Tree Regeneration Patterns on Contrasting Slopes at Treeline Ecotones in Eastern Tibet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Climate
2.2. Tree Species
2.3. Field Sampling
2.4. Identifying the Dynamics of the Balfour Spruce Treeline
3. Results
3.1. Treeline Dynamics
3.2. Age Structure and Growth Characteristics of Regenerated Balfour Spruce
4. Discussion
4.1. Slight Advancement in Treeline Position
4.2. Population Regeneration
4.3. Implication of Population Dynamics to Treeline Shift
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Körner, C. Alpine Treelines; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Körner, C.; Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 2004, 31, 713–732. [Google Scholar] [CrossRef]
- Harsch, M.A.; Hulme, P.E.; McGlone, M.S.; Duncan, R. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 2009, 12, 1040–1049. [Google Scholar] [CrossRef]
- Gaire, N.P.; Koirala, M.; Bhuju, D.R.; Borgaonkar, H.P. Treeline dynamics with climate change at the central Nepal Himalaya. Clim. Past 2014, 10, 1277–1290. [Google Scholar] [CrossRef] [Green Version]
- Gaire, N.P.; Koirala, M.; Bhuju, D.R.; Carrer, M. Site- and species-specific treeline responses to climatic variability in eastern Nepal Himalaya. Dendrochronologia 2017, 41, 44–56. [Google Scholar] [CrossRef]
- Conlisk, E.; Castanha, C.; Germino, M.J.; Veblen, T.T.; Smith, J.M.; Kueppers, L. Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming. J. Ecol. 2017, 105, 1347–1357. [Google Scholar] [CrossRef] [Green Version]
- Schickhoff, U.; Bobrowski, M.; Böhner, J.; Bürzle, B.; Chaudhary, R.P.; Gerlitz, L.; Heyken, H.; Lange, J.; Müller, M.; Scholten, T.; et al. Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst. Dyn. 2015, 6, 245–265. [Google Scholar] [CrossRef]
- Holtmeier, F.-K. Mountain Timberlines—Ecology, Patchiness, and Dynamics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Liang, E.; Wang, Y.; Eckstein, D.; Luo, T. Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytol. 2011, 190, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Akhalkatsi, M.; Abdaladze, O.; Nakhutsrishvili, G.; Smith, W.K. Facilitation of Seedling Microsites by Rhododendron caucasicum Extends the Betula litwinowii Alpine Treeline, Caucasus Mountains, Republic of Georgia. Arct. Antarct. Alp. Res. 2006, 38, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Elliott, G.P.; Cowell, C.M. Slope Aspect Mediates Fine-Scale Tree Establishment Patterns at Upper Treeline during Wet and Dry Periods of the 20th Century. Arct. Antarct. Alp. Res. 2015, 47, 681–692. [Google Scholar] [CrossRef] [Green Version]
- Germino, M.J.; Smith, W.K.; Resor, A.C. Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecol. 2002, 162, 157–168. [Google Scholar] [CrossRef]
- Olson, A.R.; Richards, J.H.; Richards, A.R.O.H. Temperature Responses of Germination in Arctic Poppy (Papaver radicatum Rottb.) Seeds. Arct. Alp. Res. 1979, 11, 343. [Google Scholar] [CrossRef]
- Hoyle, G.L.; Venn, S.; Steadman, K.; Good, R.B.; McAuliffe, E.J.; Williams, E.R.; Nicotra, A. Soil warming increases plant species richness but decreases germination from the alpine soil seed bank. Glob. Chang. Biol. 2013, 19, 1549–1561. [Google Scholar] [CrossRef]
- Germino, M.J.; Graumlich, L.J.; Maher, E.J. Recent Relationships of Tree Establishment and Climate in Alpine Treelines of the Rocky Mountains. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 10 December 2007; p. GC33B-05. [Google Scholar]
- Loranger, H.; Zotz, G.; Bader, M.Y. Early establishment of trees at the alpine treeline: Idiosyncratic species responses to temperature-moisture interactions. AoB Plants 2016, 8, plw053. [Google Scholar] [CrossRef] [Green Version]
- Lett, S.; Dorrepaal, E. Global drivers of tree seedling establishment at alpine treelines in a changing climate. Funct. Ecol. 2018, 32, 1666–1680. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Shen, M.; Wu, X.; Cheng, X.; Li, X.; Fan, T.; Li, Z.; Zhang, Y.; Fan, Z.; Shi, F.; et al. Growth response of alpine treeline forests to a warmer and drier climate on the southeastern Tibetan Plateau. Agric. For. Meteorol. 2019, 264, 73–79. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J. Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol. Lett. 2008, 11, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Batllori, E.; Camarero, J.J.; Ninot, J.M.; Gutiérrez, E. Seedling recruitment, survival and facilitation in alpine Pinus uncinate tree line ecotones. Implications and potential responses to climate warming. Glob. Ecol. Biogeogr. 2009, 18, 460–472. [Google Scholar] [CrossRef]
- Zheng, L.; Gaire, N.P.; Shi, P. High-altitude tree growth responses to climate change across the Hindu Kush Himalaya. Journal of Plant Ecology 2021, 14, 829–842. [Google Scholar] [CrossRef]
- Salzer, M.; Larson, E.R.; Bunn, A.G.; Hughes, M.K. Changing climate response in near-treeline bristlecone pine with elevation and aspect. Environ. Res. Lett. 2014, 9, 114007. [Google Scholar] [CrossRef]
- Yirdaw, E.; Starr, M.; Negash, M.; Yimer, F. Influence of topographic aspect on floristic diversity, structure and treeline of afromontane cloud forests in the Bale Mountains, Ethiopia. J. For. Res. 2015, 26, 919–931. [Google Scholar] [CrossRef]
- IPCC. Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergov-ernmental Panel on Climate Change; 9291691437; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Liu, X.D.; Chen, B.D. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- You, Q.; Min, J.; Kang, S. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. Int. J. Clim. 2015, 36, 2660–2670. [Google Scholar] [CrossRef]
- Miehe, G.; Miehe, S.; Vogel, J.; Co, S.; La, D. Highest Treeline in the Northern Hemisphere Found in Southern Tibet. Mt. Res. Dev. 2007, 27, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Liang, E.; Wang, Y.; Babst, F.; Camarero, J.J. Mountain treelines climb slowly despite rapid climate warming. Glob. Ecol. Biogeogr. 2021, 30, 305–315. [Google Scholar] [CrossRef]
- Gaire, N.P.; Dhakal, Y.R.; Lekhak, H.C.; Bhuju, D.R.; Shah, S.K. Dynamics of Abies spectabilis in Relation to Climate Change at the Treeline Ecotone in Langtang National Park. Nepal J. Sci. Technol. 2012, 12, 220–229. [Google Scholar] [CrossRef] [Green Version]
- Liang, E.; Wang, Y.; Piao, S.; Lu, X.; Camarero, J.J.; Zhu, H.; Zhu, L.; Ellison, A.M.; Ciais, P.; Penuelas, J. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2016, 113, 4380–4385. [Google Scholar] [CrossRef] [Green Version]
- Rawal, R.S.; Pangtey, Y.P.S. High Altitude Forests with Special Reference to The Timber Line in Kumaun, Central Himalaya; Pangtey, Y.P.S., Rawal, R.S., Eds.; Gyanodaya Prakashan: Nainital, India, 1994. [Google Scholar]
- Wang, Y.; Sylvester, S.P.; Lu, X.; Dawadi, B.; Sigdel, S.R.; Liang, E.; Camarero, J.J. The stability of spruce treelines on the eastern Tibetan Plateau over the last century is explained by pastoral disturbance. For. Ecol. Manag. 2019, 442, 34–45. [Google Scholar] [CrossRef]
- Lyu, L.; Zhang, Q.-B.; Deng, X.; Mäkinen, H. Fine-scale distribution of treeline trees and the nurse plant facilitation on the eastern Tibetan Plateau. Ecol. Indic. 2016, 66, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Camarero, J.J.; Gutiérrez, E. Pace and pattern of recent treeline dynamics: Response to ecotones to climate variability in the Spanish Pyrenees. Clim. Chang. 2004, 63, 181–200. [Google Scholar] [CrossRef]
- Batllori, E.; Gutierrez, E. Regional tree line dynamics in response to global change in the Pyrenees. J. Ecol. 2008, 96, 1275–1288. [Google Scholar] [CrossRef]
- Chhetri, P.K.; Cairns, D.M. Low recruitment above treeline indicates treeline stability under changing climate in Dhorpatan Hunting Reserve, Western Nepal. Phys. Geogr. 2018, 39, 329–342. [Google Scholar] [CrossRef]
- Chhetri, P.K.; Cairns, D.M. Contemporary and historic population structure of Abies spectabilis at treeline in Barun valley, eastern Nepal Himalaya. J. Mt. Sci. 2015, 12, 558–570. [Google Scholar] [CrossRef]
- Cook, E.R.; Kairiukstis, L.A. Methods of Dendrochronology: Applications in the Environmental Sciences; Springer: Dordrecht, The Netherlands, 1990; p. 394. [Google Scholar]
- Speer, J.H. Fundamentals of Tree Ring Research; Indiana State University: Terre Haute, IN, USA, 2010. [Google Scholar]
- Fritts, H.C. Tree Rings and Climate; University Press Cambridge: Cambridge, UK, 1976. [Google Scholar]
- Rinn, F. TSAP-Win User Reference Manual; Rinntech: Heidelberg, Germany, 2003. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Grissino-Mayer, H.D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Res. 2001, 57, 205–221. [Google Scholar]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Chicago Press: Chicago, IL, USA, 1968. [Google Scholar]
- Norton, D.; Palmer, J.; Ogden, J. Dendroecological studies in New Zealand 1. An evaluation of tree age estimates based on increment cores. New Zealand J. Bot. 1987, 25, 373–383. [Google Scholar] [CrossRef]
- Kirdyanov, A.V.; Hagedorn, F.; Knorre, A.A.; Fedotova, E.V.; Vaganov, E.A.; Naurzbaev, M.M.; Moiseev, P.A.; Rigling, A. 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. Boreas 2012, 41, 56–67. [Google Scholar] [CrossRef]
- Hagedorn, F.; Shiyatov, S.G.; Mazepa, V.S.; Devi, N.M.; Grigor’Ev, A.A.; Bartysh, A.A.; Fomin, V.V.; Kapralov, D.S.; Terent’Ev, M.; Bugman, H.; et al. Treeline advances along the Urals mountain range—Driven by improved winter conditions? Glob. Chang. Biol. 2014, 20, 3530–3543. [Google Scholar] [CrossRef]
- Brown, R. Response of Alpine Treeline Ecotones to 20th Century Climate Change: A Comparative Analysis from Kananaskis Country, Alberta; The University of Guelph: Guelph, ON, Canada, 2013. [Google Scholar]
- Millar, C.I.; Westfall, R.D.; Delany, D.L.; King, J.C.; Graumlich, L.J. Response of Subalpine Conifers in the Sierra Nevada, California, U.S.A., to 20th-Century Warming and Decadal Climate Variability. Arct. Antarct. Alp. Res. 2004, 36, 181–200. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.B.; Schickhoff, U.; Mal, S. Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya; Springer: Geneva, Switzerland, 2016. [Google Scholar]
- Caccia, F.D.; Ballaré, C.L. Effects of tree cover, understory vegetation, and litter on regeneration of Douglas-fir (Pseudotsuga menziesii) in southwestern Argentina. Can. J. For. Res. 1998, 28, 683–692. [Google Scholar] [CrossRef]
- Wang, Y.; Camarero, J.J.; Luo, T.; Liang, E. Spatial patterns of Smith fir alpine treelines on the south-eastern Tibetan Plateau support that contingent local conditions drive recent treeline patterns. Plant Ecol. Divers. 2012, 5, 311–321. [Google Scholar] [CrossRef]
- Greenwood, S.; Chen, J.; Chen, C.; Jump, A.S. Temperature and sheltering determine patterns of seedling establishment in an advancing subtropical treeline. J. Veg. Sci. 2015, 26, 711–721. [Google Scholar] [CrossRef] [Green Version]
- Germino, M.J.; Smith, W.K. Sky exposure, crown architecture, and low-temperature photoinhibition in conifer seedlings at alpine treeline. Plant Cell Environ. 1999, 22, 407–415. [Google Scholar] [CrossRef]
- Germino, M.J.; Smith, W.K. High resistance to low-temperature photoinhibition in two alpine, snowbank species. Physiol. Plant. 2000, 110, 89–95. [Google Scholar] [CrossRef]
- Germino, M.J.; Smith, W.K. Differences in microsite, plant form, and low-temperature photoinhibition in alpine plants. Arct. Antarct. Alp. Res. 2000, 32, 388–396. [Google Scholar] [CrossRef]
- Petit, G.; Anfodillo, T.; Carraro, V.; Grani, F.; Carrer, M. Hydraulic constraints limit height growth in trees at high altitude. New Phytol. 2011, 189, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Smithers, B.V.; Alongi, F.; North, M.P. Live fast, die young: Climate shifts may favor Great Basin bristlecone pine or limber pine in sub-alpine forest establishment. For. Ecol. Manag. 2021, 494, 119339. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, L.; Liu, X.; Luo, T. Seed-based treeline seedlings are vulnerable to freezing events in the early growing season under a warmer climate: Evidence from a reciprocal transplant experiment in the Sergyemla Mountains, southeast Tibet. Agric. For. Meteorol. 2014, 187, 83–92. [Google Scholar] [CrossRef]
- Smith, W.K.; Germino, M.J.; Hancock, T.E.; Johnson, D.M. Another perspective on altitudinal limits of alpine timberlines. Tree Physiol. 2003, 23, 1101–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.-B.; Ren, G.-Y.; Shrestha, A.B.; Ren, Y.-Y.; You, Q.-L.; Zhan, Y.-J.; Xu, Y.; Rajbhandari, R. Changes in extreme temperature events over the Hindu Kush Himalaya during 1961–2015. Adv. Clim. Chang. Res. 2017, 8, 157–165. [Google Scholar] [CrossRef]
- Renard, S.M.; McIntire, E.J.; Fajardo, A. Winter conditions—Not summer temperature—Influence establishment of seedlings at white spruce alpine treeline in Eastern Quebec. J. Veg. Sci. 2015, 27, 29–39. [Google Scholar] [CrossRef]
- Sigdel, S.R.; Liang, E.; Wang, Y.; Dawadi, B.; Camarero, J.J. Tree-to-tree interactions slow down Himalayan treeline shifts as inferred from tree spatial patterns. J. Biogeogr. 2020, 47, 1816–1826. [Google Scholar] [CrossRef]
- Feuillet, T.; Birre, D.; Milian, J.; Godard, V.; Clauzel, C.; Serrano-Notivoli, R. Spatial dynamics of alpine tree lines under global warming: What explains the mismatch between tree densification and elevational upward shifts at the tree line ecotone? J. Biogeogr. 2019, 47, 1056–1068. [Google Scholar] [CrossRef]
- Cavieres, L.A.; Badano, E.I.; Sierra-Almeida, A.; Molina-Montenegro, M.A. Microclimatic Modifications of Cushion Plants and Their Consequences for Seedling Survival of Native and Non-native Herbaceous Species in the High Andes of Central Chile. Arct. Antarct. Alp. Res. 2007, 39, 229–236. [Google Scholar] [CrossRef] [Green Version]
Sites | N1 | N2 | N3 | E1 | E2 | E3 |
---|---|---|---|---|---|---|
Latitude | 30.63043° N | 30.6303° N | 30.63016° N | 30.68192° N | 30.68168° N | 30.68144° N |
Longitude | 97.2853° E | 97.28554° E | 97.28584° E | 97.2447° E | 97.24485° E | 97.24498° E |
Slope | 32° | 31° | 30° | 32° | 33° | 31° |
Aspect | North | North | North | East | East | East |
Length (m) | 378 | 380 | 390 | 150 | 150 | 150 |
Width (m) | 30 | 30 | 30 | 30 | 30 | 30 |
Forest line (m) | 4416 | 4419 | 4408 | 4470 | 4464 | 4457 |
Treeline (m) | 4437 | 4453 | 4424 | 4487 | 4491 | 4470 |
Species limit (m) | 4597 | 4594 | 4590 | 4508 | 4506 | 4504 |
Seedlings | 75 | 48 | 49 | 18 | 25 | 20 |
Juveniles | 126 | 157 | 126 | 39 | 34 | 25 |
Adult trees | 84 | 89 | 105 | 22 | 22 | 13 |
Treeline shift over the past 100 y (m) | 0 | 29 | 46 | —— | —— | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Shi, P.; Zhou, T.; Hou, G.; Song, M.; Yu, F. Tree Regeneration Patterns on Contrasting Slopes at Treeline Ecotones in Eastern Tibet. Forests 2021, 12, 1605. https://doi.org/10.3390/f12111605
Zheng L, Shi P, Zhou T, Hou G, Song M, Yu F. Tree Regeneration Patterns on Contrasting Slopes at Treeline Ecotones in Eastern Tibet. Forests. 2021; 12(11):1605. https://doi.org/10.3390/f12111605
Chicago/Turabian StyleZheng, Lili, Peili Shi, Tiancai Zhou, Ge Hou, Minghua Song, and Feihai Yu. 2021. "Tree Regeneration Patterns on Contrasting Slopes at Treeline Ecotones in Eastern Tibet" Forests 12, no. 11: 1605. https://doi.org/10.3390/f12111605
APA StyleZheng, L., Shi, P., Zhou, T., Hou, G., Song, M., & Yu, F. (2021). Tree Regeneration Patterns on Contrasting Slopes at Treeline Ecotones in Eastern Tibet. Forests, 12(11), 1605. https://doi.org/10.3390/f12111605