Evaluation and Tradeoff Analysis of Ecosystem Service for Typical Land-Use Patterns in the Karst Region of Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Soil Plant Sampling and Questionnaire Survey
2.3. Data Analysis
3. Results
3.1. Ecosystem Services in Different Patterns
3.2. TES and EMF in Different Patterns
3.3. Tradeoffs of ESs in Different Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; Darge, R.; Degroot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The values of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Millenium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Wallace, K.J. Classification of ecosystem services: Problems and solutions. Biol. Conserv. 2007, 139, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Alamgir, M.; Turton, S.M.; Macgregor, C.J.; Pert, P.L. Ecosystem services capacity across heterogeneous forest types: Understanding the interactions and suggesting pathways for sustaining multiple ecosystem services. Sci. Total Environ. 2018, 566, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Lafortezza, R.; Chen, J.Q. The provision of ecosystem services in response to global change: Evidences and applications. Environ. Res. 2016, 147, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.R.; Zhou, D.M.; Liu, M. Ecosystem service valuation research of chinese inland wetlands based on case study. Acta Ecol. Sin. 2015, 35, 4279–4286. (In Chinese) [Google Scholar]
- Levin, P.S.; Fogarty, M.J.; Murawski, S.A.; Fluharty, D. Integrated ecosystem assessments: Developing the scientific basis for ecosystem-based management of the ocean. PLoS Biol. 2015, 7, 23–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, M.S.; Bonn, A.; Evans, C.; Glenk, K.; Hansjurgens, B. Assessing and valuing peatland ecosystem services for sustainable management. Ecosyst. Serv. 2014, 9, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Tuinstra, J.; Van Wensem, J. Ecosystem services in sustainable groundwater management. Sci. Total Environ. 2014, 485–486, 798–803. [Google Scholar] [CrossRef]
- Wu, J.G. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Yang, G.M.; Li, W.H.; Min, Q.W.; Zhen, L.; Mario, L. Reflection on the limitation of ecological service studies in china and suggestion for future research. China Popul. Resour. Environ. 2007, 17, 85–91. (In Chinese) [Google Scholar]
- Schroter, M.; Stumpf, K.H.; Loos, J.; Van Oudenhoven, A.P.E.; Bohnke-henrichs, A.; Abson, D.J. Refocusing ecosystem services towards sustainability. Ecosyst. Serv. 2017, 25, 35–43. [Google Scholar] [CrossRef]
- McDonough, K.; Hutchinson, S.; Moore, T.; Hutchinson, J.M.S. Analysis of publication trends in ecosystem services research. Ecosyst. Serv. 2017, 25, 82–88. [Google Scholar] [CrossRef]
- Zhang, W.; Ricketts, T.H.; Kremen, C.; Carney, K.; Swinton, S.M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 2007, 64, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Maseyk, F.J.F.; Mackay, A.D.; Possingham, H.P.; Dominati, E.J.; Buckley, Y.M. Managing natural capital stocks for the provision of ecosystem services. Conserv. Lett. 2017, 10, 211–220. [Google Scholar] [CrossRef]
- Ruhl, J.B. Adaptive management of ecosystem services across different land use regimes. J. Environ. Manag. 2016, 183, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.; Fu, B.J.; Jin, T.T.; Chang, R.Y. Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across loess plateau landscapes. Landsc. Ecol. 2014, 29, 1697–1708. [Google Scholar] [CrossRef]
- Romeu-Dalmau, C.; Gasparatos, A.; von Maltitz, G.; Graham, A.; Almagro-Garcia, J.; Wilebore, B.; Willis, K.J. Impacts of land use change due to biofuel crops on climate regulation services: Five case studies in malawi, mozambique and Swaziland. Biomass Bioenergy 2018, 114, 30–40. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.W.; Yang, J.C.; Bu, K.; Wang, Q.; Tang, J.M.; Chang, L.P. The effects of population density changes on ecosystem services value: A case study in western Jilin, China. Ecol. Indic. 2016, 61, 328–337. [Google Scholar] [CrossRef]
- Zou, Z.G.; Zeng, F.P.; Wang, K.L.; Zeng, Z.X.; Zhao, L.L.; Du, H.; Zhang, F.; Zhang, H. Emergy and economic evaluation of seven typical agroforestry planting patterns in the karst region of southwest China. Forests 2019, 10, 138. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.C.; Wang, S.J.; Bai, X.Y.; Luo, G.J.; Xu, Y. Trade-offs among ecosystem services in a typical karst watershed, sw China. Sci. Total Environ. 2016, 566, 1297–1308. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.Y.; Xiong, K.N.; Lan, A.J.; Zhan, F.L.; You, P.Y.; Ai, Y. Correlation between rocky desertification and water and soil loss in the karst area of Guizhou. Res. Soil Water Conserv. 2015, 22, 6–71. (In Chinese) [Google Scholar]
- Li, S.; Wei, X.H.; Huang, J.G.; Wang, X.Z.; Lu, G.Y.; Li, H.X. The causes and processes responsible for rocky desertification in karst areas of southern China. Sci. Cold Arid Reg. 2009, 1, 80–90. (In Chinese) [Google Scholar]
- Wang, S.J.; Li, Y.B. Problems and development trends about researches on karst rocky desertification. Adv. Earth Sci. 2007, 22, 573–582. (In Chinese) [Google Scholar]
- Li, Y.B.; Wang, S.J.; Rong, L. Prospect of the study on rock desertification and its restoration in southwest karst mountains. Chin. J. Ecol. 2004, 23, 85–88. (In Chinese) [Google Scholar]
- Liao, C.J.; Yue, Y.M.; Wang, K.; Fensholt, R.; Tong, X.W.; Brandt, M. Ecological restoration enhances ecosystem health in the karst regions of southwest China. Ecol. Indic. 2018, 90, 416–425. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.M.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Xu, W.H.; Xiao, Y.; Zhang, J.J.; Yang, W.; Zheng, H.; Liu, J.G.; Polasky, S.; Jiang, L.; Xiao, Y.; Shi, X.W.; et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. USA 2017, 114, 1601–1606. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.Z.; Zou, X.Y.; Hong, C.; Jia, H.K.; Wu, Y.Q.; Wang, G.Y.; Zhang, C.L.; Gao, S.Y. Assessing the ecological security of the Tibetan plateau: Methodology and acase study for lhaze county. J. Environ. Manag. 2006, 80, 120–131. [Google Scholar] [CrossRef]
- Su, W.C.; Yang, H. A study on the models of eco-agricultural development in typical karst gorge region-a case study from Ding Tan district of Hua Jiang gorge in Guizhou province. Chin. J. Eco-Agric. 2005, 13, 217–220. (In Chinese) [Google Scholar]
- Bai, X.Y.; Xiong, K.N.; Su, X.L.; Lan, A.J. The ecological effects of karst rocky desertification landscape and lands—A case study in Zhen Feng county, Guizhou province. Carsologica Sin. 2005, 24, 276–281. (In Chinese) [Google Scholar]
- Zhou, W.; Xiong, K.N.; Gao, J.F. Research on control way for cultivated land in karst rocky desertification basin -a case in Shiqiao basin, Bijie city and Mugong basin, Guan ling city in Guizhou province. Carsologica Sin. 2010, 29, 419–424. (In Chinese) [Google Scholar]
- Wu, K.Y.; Jiang, Z.C.; Deng, X.H.; Ye, Y. Ecosystem service value of restored secondary forest in the Karstic-rocky hills—A case study of Nongla National Medicine Nature Reserve, Guangxi Zhuang Autonomous. Reg. Chin. J. Eco-Agric. 2008, 16, 1011–1014. (In Chinese) [Google Scholar] [CrossRef]
- Statistics Bureau of Yunnan Province. Statistical Yearbook of Yunnan Province. 2017. Available online: http://stats.yn.gov.cn/tjsj/tjnj/201810/t20181030_809120.html (accessed on 19 October 2019).
- Bao, S.D. Soil Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000; pp. 145–196. [Google Scholar]
- Pan, Y.; Wu, J.X.; Xu, Z.R. Analysis of the tradeoffs between provisioning and regulating services from the perspective of variedshare of net primary production in an alpine grassland ecosystem. Ecol. Complex. 2013, 17, 79–86. [Google Scholar] [CrossRef]
- Sutter, L.; Albrecht, M. Synergistic interactions of ecosystem services: Florivorous pest control boosts crop yield increase through insect pollination. Proc. R. Soc. B-Biol. Sci. 2016, 283. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Ashmore, M.R.; Black, H.I.J.; Burgess, P.J.; Evans, C.D.; Quine, T.A.; Thomson, A.M.; Hicks, K.; Orr, H.G. The role of ecosystems and their management in regulating climate, and soil, water and air quality. J. Appl. Ecol. 2013, 50, 812–829. [Google Scholar] [CrossRef]
- Xu, Z.H.; Fan, W.G.; Wei, H.J.; Zhang, P.; Ren, J.H.; Gao, Z.C.; Ulgiati, S.; Kong, W.D.; Dong, X.B. Evaluation and simulation of the impact of land use change on ecosystem services based on a carbon flow model: A case study of the Manas River Basin of Xinjiang, China. Sci. Total Environ. 2019, 652, 117–133. [Google Scholar] [CrossRef]
- Bukvareva, E.; Zamolodchikov, D.; Grunewald, K. National assessment of ecosystem services in russia: Methodology and main problems. Sci. Total Environ. 2019, 655, 1181–1196. [Google Scholar] [CrossRef]
- Alva, A.K.; Prakash, O.; Fares, A.; Hornsby, A.G. Distribution of rainfall and soil moisture content in the soil profile under citrus tree canopy and at the dripline. Irrig. Sci. 1999, 18, 109–115. [Google Scholar] [CrossRef]
- Government Work Report. Website of the People’s Government of MengZi Municipality. 2017. Available online: http://www.mz.hh.gov.cn/ (accessed on 13 March 2019).
- Genovese, D.; Culasso, F.; Giacosa, E.; Battaglini, L.M. Can livestock farming and tourism coexist in mountain regions? A new business model for sustainability. Sustainability 2017, 9, 2021. [Google Scholar] [CrossRef] [Green Version]
- Meehan, T.D.; Gratton, C.; Diehl, E.; Hunt NDMooney, D.F.; Ventura, S.J.; Barham, B.L.; Jackson, R.D. Ecosystem-service tradeoffs associated with switching from annual to perennial energy crops in riparian zones of the US Midwest. PLoS ONE 2013, 8, 11. [Google Scholar] [CrossRef]
- Wilson, G.L.; Dalzell, B.J.; Mulla, D.J.; Dogwiler, T.; Porter, P.M. Estimating water quality effects of conservation practices and grazing land use scenarios. J. Soil Water Conserv. 2014, 69, 330–342. [Google Scholar] [CrossRef]
- Deng, L.; Shangguan, Z.P. Afforestation srives soil carbon and nitroget changes in China. Land Degrad. Dev. 2017, 28, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Li, X.D.; Zhang, D.Q.; Wang, H.F.; Shao, Y.H.; Fang, B.T.; Yue, J.Q.; Lu, F.R.; Ma, F.J.; Qin, F.; Yang, C. Evaluation of ecosystem services of wheat-maize cropping system under different farming modes in the rain-fed area of southern henan province. Chin. J. Ecol. 2015, 34, 1270–1276. (In Chinese) [Google Scholar]
- Qin, L.Y.; Bai, X.Y.; Wang, S.J.; Zhou, D.Q.; Li, Y.; Peng, T.; Tian, Y.C.; Luo, G.J. Major problems and solutions on surface water resource utilisation in karst mountainous areas. Agric. Manag. Water Qual. 2015, 159, 55–65. [Google Scholar] [CrossRef]
- Le, H.; Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 2016, 66, 340–351. [Google Scholar] [CrossRef]
- Pan, Y.; Xu, Z.R.; Wu, J.X. Spatial differences of the supply of multiple ecosystem services and the environmental and land use factors affecting them. Ecosyst. Serv. 2013, 5, E4–E10. [Google Scholar] [CrossRef]
- Montanaro, G.; Xiloyannis, C.; Nuzzo, V.; Dichio, B. Orchard management, soil organic carbon and ecosystem services in mediterranean fruit tree crops. Sci. Hortic. 2017, 217, 92–101. [Google Scholar] [CrossRef]
- Pantera, A.; Burgess, P.J.; Losada, R.M.; Moreno, G.; Lopez-Diaz, M.L.; Corroyer, N.; Mcadam, J.; Rosati, A.; Papadopoulos, A.M.; Graves, A.; et al. Agroforestry for high value tree systems in Europe. Agrofor. Syst. 2018, 92, 945–959. [Google Scholar] [CrossRef] [Green Version]
- Du, S.N.; Bai, G.S.; Yu, J. Soil properties and apricot growth under intercropping and mulching with erect milk vetch in the loess hilly-gully region. Plant Soil 2015, 390, 431–442. [Google Scholar] [CrossRef]
- Zhang, J.E.; Gao, A.X.; Xu, H.Q.; Luo, M.Z. Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrient contents. Pestic. Environ. Their Eff. Wildl. Proc. Adv. Study Inst. 2009, 20, 1597–1602. (In Chinese) [Google Scholar]
- Schulte, L.A.; Niemi, J.; Helmers, M.J.; Liebman, M.; Arbuckle, J.G.; James, D.E.; Kolka RKl O’Neal, M.E.; Tomer, M.D.; Tyndall, J.C.; Asbjornsen, H.; et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 11247–11252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nourbakhsh, F.; Koocheki, A.; Mahallati, M.N. Investigation of biodiversity and some of the ecosystem services in the intercropping of corn, soybean and marshmallow. Int. J. Plant Prod. 2019, 13, 35–46. [Google Scholar] [CrossRef]
- Ripoche, A.; Achard, R.; Laurens, A.; Tixier, P. Modeling spatial partitioning of light and nitrogen resources in banana cover-cropping systems. Eur. J. Agron. 2012, 41, 81–91. [Google Scholar] [CrossRef]
- Foti, M.C.; Rostas, M.; Peri, E.; Park, K.C.; Slimani, T.; Wratten, S.D.; Colazza, S. Chemical ecology meets conservation biological control: Identifying plant volatiles as predictors of floral resource suitability for an egg parasitoid of stink bugs. J. Pestic. Sci. 2017, 99, 299–310. [Google Scholar] [CrossRef]
- Machado, F.H.; Mattedi, A.P.; Dupas, F.A.; Silva, L.F.; Vergara, F.E. Estimating the opportunity costs of environmental conservation in the Feijão River watershed (São Carlos-SP, Brazil). Braz. J. Microbiol. 2016, 76, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Ripoche, A.; Celette, F.; Cinna, J.P.; Gary, C. Design of intercrop management plans to fulfil production and environmental objectives in vineyards. Eur. J. Agron. 2010, 32, 30–39. [Google Scholar] [CrossRef]
- Fu, B.; Yu, D. Trade-off analyses and synthetic integrated method of multiple ecosystem services. Resour. Sci. 2016, 38, 1–9. (In Chinese) [Google Scholar]
- Rapidel, B.; Ripoche, A.; Allinne, C.; Metay, A.; Deheuvels, O.; Lamanda, N.; Blazy, J.M.; Valdes-Gomez, H.; Gary, C. Analysis of ecosystem services trade-offs to design agroecosystems with perennial crops. Agron. Sustain. Dev. 2015, 35, 1373–1390. [Google Scholar] [CrossRef]
- Huang, C.H.; Yang, J.; Zhang, W.J. Development of ecosystem services evaluation models: Research progress. Chin. J. Ecol. 2013, 32, 3360–3367. (In Chinese) [Google Scholar]
- Butsic, V.; Shapero, M.; Moanga, D.; Larson, S. Using InVEST to assess ecosystem services on conserved properties in sonoma county, CAYY. Calif. Agric. 2017, 71, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.Y.; Guan, Q.S.; Wang, M.; Su, X.L.; Wu, G.J.; Chiang, P.C.; Cao, W.Z. Assessment of nitrogen reduction by constructed wetland based on InVEST: A case study of the Jiulong River watershed, China. Mar. Pollut. Bull. 2018, 133, 349–356. [Google Scholar] [CrossRef] [PubMed]
Type | Pre-Investment | Planting Area | Harvest Period |
---|---|---|---|
Corn | Almost none | 800 ha | July and August |
Marigold | Almost none | 330 ha | August and September |
Orange | The first two years require some fertilizer and labor input each year | 100 ha | January to April |
Peach | The first three years require some fertilizer and labor input each year | 3300 ha (700 ha fruiting) | July to November |
Pear | The first three years require some fertilizer and labor input each year | 3000 ha | July to November |
Apple | The first three years require some fertilizer and labor input each year | 2200 ha | July to November |
Pomegranate | The first four years require some input of fertilizer and labor each year | 3400 ha | July to November |
Type | Function | Evaluation Method | Formula |
---|---|---|---|
Provisioning Services | Provide fruit/flowers | Market price method | Yield of fruit/flowers (kg) × market price (yuan/kg) |
Regulating Services | Reduce topsoil loss | Opportunity cost method | The area of equivalent reserved land (ha) × normal income per unit area (yuan/yuan) |
Soil fertility maintenance | Shadow price method | The amount of nutrient loss (kg) × market price of fertilizer (yuan/kg) | |
Photosynthetic carbon fixation | Shadow price method | The fixed amount of carbon dioxide (kg) × carbon tax (yuan) | |
Supporting Services | Photosynthetic oxygen release | Shadow price method | The amount of oxygen released (m3) × unit cost of industrial oxygen production (yuan/m3) |
Nutrient retention | Shadow price method | Equivalent retention of N, P and K fertilizer (kg) × market price of fertilizer (yuan/kg) | |
Cultural Services | Education | Replacement cost method | Estimate the replacement cost according to the equivalent education level of training (Supplementary File 1) |
RES | Corn | Marigold | Orange | Pear | Peach | Apple | Pomegranate |
---|---|---|---|---|---|---|---|
Provisioning | 0.021 | 0.052 | 0.025 | 0.144 | 0.038 | 0.169 | 0.955 |
Regulating | 0.052 | 0.230 | 0.587 | 0.576 | 0.881 | 0.872 | 0.508 |
Supporting | 0.154 | 0.141 | 0.473 | 0.586 | 0.846 | 0.811 | 0.678 |
Cultural | 0.252 | 0.504 | 0.607 | 0.607 | 0.607 | 0.814 | 0.814 |
Index | Corn | Marigold | Orange | Pear | Peach | Apple | Pomegranate | Peach+ | Apple+ | Pomegranate+ |
---|---|---|---|---|---|---|---|---|---|---|
TES | 0.480 | 0.927 | 1.693 | 1.913 | 2.372 | 2.666 | 2.954 | 2.394 | 2.622 | 3.225 |
EMF | 0.120 | 0.206 | 0.461 | 0.523 | 0.707 | 0.737 | 0.688 | 0.693 | 0.715 | 0.756 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Z.; Zeng, F.; Wang, K.; Zeng, Z.; Tang, H.; Zhang, H. Evaluation and Tradeoff Analysis of Ecosystem Service for Typical Land-Use Patterns in the Karst Region of Southwest China. Forests 2020, 11, 451. https://doi.org/10.3390/f11040451
Zou Z, Zeng F, Wang K, Zeng Z, Tang H, Zhang H. Evaluation and Tradeoff Analysis of Ecosystem Service for Typical Land-Use Patterns in the Karst Region of Southwest China. Forests. 2020; 11(4):451. https://doi.org/10.3390/f11040451
Chicago/Turabian StyleZou, Zhigang, Fuping Zeng, Kelin Wang, Zhaoxia Zeng, Hui Tang, and Hao Zhang. 2020. "Evaluation and Tradeoff Analysis of Ecosystem Service for Typical Land-Use Patterns in the Karst Region of Southwest China" Forests 11, no. 4: 451. https://doi.org/10.3390/f11040451
APA StyleZou, Z., Zeng, F., Wang, K., Zeng, Z., Tang, H., & Zhang, H. (2020). Evaluation and Tradeoff Analysis of Ecosystem Service for Typical Land-Use Patterns in the Karst Region of Southwest China. Forests, 11(4), 451. https://doi.org/10.3390/f11040451