Applying Machine Strength Grading System to Round Timber Used in Hydraulic Engineering Works
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling, Measurements, and Destructive Tests
2.2. Data Analysis
3. Results and Discussion
3.1. Properties of the Raw Material
3.2. Machine Settings
3.3. Pratical Application of Settings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bukauskas, A.; Mayencourt, P.; Shepherd, P.; Sharma, B.; Mueller, C.; Walker, P.; Bregulla, J. Whole Timber Construction: A State of the Art Review. Constr. Build. Mater. 2019, 213, 748–769. [Google Scholar] [CrossRef]
- Ranta-Maunus, A. Round Small-Diameter Timber for Construction; Final Report of Project FAIR CT 95-0091; VTT Technical Research Centre of Finland: Espoo, Finland, 1999; p. 191. [Google Scholar]
- van Amstel, H.P. Wood in Hydraulic Engineering. In Tropical Hardwood Utilization: Practice and Prospects; Oldeman, R.A.A., Fontaine, R.G., Guillard, J.P., Brazier, J.D., Menon, K.D., Overbeek, A., Eds.; Forestry Sciences; Springer: Dordrecht, The Netherlands, 1982; Volume 3, pp. 387–391. ISBN 978-90-481-8271-8. [Google Scholar]
- Ridley-Ellis, D.; Stapel, P.; Baño, V. Strength Grading of Sawn Timber in Europe: An Explanation for Engineers and Researchers. Eur. J. Wood Prod. 2016, 74, 291–306. [Google Scholar] [CrossRef]
- Brunetti, M.; Burato, P.; Cremonini, C.; Negro, F.; Nocetti, M.; Zanuttini, R. Visual and Machine Grading of Larch (Larix Decidua Mill.) Structural Timber from the Italian Alps. Mater Struct. 2016, 49, 2681–2688. [Google Scholar] [CrossRef]
- Green, D.W.; Gorman, T.M.; Evans, J.W.; Murphy, J.F. Mechanical Grading of Round Timber Beams. J. Mater. Civ. Eng. 2006, 18, 1–10. [Google Scholar] [CrossRef]
- Fernández-Golfín, J.I.; Diez Barra, M.R.; Hermoso, E.; Mier, R. Mechanical Characterization of Visually Classified, Small-Diameter Laricio Pine Round Timber. Span. J. Agric. Res. 2007, 5, 304–311. [Google Scholar] [CrossRef] [Green Version]
- Vestøl, G.I.; Høibø, O. Bending Strength and Modulus of Elasticity of Pinus Sylvestris Round Timber from Southern Norway. Scand. J. For. Res. 2010, 25, 185–195. [Google Scholar] [CrossRef]
- Morgado, T.F.; Dias, A.M.; Machado, J.S.; Negrão, J.H.; Marques, A.F. Grading of Portuguese Maritime Pine Small-Diameter Roundwood. J. Mater. Civ. Eng. 2017, 29, 04016209. [Google Scholar] [CrossRef]
- Aira, J.R.; Villanueva, J.L.; Lafuente, E. Visual and Machine Grading of Small Diameter Machined Round Pinus Sylvestris and Pinus Nigra Subsp. Salzmannii Wood from Mature Spanish Forests. Mater. Struct. 2019, 52, 32. [Google Scholar] [CrossRef]
- Vega, A.; González, L.; Fernández, I.; González, P. Grading and Mechanical Characterization of Small-Diameter Round Chestnut (Castanea Sativa Mill.) Timber from Thinning Operations. Wood Mater. Sci. Eng. 2019, 14, 81–87. [Google Scholar] [CrossRef]
- Green, D.W.; Gorman, T.M.; Evans, J.W.; Murphy, J.F. Improved Grading System for Structural Logs for Log Homes. For. Prod. J. 2004, 54, 52–62. [Google Scholar]
- Vries, P.D.; Gard, W. The Development of a Strength Grading System for Small Diameter Roundwood. Heron 1998, 43, 183–198. [Google Scholar]
- EN 14251. Structural Round Timber—Test Methods; CEN—European Committee for Standardization: Brussels, Belgium, 2012. [Google Scholar]
- ISO 13061-2. Physical and Mechanical Properties of Wood. Test Methods for Small Clear Specimen. Part 2: Determination of Density for Physical and Mechanical Tests; ISO—International Organization for Standardization: Geneve, Switzerland, 2014. [Google Scholar]
- EN 13183-1. Moisture Content of a Piece of Sawn Timber. Determination by Oven Dry Method; CEN—European Committee for Standardization: Brussels, Belgium, 2002. [Google Scholar]
- EN 14081-2. Timber Structures. Strength Graded Structural Timber with Rectangular Cross Section. Part 2: Machine Grading; Additional Requirements for Type Testing; CEN—European Committee for Standardization: Brussels, Belgium, 2018. [Google Scholar]
- EN 384. Structural Timber. Determination of Characteristic Values of Mechanical Properties and Density; CEN—European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- Nocetti, M.; Brunetti, M.; Bacher, M. Effect of Moisture Content on the Flexural Properties and Dynamic Modulus of Elasticity of Dimension Chestnut Timber. Eur. J. Wood Prod. 2015, 73, 51–60. [Google Scholar] [CrossRef]
- EN 338. Structural Timber. Strength Classes; CEN—European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- EN 14358. Timber Structures. Calculation and Verification of Characteristic Values; CEN—European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- Nocetti, M.; Brancheriau, L.; Bacher, M.; Brunetti, M.; Crivellaro, A. Relationship between Local and Global Modulus of Elasticity in Bending and Its Consequence on Structural Timber Grading. Eur. J. Wood Prod. 2013, 71, 297–308. [Google Scholar] [CrossRef]
- Ido, H.; Nagao, H.; Kato, H.; Miura, S. Strength Properties and Effect of Moisture Content on the Bending and Compressive Strength Parallel to the Grain of Sugi (Cryptomeria Japonica) Round Timber. J. Wood Sci. 2013, 59, 67–72. [Google Scholar] [CrossRef]
- Glos, P.; Denzler, J.K. Allocation of Central European Hardwoods into EN 1912. In Proceedings of the CIB W18, Meeting 39, Florence, Italy, 28–31 August 2006. Paper 39-6-1. [Google Scholar]
- Lanvin, J.-D.; Reuling, D.; Costrel, Y.; Ducerf, J. Evaluation of French Oak for Structural Use. In Proceedings of the 1st International Scientific Conference on Hardwood Processing (ISCHP), Québec City, QC, Canada, 15–17 September 2007; pp. 61–65. [Google Scholar]
- Faydi, Y.; Brancheriau, L.; Pot, G.; Collet, R. Prediction of Oak Wood Mechanical Properties Based on the Statistical Exploitation of Vibrational Response. BioResources 2017, 12, 5913–5927. [Google Scholar] [CrossRef] [Green Version]
- Sandoz, J. Form and Treatment Effects on Conical Roundwood Tested in Bending. Wood Sci. Technol. 1991, 25, 203–214. [Google Scholar] [CrossRef]
- Vestøl, G.I.; Høibø, O. Bending Strength and Modulus of Elasticity of Squares with Wane as Compared with Round Timber of Scots Pine (Pinus Sylvestris). For. Prod. J. 2010, 60, 40–47. [Google Scholar] [CrossRef]
- SANS 10163-1. South African National Standard. The Structural Use of Timber. Part 1: Limit-States Design; Standards South Africa: Pretoria, South Africa, 2003. [Google Scholar]
- Kretschmann, D.E.; Green, D.W. Mechanical Grading of Oak Timbers. J. Mater. Civ. Eng. 1999, 11, 91–97. [Google Scholar] [CrossRef]
- Vega, A.; Dieste, A.; Guaita, M.; Majada, J.; Baño, V. Modelling of the Mechanical Properties of Castanea Sativa Mill. Structural Timber by a Combination of Non-Destructive Variables and Visual Grading Parameters. Eur. J. Wood Prod. 2012, 70, 839–844. [Google Scholar] [CrossRef]
- Nocetti, M.; Brunetti, M.; Bacher, M. Efficiency of the Machine Grading of Chestnut Structural Timber: Prediction of Strength Classes by Dry and Wet Measurements. Mater. Struct. 2016, 49, 4439–4450. [Google Scholar] [CrossRef]
- Nocetti, M.; Bacher, M.; Brunetti, M.; Crivellaro, A.; van de Kuilen, J.W.G. Machine Grading of Italian Structural Timber: Preliminary Results on Different Wood Species. In Proceedings of the World Conference on Timber Engineering, WCTE, Riva del Garda, Italy, 20–24 June 2010; pp. 285–292. [Google Scholar]
- Brunetti, M.; Nocetti, M.; Pizzo, B.; Aminti, G.; Cremonini, C.; Negro, F.; Zanuttini, R.; Romagnoli, M.; Scarascia Mugnozza, G. Structural Products Made of Beech Wood: Quality Assessment of the Raw Material. Eur. J. Wood Prod. 2020, 78, 961–970. [Google Scholar] [CrossRef]
Property | Unit | Group | ALL | |||
---|---|---|---|---|---|---|
QA | QB | QC | QD | |||
N | (-) | 71 | 72 | 72 | 42 | 257 |
MCm | (%) | 56.7 | 62.6 | 62.5 | 62.5 | 60.9 |
CV | (%) | 17 | 15 | 17 | 18 | 17 |
fm,m | (MPa) | 56.3 | 63.7 | 68.2 | 67.7 | 63.6 |
fm,k | (MPa) | 34.0 | 45.0 | 46.0 | 49.5 | 43.1 |
CV | (%) | 21 | 17 | 16 | 16 | 19 |
Em,0,m | (GPa) | 11.2 | 12.8 | 13.5 | 13.2 | 12.6 |
CV | (%) | 23 | 19 | 18 | 19 | 21 |
Vm | (km/s) | 4.3 | 4.6 | 4.5 | 4.5 | 4.5 |
CV | (%) | 7 | 5 | 6 | 7 | 7 |
Edyn,m | (MPa) | 12.7 | 14.2 | 14.6 | 14.4 | 13.9 |
CV | (%) | 20 | 14 | 16 | 15 | 17 |
ρm | (kg/m3) | 666 | 674 | 686 | 703 | 680 |
ρk | (kg/m3) | 601 | 573 | 627 | 653 | 610 |
CV | (%) | 7 | 6 | 5 | 4 | 6 |
fm | Em | ρ | V | |
---|---|---|---|---|
Em | 0.72 | |||
ρ | 0.35 | 0.31 | ||
V | 0.35 | 0.49 | 0.06 | |
Edyn | 0.60 | 0.77 | 0.29 | 0.56 |
fm,k (MPa) | Em (GPa) | ρk (kg/m3) | |
---|---|---|---|
D50 | 50 | 14.0 | 620 |
D45 | 45 | 13.5 | 580 |
D40 | 40 | 13.0 | 550 |
D35 | 35 | 12.0 | 540 |
D30 | 30 | 11.0 | 530 |
Grade | Optimum | Velocity | Edyn | ||
---|---|---|---|---|---|
Comb. | Grading Yield (%) | Setting (km/s) | Yield (%) | Setting (MPa) | Yield (%) |
D35 | 100 | 3.78 | 97.7 | 8750 | 98.1 |
R | 0 | 2.3 | 1.9 | ||
D40 | 100 | 4.03 | 92.6 | 9490 | 94.9 |
R | 0 | 7.4 | 5.1 | ||
D45 | 96.1 | 4.27 | 73.9 | 11,000 | 88.7 |
R | 4.9 | 26.1 | 11.3 | ||
D50 | 84.8 | - | - | 12,400 | 74.7 |
R | 15.2 | - | - | 25.3 | |
D45 | 96.1 | 4.50 1 | 51.0 | 13,500 1 | 59.9 |
D30 | 0 | 3.78 | 46.7 | 8750 | 38.1 |
R | 4.9 | 2.3 | 1.9 | ||
D50 | 84.8 | - | - | 13,500 1 | 59.9 |
D30 | 0 | - | - | 8750 | 38.1 |
R | 15.2 | - | - | 1.9 |
Yield | D35/R (%) | D40/R (%) | D45/R (%) | D45/D30/R (%) |
---|---|---|---|---|
Class | 87.9 | 68.9 | 43.2 | 12.8/75.1 |
Rejects | 12.1 | 31.1 | 56.8 | 12.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nocetti, M.; Aminti, G.; Wessels, C.B.; Brunetti, M. Applying Machine Strength Grading System to Round Timber Used in Hydraulic Engineering Works. Forests 2021, 12, 281. https://doi.org/10.3390/f12030281
Nocetti M, Aminti G, Wessels CB, Brunetti M. Applying Machine Strength Grading System to Round Timber Used in Hydraulic Engineering Works. Forests. 2021; 12(3):281. https://doi.org/10.3390/f12030281
Chicago/Turabian StyleNocetti, Michela, Giovanni Aminti, C. Brand Wessels, and Michele Brunetti. 2021. "Applying Machine Strength Grading System to Round Timber Used in Hydraulic Engineering Works" Forests 12, no. 3: 281. https://doi.org/10.3390/f12030281
APA StyleNocetti, M., Aminti, G., Wessels, C. B., & Brunetti, M. (2021). Applying Machine Strength Grading System to Round Timber Used in Hydraulic Engineering Works. Forests, 12(3), 281. https://doi.org/10.3390/f12030281