspe-
cialists.

Tea plantations are mostly located at elevations of approximately 50-800 m, with rel-
ative elevation differences less than 500 m and slopes between 15 and 25°, mostly oriented
to the southeast (to ensure better light conditions) [17,48]. Based on the planting topogra-
phy of the tea plantation considered in this study, the height of the UAV data acquisition
must be set specifically. In this study, lidar point clouds were collected at an altitude of 60
m, and optical imagery was collected at an altitude of 300 m above ground level. If both
datasets were collected at an altitude of 300 m, the efficiency of the data collection might
have been improved significantly. If both datasets were collected at an altitude of 1000 m,
the methods described herein would be suitable for areas with large altitude drop-offs,
such as the tea plantation located in Changlong Town, Fujian, named the “tea town above
the clouds”, where the highest elevation is 680 m. Under this condition, the VUX-UAV1
lidar scanner (RIGEL, Horn, Lower Austria, Austria) would be considered instead of the
Velodyne VLP-16 Puck sensor.

The main cost-benefit advantage of using UAVs over traditional on-ground survey
methods for mapping the plucking area of tea plantations is the ability to survey and map
larger areas in a short time. It is possible for staff to map a 1 km? plucking area of a tea
plantation within 4 h with the support of UAV equipment, while the staff would spend
10 times longer to complete the same measurements using on-ground survey methods.
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Additionally, compared with on-ground survey methods, the cost-saving benefits af-
forded by UAV methods are obvious. The total cost required for mapping the plucking
area of a 10 km? tea plantation four times is USD 47,303 cheaper for the UAV image
method than for the on-ground survey method. Even the method in which UAV images
and lidar are fused to obtain the highest accuracy is USD 26,239 cheaper than traditional
methods. Both the UAV and lidar industries are still developing at high speeds, and the
method proposed in this study will become more applicable and less costly in the future.
With the development of UAV technology, UAVs will become more cost-effective equip-
ment for tea plantation mapping.

The proposed method in this study might also be suitable for regularly identifying
relatively small vegetation and crops with pixels lower than 0.5 m, especially for banded
plants. Kulawardhana et al. [49] proved that the UAV lidar was a potential tool for moni-
toring short vegetation, such as potato and winter wheat. In this study, point clouds and
digital images were combined, and candidate features were selected. Therefore, the pro-
posed method would have greater generalization ability to small vegetation identification.

5. Conclusions

This study developed a new approach for mapping the plucking area of tea planta-
tions using UAV-derived remotely sensed data (optical imagery, digital aerial photogram-
metry, and lidar data). Four classification models were designed using different UAV-
derived data based on the SVM and RF algorithms. The results showed that Model 4 per-
formed best among the models, achieving accuracies of 94.39% using the RF algorithm
and 91.43% using the SVM algorithm. The results showed that the plucking area of tea
plantations in Huashan, Wuhan, was 6.41 ha, and the average height of the tea trees was
0.51 m. Important features were selected from the optical imagery and point cloud data
using the RFE algorithm. The study found that the features obtained from point clouds
are more crucial than the features obtained from digital imagery when identifying tea
plantations.

The significance of this study can be reflected in three aspects. First, the excellent
performance of UAV remote sensing for mapping the plucking area of tea plantations has
been demonstrated, which represents an advancement in remote sensing of tea planta-
tions. Second, photogrammetric point clouds can be used as an alternative to lidar point
clouds when lidar scanners are not available. Third, the time and financial costs of using
UAV-derived data to map the plucking area of tea plantations are much lower than those
required by the traditional on-ground methods.
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