Residual Agroforestry Biomass–Thermochemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Higher Heating Value (HHV)
2.3. Elemental Analysis (C/H/O/N/S) and Ashes
2.4. Other Elements
2.5. Statistic Analysis
- n.s.: not significant (p > 0.05)
- *: significant (p < 0.05)
- **: very significant (p < 0.01)
- ****: highly significant (p < 0.001)
3. Results and Discussion
3.1. Higher Heating Value, Elemental Analysis and Ashes
3.1.1. Higher Heating Value
3.1.2. Elemental Analysis (CHONS) and Ashes
3.2. Elements–Chemical Analysis
3.2.1. Mineral Nutrients—Na, K, Ca, Mg, and P
3.2.2. Trace Elements—Mn, Fe Zn, Ni, Cu, Cr, and Cd
3.2.3. Halogen Elements—F and Cl
3.3. Multiple Regression Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Specie | Statistics | HHV | C | H | O | N | S | Ashes |
---|---|---|---|---|---|---|---|---|
(MJ kg−1) | (%) | |||||||
Agricultural wastes | ||||||||
Olea europaea | Min | 21.02 | 49.39 | 7.11 | 37.66 | 1.16 | 0.1124 | 3.9 |
Max | 21.15 | 49.88 | 7.26 | 38.20 | 1.25 | 0.1217 | 4.1 | |
Median | 21.10 | 49.47 | 7.19 | 37.88 | 1.21 | 0.1140 | 4.0 | |
Prunus dulcis | Min | 18.12 | 44.01 | 6.12 | 41.39 | 1.09 | 0.0679 | 6.7 |
Max | 18.27 | 44.31 | 6.17 | 41.77 | 1.21 | 0.0692 | 6.9 | |
Median | 18.26 | 44.25 | 6.14 | 41.75 | 1.18 | 0.0682 | 6.8 | |
Vitis vinifera (Sabor) | Min | 17.12 | 42.24 | 6.09 | 42.70 | 0.91 | 0.0684 | 7.1 |
Max | 17.63 | 42.87 | 6.16 | 43.50 | 1.10 | 0.0704 | 7.3 | |
Median | 17.13 | 42.73 | 6.13 | 42.90 | 0.96 | 0.0685 | 7.1 | |
Vitis vinifera (Ave) | Min | 17.37 | 44.00 | 6.20 | 41.77 | 0.87 | 0.0861 | 6.7 |
Max | 17.40 | 44.08 | 6.35 | 42.00 | 0.97 | 0.0890 | 6.8 | |
Median | 17.40 | 44.06 | 6.28 | 41.94 | 0.91 | 0.0884 | 6.8 | |
Forest wastes | ||||||||
Eucalyptus globulus (residues) | Min | 19.63 | 48.53 | 6.47 | 37.09 | 0.99 | 0.0796 | 6.1 |
Max | 19.73 | 48.97 | 6.65 | 37.65 | 1.08 | 0.0863 | 6.2 | |
Median | 19.64 | 48.61 | 6.57 | 37.64 | 1.00 | 0.0844 | 6.2 | |
Pinus pinaster (residues) | Min | 19.42 | 48.52 | 6.88 | 39.79 | 1.18 | 0.0890 | 3.2 |
Max | 19.50 | 48.83 | 6.91 | 40.07 | 1.29 | 0.0942 | 3.2 | |
Median | 19.43 | 48.62 | 6.89 | 39.91 | 1.24 | 0.0936 | 3.2 | |
Eucalyptus globulus (wood) | Min | 17.31 | 45.78 | 5.81 | 47.46 | 0.19 | 0.0180 | 0.5 |
Max | 17.94 | 46.37 | 6.05 | 48.08 | 0.23 | 0.0210 | 0.6 | |
Median | 17.56 | 46.25 | 5.84 | 47.84 | 0.21 | 0.0200 | 0.5 | |
Pinus pinaster (wood) | Min | 19.73 | 47.75 | 6.09 | 45.08 | 0.10 | 0 | 0.1 |
Max | 20.46 | 48.33 | 6.38 | 45.66 | 0.13 | 0 | 0.2 | |
Median | 20.26 | 48.22 | 6.15 | 45.46 | 0.11 | 0 | 0.2 | |
Shrubs | ||||||||
Pterospartum tridentatum | Min | 20.65 | 50.24 | 6.31 | 40.67 | 1.02 | 0.0576 | 1.0 |
Max | 21.24 | 50.70 | 6.57 | 41.38 | 1.13 | 0.0598 | 1.0 | |
Median | 20.71 | 50.31 | 6.47 | 40.98 | 1.09 | 0.0578 | 1.0 | |
Erica sp. | Min | 20.70 | 48.58 | 5.81 | 42.92 | 0.47 | 0.0650 | 1.3 |
Max | 21.24 | 48.88 | 6.34 | 43.63 | 0.56 | 0.0694 | 1.4 | |
Median | 20.91 | 48.78 | 6.01 | 43.43 | 0.52 | 0.0667 | 1.3 | |
Erica arborea | Min | 21.14 | 49.45 | 6.40 | 41.17 | 0.70 | 0.0682 | 1.7 |
Max | 21.61 | 49.83 | 6.49 | 41.50 | 0.74 | 0.0834 | 1.8 | |
Median | 21.30 | 49.81 | 6.45 | 41.19 | 0.72 | 0.0820 | 1.8 | |
Cytisus sp. | Min | 19.95 | 46.16 | 6.19 | 44.54 | 0.80 | 0.0416 | 1.3 |
Max | 20.65 | 46.78 | 6.26 | 45.52 | 1.12 | 0.0435 | 1.3 | |
Median | 20.01 | 46.47 | 6.21 | 45.08 | 0.91 | 0.0420 | 1.3 | |
Ulex europaeus | Min | 19.12 | 46.82 | 6.37 | 43.54 | 1.02 | 0.0582 | 1.6 |
Max | 19.82 | 47.03 | 6.61 | 44.16 | 1.18 | 0.0655 | 1.6 | |
Median | 19.30 | 47.01 | 6.48 | 43.71 | 1.12 | 0.0613 | 1.6 | |
Hakea sericea | Min | 19.98 | 47.32 | 6.23 | 43.57 | 0.28 | 0.0462 | 1.5 |
Max | 20.62 | 47.96 | 6.47 | 44.58 | 0.45 | 0.0495 | 1.5 | |
Median | 20.19 | 47.39 | 6.33 | 44.43 | 0.31 | 0.0487 | 1.5 |
Appendix B
Groups | Statistic | HHV | C | H | O | N | S | Ashes |
---|---|---|---|---|---|---|---|---|
(MJ kg−1) | (%) | |||||||
Agricultural wastes | Min | 17.12 | 42.24 | 6.09 | 37.66 | 0.87 | 0.07 | 3.9 |
Max | 21.15 | 49.88 | 7.26 | 43.50 | 1.25 | 0.12 | 7.3 | |
Median | 17.88 | 44.07 | 6.19 | 41.77 | 1.10 | 0.08 | 6.8 | |
Forest wastes | Min | 17.31 | 45.78 | 5.81 | 37.09 | 0.10 | 0 | 0.1 |
Max | 20.46 | 48.97 | 6.91 | 48.08 | 1.29 | 0.09 | 6.2 | |
Median | 19.57 | 48.43 | 6.43 | 42.58 | 0.61 | 0.05 | 1.9 | |
Shrubs | Min | 19.12 | 46.16 | 5.81 | 40.67 | 0.28 | 0.04 | 1.0 |
Max | 21.61 | 50.70 | 6.61 | 45.52 | 1.18 | 0.08 | 1.8 | |
Median | 20.65 | 48.27 | 6.36 | 43.56 | 0.77 | 0.06 | 1.4 |
Appendix C
Species | Elements (mg Kg−1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Statistics | Na | K | Ca | Mg | P | Mn | Fe | Zn | Ni | Cr | Cd | Cu | F | Cl | |
Agricultural wastes | |||||||||||||||
Olea europaea | Min | 206.42 | 4945.05 | 2061.49 | 1018.31 | 401.49 | 12.30 | 16.60 | 15.54 | 290.64 | 143.63 | 0 | 26.91 | 1.26 | 26.72 |
Max | 227.47 | 6019.80 | 2392.83 | 1118.92 | 434.70 | 13.97 | 20.99 | 20.45 | 337.08 | 173.95 | 0 | 31.14 | 1.29 | 33.49 | |
Median | 217.20 | 5794.10 | 2193.72 | 1111.43 | 423.78 | 13.38 | 19.12 | 17.80 | 313.11 | 158.14 | 0 | 30.35 | 1.27 | 30.91 | |
Prunus dulcis | Min | 345.53 | 4668.62 | 6225.67 | 1886.06 | 236.71 | 25.21 | 13.01 | 5.99 | 387.50 | 79.81 | 0 | 11.45 | 1.42 | 47.12 |
Max | 369.21 | 5539.02 | 6560.57 | 2103.10 | 241.10 | 26.52 | 15.40 | 12.18 | 417.98 | 114.09 | 0 | 17.06 | 1.45 | 50.52 | |
Median | 363.94 | 4966.18 | 6524.33 | 2101.37 | 239.83 | 25.81 | 13.53 | 11.14 | 395.51 | 107.17 | 0 | 13.81 | 1.42 | 47.32 | |
Vitis vinifera (Sabor) | Min | 228.51 | 7071.60 | 5127.58 | 2424.92 | 394.08 | 32.26 | 5.96 | 0.00 | 409.78 | 1.46 | 0 | 5.82 | 1.24 | 12.60 |
Max | 239.61 | 8368.79 | 5927.01 | 2436.07 | 424.65 | 44.15 | 7.79 | 0.00 | 512.59 | 2.50 | 0 | 7.51 | 1.26 | 17.74 | |
Median | 231.76 | 8103.70 | 5469.18 | 2432.41 | 409.75 | 39.80 | 6.08 | 0.00 | 447.94 | 1.49 | 0 | 6.59 | 1.24 | 15.17 | |
Vitis vinifera (Ave) | Min | 252.39 | 6741.34 | 4583.02 | 1706.43 | 412.87 | 35.62 | 14.80 | 15.54 | 113.80 | 1.18 | 0 | 126.13 | 3.82 | 7.59 |
Max | 266.41 | 7309.49 | 5379.46 | 1803.73 | 437.04 | 39.42 | 17.26 | 23.81 | 170.79 | 3.86 | 0 | 145.36 | 3.87 | 10.51 | |
Median | 258.60 | 6965.76 | 5364.01 | 1773.93 | 415.73 | 36.46 | 15.40 | 18.42 | 148.31 | 2.55 | 0 | 138.27 | 3.86 | 9.20 | |
Forest wastes | |||||||||||||||
Eucalyptus globulus (residues) | Min | 1423.51 | 2081.05 | 6922.55 | 634.72 | 253.86 | 115.75 | 0 | 10.88 | 49.94 | 0 | 0 | 4.27 | 6.71 | 18.09 |
Max | 1587.06 | 3150.08 | 6982.02 | 995.43 | 295.95 | 125.08 | 0 | 18.64 | 373.03 | 0 | 0 | 6.72 | 6.72 | 24.11 | |
Median | 1423.51 | 3087.00 | 6972.33 | 980.46 | 279.45 | 120.48 | 0 | 13.59 | 103.37 | 0 | 0 | 5.93 | 6.72 | 22.87 | |
Pinus pinaster (residues) | Min | 1569.92 | 4698.63 | 1565.10 | 1515.22 | 313.84 | 80.41 | 9.61 | 25.25 | 600.72 | 72.04 | 112.77 | 4.27 | 1.35 | 5.43 |
Max | 1703.12 | 5030.06 | 1895.06 | 1706.43 | 374.21 | 84.47 | 11.44 | 32.35 | 680.15 | 84.29 | 357.10 | 5.14 | 1.37 | 7.23 | |
Median | 1652.15 | 4822.09 | 1760.30 | 1625.28 | 366.88 | 83.80 | 9.81 | 31.27 | 622.75 | 73.08 | 138.49 | 4.27 | 1.36 | 7.11 | |
Eucalyptus globulus (wood) | Min | 19.09 | 3001.24 | 102.12 | 79.55 | 1220.30 | 31.25 | 48.36 | 68.31 | 0.29 | 0.53 | 0.01 | 0.37 | 0.82 | 10.66 |
Max | 19.96 | 3297.66 | 114.32 | 86.21 | 1359.10 | 33.53 | 56.48 | 91.56 | 0.35 | 0.71 | 0.02 | 0.50 | 0.99 | 12.85 | |
Median | 19.74 | 3019.05 | 105.53 | 85.03 | 1258.80 | 33.02 | 53.26 | 81.03 | 0.30 | 0.62 | 0.02 | 0.44 | 0.89 | 10.99 | |
Pinus pinaster (wood) | Min | 96.80 | 480.24 | 0.92 | 54.68 | 5.70 | 67.56 | 46.13 | 25.11 | 1.35 | 0.41 | 0 | 0.26 | 0.85 | 19.88 |
Max | 101.70 | 511.35 | 1.11 | 61.35 | 6.20 | 75.15 | 54.11 | 35.04 | 1.71 | 0.52 | 0 | 0.30 | 0.95 | 25.99 | |
Median | 97.60 | 485.01 | 0.97 | 55.87 | 5.80 | 72.69 | 47.69 | 31.06 | 1.55 | 0.42 | 0 | 0.30 | 0.90 | 22.23 | |
Shrubs | |||||||||||||||
Pterospartum tridentatum | Min | 250.65 | 980.93 | 2010.35 | 548.95 | 9.81 | 2568.99 | 464.20 | 37.59 | 0 | 1.44 | 0.06 | 5.50 | 1.24 | 2651.20 |
Max | 266.23 | 1045.92 | 2229.31 | 594.51 | 10.78 | 2814.34 | 544.01 | 49.95 | 0 | 1.93 | 0.09 | 7.91 | 1.64 | 3041.40 | |
Median | 251.81 | 1010.68 | 2067.25 | 584.91 | 10.31 | 2695.65 | 501.10 | 39.36 | 0 | 1.67 | 0.07 | 6.54 | 1.63 | 2836.50 | |
Erica sp. | Min | 790.21 | 1138.13 | 1463.03 | 701.38 | 147.77 | 3445.20 | 749.81 | 46.26 | 0 | 1.12 | 0.04 | 8.12 | 5.16 | 33.34 |
Max | 831.35 | 1297.18 | 1594.63 | 728.39 | 157.80 | 3706.30 | 870.11 | 60.35 | 0 | 1.59 | 0.05 | 9.73 | 6.91 | 39.04 | |
Median | 809.67 | 1204.28 | 1520.70 | 702.29 | 151.32 | 3540.61 | 790.28 | 52.99 | 0 | 1.35 | 0.05 | 9.70 | 5.96 | 38.02 | |
Erica arborea | Min | 451.28 | 2698.34 | 2830.04 | 1461.02 | 114.04 | 600.25 | 131.41 | 12.03 | 0 | 4.55 | 0.02 | 7.10 | 2.46 | 34.04 |
Max | 479.36 | 2981.24 | 3098.38 | 1536.72 | 121.21 | 670.55 | 153.24 | 19.05 | 0 | 5.93 | 0.04 | 8.46 | 2.99 | 43.33 | |
Median | 458.69 | 2793.31 | 2881.65 | 1511.33 | 114.56 | 625.25 | 151.56 | 15.12 | 0 | 5.22 | 0.03 | 8.33 | 2.65 | 37.24 | |
Cytisus sp. | Min | 599.64 | 5300.25 | 3341.95 | 1368.04 | 450.24 | 3700.98 | 156.35 | 69.19 | 0 | 0.23 | 0.11 | 5.61 | 17.42 | 290.25 |
Max | 621.33 | 5658.68 | 3686.89 | 1446.11 | 498.64 | 3930.13 | 195.69 | 88.31 | 0 | 0.30 | 0.15 | 7.13 | 20.46 | 388.62 | |
Median | 601.24 | 5488.28 | 3508.35 | 1396.05 | 477.02 | 3801.95 | 171.76 | 75.31 | 0 | 0.28 | 0.11 | 6.38 | 20.03 | 379.21 | |
Ulex europaeus | Min | 2065.31 | 3400.02 | 3329.98 | 905.94 | 59.46 | 3799.04 | 144.96 | 38.59 | 0 | 1.22 | 0.05 | 8.03 | 2.18 | 224.51 |
Max | 2202.43 | 3681.86 | 3755.89 | 956.86 | 64.81 | 4010.32 | 175.32 | 47.81 | 0 | 1.71 | 0.08 | 10.77 | 2.63 | 332.30 | |
Median | 2130.64 | 3524.61 | 3599.49 | 947.87 | 60.24 | 3914.65 | 164.51 | 39.32 | 0 | 1.48 | 0.07 | 10.52 | 2.38 | 275.10 | |
Hakea sericea | Min | 1915.35 | 1002.02 | 2171.61 | 1079.32 | 24.01 | 3546.18 | 801.18 | 58.26 | 0 | 0.45 | 0.05 | 2.86 | 2.49 | 90.32 |
Max | 1937.31 | 1105.19 | 2447.90 | 1171.16 | 25.80 | 3805.31 | 870.14 | 69.62 | 0 | 0.68 | 0.08 | 3.67 | 3.11 | 109.36 | |
Median | 1916.61 | 1044.89 | 2315.60 | 1123.61 | 25.78 | 3553.45 | 859.15 | 62.31 | 0 | 0.55 | 0.07 | 3.26 | 3.10 | 107.21 |
Appendix D
Groups | Statistic | Elements (mg Kg−1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na | K | Ca | Mg | P | Mn | Fe | Zn | Ni | Cr | Cd | Cu | F | Cl | ||
Agricultural wastes | Min | 206.42 | 4668.62 | 2061.49 | 1018.31 | 236.71 | 12.30 | 5.96 | 0 | 113.80 | 1.18 | 0 | 5.82 | 1.24 | 7.59 |
Max | 369.21 | 8368.79 | 6560.57 | 2436.07 | 437.04 | 44.15 | 20.99 | 23.81 | 512.59 | 173.95 | 0 | 145.36 | 3.87 | 50.52 | |
Median | 246.00 | 6380.57 | 5371.73 | 1844.89 | 411.31 | 29.39 | 15.10 | 13.86 | 362.29 | 41.83 | 0 | 21.98 | 1.35 | 22.23 | |
Forest wastes | Min | 19.09 | 480.24 | 0.92 | 54.68 | 5.70 | 31.25 | 0 | 10.88 | 0.29 | 0 | 0 | 0.26 | 0.82 | 5.43 |
Max | 1703.12 | 5030.06 | 6982.02 | 1706.43 | 1359.10 | 125.08 | 56.48 | 91.56 | 680.15 | 84.29 | 357.10 | 6.72 | 6.72 | 25.99 | |
Median | 762.60 | 3053.02 | 839.71 | 360.46 | 304.89 | 77.78 | 28.78 | 31.16 | 25.82 | 0.52 | 0.01 | 2.38 | 1.17 | 15.47 | |
Shrubs | Min | 250.65 | 980.93 | 1463.03 | 548.95 | 9.81 | 600.25 | 131.41 | 12.03 | 0 | 0.23 | 0.02 | 2.86 | 1.24 | 33.34 |
Max | 2202.43 | 5658.68 | 3755.89 | 1536.72 | 498.64 | 4010.32 | 870.14 | 88.31 | 0 | 5.93 | 0.15 | 10.77 | 20.46 | 3041.44 | |
Median | 705.77 | 1997.76 | 2638.97 | 1018.09 | 89.42 | 3549.81 | 329.94 | 48.88 | 0 | 1.39 | 0.06 | 7.52 | 2.82 | 166.93 |
References
- ICNF. Áreas dos usos do solo e das espécies florestais de Portugal continental 1995–2005–2010. Result. Prelim. 2013. [Google Scholar] [CrossRef]
- Wild, P.J.; den Uil, H.; Reith, J.H.; Kiel, J.H.A.; Heeres, H.J. Biomass valorisation by staged degasification. A new pyrolysis-based thermochemical conversion option to produce value-added chemicals from lignocellulosic biomass. J. Anal. Appl. Pyrolysis 2009, 85, 124–133. [Google Scholar]
- Evangelou, M.W.H.; Conesa, H.M.; Robinson, B.H.; Schulin, R. Biomass Production on Trace Element—Contaminated Land: A Review. Environ. Eng. Sci. 2012, 29, 823–839. [Google Scholar] [CrossRef]
- Qian, Y.; Zuo, C.; Tan, J.; He, J. Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass. Energy 2007, 32, 196–202. [Google Scholar] [CrossRef]
- Viana, H.; Rodrigues, A.; Lopes, D.M.M.; Godina, R.; Nunes, L.J.R.; Matias, J.C.O. Pinus Pinaster and Eucalyptus Globulus Energetic Properties and Ash Characterization. In Proceedings of the IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–4. [Google Scholar]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Liao, C.; Wu, C.; Yan, Y.; Huang, H. Chemical elemental characteristics of biomass fuels in China. Biomass Bioenergy 2004, 27, 119–130. [Google Scholar]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 2013, 105, 40–76. [Google Scholar] [CrossRef]
- Clarke, S.; Preto, F. Biomass Burn Characteristics; Ministry of Agriculture, Food and Rural Affairs: Guelph, ON, Canada, 2011; Volume 6.
- Zając, G.; Szyszlak-Bargłowicz, J.; Szczepanik, M. Influence of Biomass Incineration Temperature on the Content of Selected Heavy Metals in the Ash Used for Fertilizing Purposes. Appl. Sci. 2019, 9, 1790. [Google Scholar] [CrossRef]
- Demirbaş, A. Relationships between lignin contents and heating values of biomass. Energy Convers. Manag. 2001, 42, 183–188. [Google Scholar] [CrossRef]
- Friedl, A.; Padouvas, E.; Rotter, H.; Varmuza, K. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 2005, 544, 191–198. [Google Scholar] [CrossRef]
- Nhuchhen, D.R.; Abdul Salam, P. Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel 2012, 99, 55–63. [Google Scholar] [CrossRef]
- Dyjakon, A. Harvesting and baling of pruned biomass in apple orchards for energy production. Energies 2018, 11, 1680. [Google Scholar] [CrossRef]
- Protásio, T.P.; Bufalino, L.; Tonoli, G.H.D.; Couto, A.M.; Trugilho, P.F.; Guimarães Júnior, M. Relação entre o poder calorífico superior e os componentes elementares e minerais da biomassa vegetal. Pesqui. Florest. Bras. 2011, 31, 113–122. [Google Scholar] [CrossRef]
- Parikh, J.; Channiwala, S.A.; Ghosal, G.K. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 2005, 84, 487–494. [Google Scholar] [CrossRef]
- Sheng, C.; Azevedo, J.L.T. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 2005, 28, 499–507. [Google Scholar] [CrossRef]
- Jenkins, M.B.; Bexter, L.L.; Miles, R.T., Jr.; Miles, R.T. Combustion Properties of Biomass Flash. Fuel Process. Technol. 1998, 54, 17–46. [Google Scholar] [CrossRef]
- Tillman, D.A. Wood as an Energy Resource; Elsevier Science: Amsterdam, The Netherlands, 2012; ISBN 9780323158558. [Google Scholar]
- Jenkins, B.M.; Ebeling, J.M. Thermochemical properties of biomass fuels. Calif. Agric. 1985, 39, 14–16. [Google Scholar]
- Demirbas, A. Calculation of higher heating values of biomass fuels. Fuel 1997, 76, 431–437. [Google Scholar] [CrossRef]
- Sokhansanj, S. The Effect of Moisture on Heating Values. In Biomass Energy Data B, 4th ed.; U.S.Department of Energy, Oak Ridge National Laboratory: Oak Ridge, TN, USA; ORNL/TM-2011/446; 2011; pp. 204–208. [Google Scholar]
- Acar, S.; Ayanoglu, A.; Demirbas, A. Determination of Higher Heating Values (Hhvs) of Biomass Fuels. Fuels Combust. Eng. J. 2011, 119, 14–16. [Google Scholar]
- Moka, V.K. Estimation of Calorific Value of Biomass from Its Elementary Components by Regression; Department of Mechanical Engineering National Institute of Technology Odisha: Rourkela, India, 2012. [Google Scholar]
- Nhuchhen, D.; Afzal, M. HHV Predicting Correlations for Torrefied Biomass Using Proximate and Ultimate Analyses. Bioengineering 2017, 4, 7. [Google Scholar] [CrossRef]
- Alves, O.; Gonçalves, M.; Brito, P.; Monteiro, E. Modelling higher heating value of different separated fractions from municipal and construction and demolition wastes. In Proceedings of the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Guimarães, Portugal, 17–22 June 2018. [Google Scholar]
- European Parliament and Council of the European Union Directive 2000/76/EC on the Incineration of Waste; Official Journal of the European Cominities: Bruxells, Belgium, 2000; Volume 332, p. 91.
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany, 1989. [Google Scholar]
- Solid Biofuels—Method for the Determination of Ash Content; DD CEN/TS 14775; European Committee for Standardization: Bruxells, Belgium, 2004.
- Telmo, C.; Lousada, J.; Moreira, N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresour. Technol. 2010, 101, 3808–3815. [Google Scholar] [CrossRef] [PubMed]
- Gouvinhas, I.; Domínguez-perles, R.; Machado, N.; Carvalho, T.; Matos, C.; Barros, A.I.R.N.A. Effect of Agro-Environmental Factors on the Mineral Content of Olive Oils: Categorization of the Three Major Portuguese Cultivars. J. Am. Oil Chem. Soc. 2016, 93, 813–822. [Google Scholar] [CrossRef]
- Rodriguez Anon, J.A.; Fraga Lopez, F.; Proupin Castineiras, J.; Palacios Ledo, J.; Nunez Regueira, L. Calorific values and flammability for forest wastes during the seasons of the year. Bioresour. Technol. 1995, 52, 269–274. [Google Scholar] [CrossRef]
- Torres, L. Caracterização da Biomassa Florestal de Interesse Energético Existente no sul da Galiza e Norte de Portugal; University of Vigo: Vigo, Spain, 2013. [Google Scholar]
- Álvarez-Álvarez, P.; Pizarro, C.; Barrio-Anta, M.; Cámara-Obregón, A.; María Bueno, J.L.; Álvarez, A.; Gutiérrez, I.; Burslem, D.F.R.P. Evaluation of tree species for biomass energy production in Northwest Spain. Forests 2018, 9, 160. [Google Scholar] [CrossRef]
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Characterization of Spanish biomass wastes for energy use. Bioresour. Technol. 2012, 103, 249–258. [Google Scholar] [CrossRef]
- Borja Velázquez-Martí, I.L.-C.; And, D.S.-H.; Callejón-Ferre, Á.J. Modeling the Calorific Value of Biomass from Fruit Trees Using Elemental Analysis Data; Intech: London, UK, 2018; p. 64. [Google Scholar] [CrossRef]
- Nasser, R.A.; Salem, M.Z.M.; Al-Mefarrej, H.A.; Abdel-Aal, M.A.; Soliman, S.S. Fuel characteristics of vine prunings (Vitis vinifera L.) as a potential source for energy production. BioResources 2014, 9, 482–496. [Google Scholar] [CrossRef]
- Marco Puglia, S.P.; Giulio, A.; Nicolò, M.; Paolo Tartarini, P.T. Vine prunings biomass as fuel in wood stoves for thermal power production. Int. J. Heat Technol. 2017, 35, S96–S101. [Google Scholar] [CrossRef]
- Solid Biofuels—Fuel Specifications and Classes; CEN/TS 14961; European Committee for Standardization: Bruxells, Belgium, 2005.
- Lapuerta, M.; Hernández, J.J.; Pazo, A.; López, J. Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions. Fuel Process. Technol. 2008, 89, 828–837. [Google Scholar] [CrossRef]
- Yin, C.Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 2011, 90, 1128–1132. [Google Scholar] [CrossRef]
- Buckley, T.J.; Domalski, E.S. Evaluation of Data on Higher Heating Refuse-Derived Fuels. In Proceedings of the National Waste Processing Conference, New York, NY, USA, 1–4 May 1988. [Google Scholar]
- Grigiante, M.; Brighenti, M.; Antolini, D. A generalized activation energy equation for torrefaction of hardwood biomasses based on isoconversional methods. Renew. Energy 2016, 99, 1318–1326. [Google Scholar] [CrossRef]
- Adamovics, A.; Platace, R.; Gulbe, I.; Ivanovs, S. The content of carbon and hydrogen in grass biomass and its influence on heating value. Eng. Rural Dev. 2018, 17, 1277–1281. [Google Scholar]
- Khan, A.A.; de Jong, W.; Jansens, P.J.; Spliethoff, H. Biomass combustion in fluidized bed boilers: Potential problems and remedies. Fuel Process. Technol. 2009, 90, 21–50. [Google Scholar] [CrossRef]
- Caillat, S.; Vakkilainen, E. Large-Scale Biomass Combustion Plants: An Overview; Woodhead Publishing Limited: Sawston, UK, 2013; ISBN 9780857091314. [Google Scholar]
- Librenti, I.; Ceotto, E.; Candilo, M.D. Biomass characteristics and energy contents of dedicated lignocellulosic crops. In Proceedings of the Third International Symposium of Energy from Biomass and Waste, Venice, Italy, 8–11 November 2010. [Google Scholar]
- Mandø, M. Direct Combustion of Biomass; Woodhead Publishing Limited: Sawston, UK, 2013; ISBN 9780857091314. [Google Scholar]
- Troy, M. Runge Economic and Environmental Impact of Biomass Types for Bioenergy Power Plants. In Environmental and Economic Research and Development Program of Wisconsin’s Focus on Energy; Final Report August; Focus on Energy: Madison, WI, USA, 2013. [Google Scholar]
- Franco, C.; Pinto, F.; Gulyurtlu, I.; Cabrita, I. The study of reactions influencing the biomass steam gasification process. Fuel 2003, 82, 835–842. [Google Scholar] [CrossRef]
- Royo, J.; Canalís, P.; Quintana, D.; Díaz-Ramírez, M.; Sin, A.; Rezeau, A. Experimental study on the ash behaviour in combustion of pelletized residual agricultural biomass. Fuel 2019, 239, 991–1000. [Google Scholar] [CrossRef]
- Johansen, J.M.; Aho, M.; Paakkinen, K.; Taipale, R.; Egsgaard, H.; Jakobsen, J.G.; Frandsen, F.J.; Glarborg, P. Release of K, Cl, and S during combustion and co-combustion with wood of high-chlorine biomass in bench and pilot scale fuel beds. Proc. Combust. Inst. 2013, 34, 2363–2372. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Trace element accumulation in the moss Hypnum cupressiforme Hedw. and the trees Quercus ilex L. and Pinus halepensis Mill. in Catalonia. Chemosphere 2005, 60, 1293–1307. [Google Scholar] [CrossRef]
- Riedl, R.; Dahl, J.; Obernberger, I.; Narodoslawsky, M. Corrosion in fire tube boilers of biomass combustion plants Corrosion in fire tube boilers of biomass combustion plants. In Proceedings of the China International Corrosion Control Conference ‘99, Beijing, China, 9 October 1999; pp. 2–6. [Google Scholar]
- Kaczmarczyk, R.; Mlonka-mędrala, A. Chloride corrosion in biomass-fired boilers—Fe-O-Cl system thermodynamic analysis. EDP Sci. 2016, 10, 60. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, H.P.; Frandsen, F.J.; Dam-Johansen, K.; Baxter, L.L. Implications of chlorine-associated corrosion on the operation of biomass-fired boilers. Prog. Energy Combust. Sci. 2000, 26, 283–298. [Google Scholar] [CrossRef]
- Aho, M.; Ferrer, E. Importance of coal ash composition in protecting the boiler against chlorine deposition during combustion of chlorine-rich biomass. Fuel 2005, 84, 201–212. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Matias, J.C.O.; Catalão, J.P.S. Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renew. Sustain. Energy Rev. 2016, 53, 235–242. [Google Scholar] [CrossRef]
- Baxter, L.L.; Miles, T.R.; Miles, T.R.; Jenkins, B.M.; Milne, T.; Dayton, D.; Bryers, R.W.; Oden, L.L. The behavior of inorganic material in biomass-fired power boilers: Field and laboratory experiences. Fuel Process. Technol. 1998, 54, 47–78. [Google Scholar] [CrossRef]
- Livingston, W.R. Biomass Ash Characteristics and Behaviour in Combustion, Gasification and Pyrolysis Systems; Doosen Babcock Energy: Crawley, UK, 2013; Volume 20. [Google Scholar]
Ave River Basin (139,000 ha) | Sabor River Basin (241,000 ha) | |
---|---|---|
Agricultural wastes | 0.24 | 1.07 |
Forest wastes | 2.88 | 2.26 |
Shrubs | 1.3 | 1.91 |
Type of Biomass | Statistics | HHV (MJ kg−1) | C (%) | H (%) | O (%) | N (%) | S (%) | Ashes (%) |
---|---|---|---|---|---|---|---|---|
Agricultural wastes | ||||||||
Olea europaea | Mean | 21.1 c | 49.6 c | 7.2 c | 37.9 a | 1.2 b | 0.12 c | 4.0 a |
SD | 0.05 | 0.2 | 0.06 | 0.2 | 0.04 | 0.004 | 0.08 | |
Prunus dulcis | Mean | 18.2 b | 44.2 a | 6.1 a | 41.6 b | 1.2 b | 0.07 a | 6.8 b |
SD | 0.07 | 0.1 | 0.02 | 0.2 | 0.05 | 0.001 | 0.08 | |
Vitis vinifera (Sabor) | Mean | 17.3 a | 42.6 a | 6.1 a | 43.0 c | 1.0 a | 0.07 a | 7.2 c |
SD | 0.2 | 0.3 | 0.03 | 0.3 | 0.08 | 0.001 | 0.09 | |
Vitis vinifera (Ave) | Mean | 17.4 a | 44.1 b | 6.3 b | 41.9 b | 0.9 a | 0.09 b | 6.8 b |
SD | 0.02 | 0.03 | 0.06 | 0.1 | 0.04 | 0.001 | 0.05 | |
Forest wastes | ||||||||
Eucalyptus globulus (residues) | Mean | 18.7 b | 48.7 c | 6.6 c | 37.5 a | 1.0 c | 0.08 c | 6.2 d |
SD | 0.04 | 0.2 | 0.07 | 0.3 | 0.04 | 0.003 | 0.05 | |
Pinus pinaster (residues) | MED | 19.5 b | 48.7 c | 6.9 d | 39.9 b | 1.2 d | 0.09 d | 3.2 c |
SD | 0.04 | 0.1 | 0.01 | 0.1 | 0.04 | 0.002 | 0.00 | |
Eucalyptus globulus (wood) | Mean | 17.6 a | 46.1 a | 5.9 a | 47.8 d | 0.2 b | 0.02 b | 0.5 b |
SD | 0.3 | 0.3 | 0.1 | 0.3 | 0.02 | 0.0001 | 0.03 | |
Pinus pinaster (wood) | Mean | 20.2 c | 48.1 b | 6.2 b | 45.4 c | 0.1 a | 0.00 a | 0.2 a |
SD | 0.3 | 0.3 | 0.1 | 0.2 | 0.01 | 0.000 | 0.03 | |
Shrubs | ||||||||
Pterospartum tridentatum | Mean | 20.9 c | 50.4 f | 6.5 b | 41.0 a | 1.1 d | 0.06 b | 1.0 a |
SD | 0.3 | 0.2 | 0.1 | 0.3 | 0.05 | 0.001 | 0.01 | |
Erica sp. | Mean | 20.9 c | 48.8 d | 6.1 a | 43.3 b | 0.5 b | 0.07 c | 1.3 b |
SD | 0.2 | 0.1 | 0.2 | 0.3 | 0.04 | 0.002 | 0.05 | |
Erica arborea | Mean | 21.4 c | 49.7 e | 6.5 b | 41.3 a | 0.7 c | 0.08 d | 1.8 e |
SD | 0.2 | 0.2 | 0.04 | 0.2 | 0.02 | 0.007 | 0.04 | |
Cytisus sp. | Mean | 20.2 b | 46.5 a | 6.2 a,b | 45.1 d | 0.9 d | 0.04 a | 1.3 b |
SD | 0.3 | 0.3 | 0.03 | 0.4 | 0.1 | 0.001 | 0.01 | |
Ulex europaeus | Mean | 19.4 a | 46.9 b | 6.5 b | 43.8 b,c | 1.1 d | 0.06 b,c | 1.6 d |
SD | 0.3 | 0.1 | 0.1 | 0.3 | 0.07 | 0.003 | 0.01 | |
Hakea sericea | Mean | 20.3 b | 47.6 c | 6.3 b | 44.2 c | 0.4 a | 0.05 a | 1.5 c |
SD | 0.3 | 0.3 | 0.1 | 0.4 | 0.07 | 0.001 | 0.01 |
Groups | n | HHV (MJ kg−1) | C (%) | H (%) | O (%) | N (%) | S (%) | Ashes (%) | |
---|---|---|---|---|---|---|---|---|---|
Agricultural wastes | Mean | 128 | 18.5 a | 45.1 a | 6.4 a | 41.1 a | 1.1 b | 0.08 b | 6.2 b |
SD | 1.6 | 2.8 | 0.5 | 2.0 | 0.1 | 0.02 | 1.3 | ||
Forest wastes | Mean | 128 | 19.2 a | 47.9 a | 6.4 a | 42.6 a | 0.7 a | 0.05 a | 2.5 a |
SD | 1.0 | 1.1 | 0.4 | 4.3 | 0.5 | 0.04 | 2.5 | ||
Shrubs | Mean | 192 | 20.5 b | 45.8 a | 6.3 a | 45.6 a | 0.8 a | 0.06 a | 1.4 a |
SD | 0.7 | 10.2 | 0.2 | 10.2 | 0.3 | 0.01 | 0.3 |
Elements (mg Kg−1) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type of Biomass | Statistics | Na | K | Ca | Mg | P | Mn | Fe | Zn | Ni | Cr | Cd | Cu | F | Cl |
Agricultural wastes | |||||||||||||||
Olea europaea | Mean | 217.0 a | 5586.3 a | 2216.0 a | 1082.9 a | 420.0 b | 13.2 a | 18.9 c | 17.9 c | 313.6 b | 158.6 c | 0.0 a | 29.5 b | 1.3 a | 30.4 c |
SD | 8.6 | 462.7 | 136.2 | 45.8 | 13.8 | 0.7 | 1.8 | 2.0 | 19.0 | 12.4 | 0.0 | 1.8 | 0.01 | 2.8 | |
Prunus dulcis | Mean | 359.6 c | 5057.9 a | 6436.9 c | 2030.2 c | 239.2 a | 25.9 b | 14.0 b | 9.8 b | 400.3 c | 100.4 b | 0.0 a | 14.1 a | 1.4 b | 48.3 d |
SD | 10.2 | 361.2 | 150.1 | 101.9 | 1.8 | 0.5 | 1.0 | 2.7 | 12.9 | 14.8 | 0.0 | 2.3 | 0.01 | 1.6 | |
Vitis vinifera (Sabor) | Mean | 233.3 a | 7848.0 b | 5507.9 b | 2431.1 d | 409.5 b | 38.7 c | 6.6 a | 0.0 a | 456.8 c | 1.8 a | 0.0 a | 6.6 a | 1.3 a | 15.25 b |
SD | 4.7 | 559.6 | 327.5 | 4.6 | 12.5 | 4.9 | 0.8 | 0.0 | 42.4 | 0.5 | 0.0 | 0.7 | 0.01 | 2.1 | |
Vitis vinifera (Ave) | Mean | 259.1 b | 7005.5 b | 5108.8 b | 1761.4 b | 421.9 b | 37.2 c | 15.8 b | 19.3 c | 144.3 a | 2.5 a | 0.0 a | 136.6 c | 3.9 c | 9.1 a |
SD | 5.7 | 233.7 | 371.9 | 40.7 | 10.8 | 1.6 | 1.1 | 3.4 | 23.4 | 1.1 | 0.0 | 7.9 | 0.02 | 1.2 | |
Forest wastes | |||||||||||||||
Eucalyptus globulus (residues) | Mean | 1478.0 b | 2772.7 b | 6959.0 c | 870.2 b | 276.4 b | 120.4 d | 0.0 a | 14.4 a | 175.5 b | 0.0 a | 0.0 a | 5.6 b | 6.7 c | 21.7 c |
SD | 77.1 | 489.8 | 26.1 | 166.6 | 17.3 | 3.8 | 0.0 | 3.2 | 141.4 | 0.0 | 0.0 | 1.0 | 0.005 | 2.6 | |
Pinus pinaster (residues) | Mean | 1641.7 c | 4850.3 c | 1740.2 b | 1615.6 c | 351.6 b | 82.9 c | 10.3 b | 29.6 b | 634.5 c | 76.5 b | 202.8 b | 4.6 b | 1.4 b | 6.6 a |
SD | 54.9 | 136.8 | 135.5 | 78.4 | 26.9 | 1.8 | 0.8 | 3.1 | 33.5 | 5.5 | 109.6 | 0.4 | 0.01 | 0.8 | |
Eucalyptus globulus (wood) | Mean | 19.6 a | 3106.0 b | 107.3 a | 83.6 a | 1279.4 c | 32.6 a | 52.7 c | 80.3 c | 0.32 a | 0.62 a | 0.016 a | 0.4 a | 0.9 a | 11.5 b |
SD | 0.4 | 135.7 | 5.1 | 2.9 | 58.5 | 1.0 | 3.3 | 9.5 | 0.03 | 0.07 | 0.002 | 0.05 | 0.07 | 1.0 | |
Pinus pinaster (wood) | Mean | 98.7 a | 492.2 a | 1.0 a | 57.3 a | 5.9 a | 71.8 b | 49.3 c | 30.4 b | 1.54 a | 0.45 a | 0.003 a | 0.3 a | 0.9 a | 22.7 c |
SD | 2.2 | 13.7 | 0.08 | 2.9 | 0.2 | 3.2 | 3.5 | 4.1 | 0.15 | 0.05 | 0.001 | 0.02 | 0.04 | 2.5 | |
Shrubs | |||||||||||||||
Pterospartum tridentatum | Mean | 256.2 a | 1012.5 a | 2102.3 b | 576.1 a | 10.3 a | 2693.0 b | 503.1 b | 42.3 b | 0.0 a | 1.7 b | 0.070 b | 6.6 b | 1.5 a | 2843.0 c |
SD | 7.1 | 26.6 | 92.8 | 19.6 | 0.4 | 100.2 | 32.6 | 5.5 | 0.0 | 0.2 | 0.012 | 1.0 | 0.2 | 159.4 | |
Erica sp. | Mean | 810.4 d | 1213.2 a | 1526.1 a | 710.7 b | 152.3 d | 3564.0 c | 803.4 c | 53.2 b,c | 0.0 a | 1.3 b | 0.050 a | 9.2 c | 6.0 b | 36.8 a |
SD | 16.8 | 65.2 | 53.9 | 12.5 | 4.2 | 107.9 | 50.0 | 5.8 | 0.0 | 0.2 | 0.006 | 0.8 | 0.7 | 2.5 | |
Erica arborea | Mean | 463.1 b | 2824.3 b | 2936.7 c | 1503.0 f | 116.6 c | 632.0 a | 145.4 a | 15.4 a | 0.0 a | 5.2 c | 0.030 a | 8.0 b | 2.7 a | 38.2 a |
SD | 11.9 | 117.5 | 116.3 | 31.5 | 3.3 | 29.1 | 9.9 | 2.9 | 0.0 | 0.6 | 0.006 | 0.6 | 0.2 | 3.9 | |
Cytisus sp. | Mean | 607.4 c | 5482.4 d | 3512.4 d | 1403.4 e | 475.3 e | 3811.2 d,e | 174.6 a | 77.6 d | 0.0 a | 0.27 a | 0.120 c | 6.4 b | 19.3 c | 352.7 b |
SD | 9.9 | 146.4 | 140.8 | 32.3 | 19.8 | 93.8 | 16.2 | 8.0 | 0.0 | 0.03 | 0.018 | 0.6 | 1.3 | 44.3 | |
Ulex europaeus | Mean | 2132.8 f | 3535.5 c | 3561.8 d | 936.9 c | 61.5 b | 3908.0 e | 161.6 a | 41.9 b | 0.0 a | 1.5 b | 0.070 b | 9.8 c | 2.4 a | 277.3 b |
SD | 56.0 | 115.3 | 175.9 | 22.2 | 2.4 | 86.4 | 12.6 | 4.2 | 0.0 | 0.2 | 0.011 | 1.2 | 0.2 | 44.0 | |
Hakea sericea | Mean | 1923.1 e | 1050.7 a | 2311.7 b | 1124.7 d | 25.2 a | 3635.0 c,d | 843.5 c | 63.4 c | 0.0 a | 0.6 a | 0.070 b | 3.3 a | 2.9 a | 102.3 a |
SD | 10.1 | 42.3 | 112.8 | 37.5 | 0.8 | 120.5 | 30.3 | 4.7 | 0.0 | 0.09 | 0.011 | 0.3 | 0.3 | 8.5 |
Groups | n | Na | K | Ca | Mg | P | Mn | Fe | Zn | Ni | Cr | Cd | Cu | F | Cl | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agricultural wastes | 128 | Mean | 267.3 a | 6374.5 b | 4817.4 b | 1826.4 b | 372.6 b | 28.7 a | 13.8 a | 11.7 a | 328.8 b | 65.8 b | 0.0 a | 46.7 b | 1.9 a | 25.7 a |
SD | 58.3 | 1239.8 | 1671.0 | 516.6 | 81.4 | 11.1 | 4.9 | 8.4 | 126.5 | 70.6 | 0.0 | 55.1 | 1.2 | 16.0 | ||
Forest wastes | 128 | Mean | 809.5 b | 2805.3 a | 2201.9 a | 656.7 a | 478.3 b | 76.9 a | 28.1 a | 38.7 b | 203.0 b | 19.4 a | 50.7 b | 2.7 a | 2.5 a,b | 15.6 a |
SD | 788.2 | 1643.3 | 2958.5 | 678.3 | 502.6 | 32.8 | 24.4 | 26.6 | 281.1 | 34.5 | 108.1 | 2.6 | 2.6 | 7.4 | ||
Shrubs | 192 | Mean | 1032.2 b | 2519.8 a | 2658.5 a | 1042.5 a | 140.2 a | 3040.5 b | 438.6 b | 49.0 b | 0.0 a | 1.8 a | 0.1 a | 7.2 a | 5.8 b | 608.4 b |
SD | 747.3 | 1685.3 | 777.2 | 349.5 | 162.5 | 1184.4 | 308.3 | 20.8 | 0.0 | 1.7 | 0.03 | 2.4 | 6.4 | 1038.0 |
HHV | C | H | O | N | S | Ashes | Na | K | Ca | P | Mg | Mn | Fe | Zn | Ni | Cr | Cd | Cu | F | Cl | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HHV | 1.00 | ||||||||||||||||||||
C | 0.16 | 1.00 | |||||||||||||||||||
H | 0.43 | 0.08 | 1.00 | ||||||||||||||||||
O | 0.02 | −0.92 | −0.20 | 1.00 | |||||||||||||||||
N | −0.04 | −0.12 | 0.57 | −0.17 | 1.00 | ||||||||||||||||
S | 0.10 | 0.06 | 0.67 | −0.34 | 0.76 | 1.00 | |||||||||||||||
Ashes | −0.56 | −0.06 | 0.11 | −0.33 | 0.56 | 0.59 | 1.00 | ||||||||||||||
Na | 0.18 | 0.18 | 0.29 | −0.17 | 0.18 | 0.18 | −0.09 | 1.00 | |||||||||||||
K | −0.59 | −0.04 | 0.13 | −0.25 | 0.56 | 0.49 | 0.71 | −0.21 | 1.00 | ||||||||||||
Ca | −0.38 | −0.08 | 0.01 | −0.26 | 0.58 | 0.47 | 0.85 | 0.14 | 0.54 | 1.00 | |||||||||||
P | −0.33 | 0.03 | −0.42 | 0.15 | −0.40 | −0.42 | −0.32 | −0.30 | 0.03 | −0.36 | 1.00 | ||||||||||
Mg | −0.37 | −0.06 | 0.10 | −0.25 | 0.59 | 0.55 | 0.74 | 0.03 | 0.77 | 0.68 | −0.36 | 1.00 | |||||||||
Mn | 0.43 | −0.05 | −0.15 | 0.24 | −0.08 | −0.21 | −0.53 | 0.48 | −0.38 | −0.17 | −0.07 | −0.19 | 1.00 | ||||||||
Fe | 0.47 | −0.03 | −0.21 | 0.22 | −0.35 | −0.17 | −0.47 | 0.31 | −0.61 | −0.32 | −0.14 | −0.26 | 0.75 | 1.00 | |||||||
Zn | 0.14 | 0.04 | −0.31 | 0.34 | −0.48 | −0.55 | −0.73 | 0.14 | −0.39 | −0.56 | 0.62 | −0.54 | 0.61 | 0.48 | 1.00 | ||||||
Ni | −0.42 | −0.07 | 0.05 | −0.13 | 0.18 | 0.37 | 0.51 | −0.24 | 0.50 | 0.31 | −0.13 | 0.31 | −0.31 | −0.26 | −0.28 | 1.00 | |||||
Cr | 0.11 | 0.11 | 0.62 | −0.27 | 0.49 | 0.57 | 0.31 | −0.12 | 0.34 | 0.05 | −0.17 | 0.26 | −0.39 | −0.32 | −0.35 | 0.08 | 1.00 | ||||
Cd | −0.02 | 0.09 | 0.37 | −0.12 | 0.25 | 0.24 | 0.01 | 0.30 | 0.12 | −0.17 | −0.08 | 0.15 | −0.18 | −0.16 | −0.07 | −0.07 | 0.25 | 1.00 | |||
Cu | −0.38 | −0.07 | 0.04 | −0.11 | 0.18 | 0.37 | 0.47 | −0.22 | 0.47 | 0.30 | −0.14 | 0.30 | −0.23 | −0.21 | −0.25 | 0.99 | 0.04 | −0.09 | 1.00 | ||
F | 0.19 | 0.08 | −0.14 | −0.03 | 0.09 | −0.09 | −0.12 | 0.08 | 0.13 | 0.19 | 0.16 | 0.08 | 0.48 | 0.10 | 0.43 | −0.05 | −0.26 | −0.12 | −0.01 | 1.00 | |
Cl | 0.28 | −0.44 | 0.05 | 0.49 | 0.21 | −0.08 | −0.28 | −0.14 | −0.32 | −0.13 | −0.14 | −0.24 | 0.33 | 0.31 | 0.15 | −0.14 | −0.16 | −0.09 | −0.11 | −0.03 | 1.00 |
STEP | C | H | O | N | S | Ashes | Na | K | Ca | Mg | P | Mn | Fe | Zn | Ni | Cr | Cd | Cu | F | Cl | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | −9.1 | 2.3 | −9.7 | −4.4 | 5.2 | −16.8 | −0.8 | −0.5 | 4.4 | −1.5 | −2.6 | −3.4 | 3.9 | 5.0 | −11.3 | 2.8 | −0.5 | 9.1 | 5.4 | 1.0 | 0.975 |
2 | −8.9 | 2.2 | −9.5 | −4.2 | 4.9 | −16.8 | −0.7 | - | 4.7 | −1.7 | −2.6 | −3.8 | 4.2 | 5.0 | −11.7 | 2.8 | −0.5 | 9.5 | 5.2 | 0.9 | 0.975 |
3 | −6.2 | 2.3 | −6.5 | −4.5 | 4.5 | −14.6 | - | - | 3.8 | −1.6 | −2.2 | −4.0 | 4.1 | 5.5 | −15.6 | 3.2 | −0.6 | 13.5 | 5.7 | 1.5 | 0.975 |
4 | −0.1 | 3.2 | - | −5.0 | 5.3 | −15.0 | - | - | 4.6 | −1.9 | −2.4 | −4.5 | 5.1 | 7.1 | −17.5 | 3.8 | −0.7 | 15.1 | 6.9 | 1.7 | 0.975 |
5 | - | 3.2 | - | −5.0 | 5.3 | −14.7 | - | - | 4.5 | −1.8 | −2.5 | −4.5 | 5.0 | 6.9 | −17.9 | 3.8 | −0.7 | 15.5 | 6.8 | 1.8 | 0.975 |
6 | - | 3.3 | - | −5.3 | 4.4 | −12.8 | - | - | 4.4 | −1.8 | −1.8 | −3.7 | 4.5 | 6.8 | −20.6 | 3.8 | - | 18.4 | 6.3 | 1.9 | 0.974 |
7 | - | 4.4 | - | −4.8 | 2.9 | −12.8 | - | - | 4.6 | −1.6 | - | −3.2 | 5.7 | 8.8 | −20.4 | 3.8 | - | 18.6 | 6.5 | 1.8 | 0.971 |
8 | - | 5.2 | - | −7.1 | 6.8 | −24.4 | - | - | 8.5 | −2.4 | - | −3.2 | 8.3 | 14.7 | −1.6 | 5.6 | - | - | 9.8 | 2.6 | 0.969 |
9 | - | 5.3 | - | −9.8 | 8.2 | −22.6 | - | - | 7.2 | −2.6 | - | - | 6.2 | 15.8 | −2.2 | 6.1 | - | - | 10.1 | 3.6 | 0.967 |
10 | - | 5.9 | - | −11.5 | 8.3 | −23.7 | - | - | 7.8 | - | - | - | 5.4 | 15.0 | −2.2 | 6.2 | - | - | 9.6 | 4.3 | 0.962 |
11 | - | 5.9 | - | −10.4 | 6.9 | −26.3 | - | - | 9.2 | - | - | - | 6.0 | 15.5 | - | 6.8 | - | - | 9.2 | 3.7 | 0.956 |
12 | - | 6.8 | - | −6.9 | 5.3 | −30.0 | - | - | 9.4 | - | - | - | 8.5 | 17.5 | - | 6.3 | - | - | 9.2 | - | 0.940 |
13 | - | 9.7 | - | −5.4 | - | −28.6 | - | - | 8.6 | - | - | - | 11.0 | 19.4 | - | 6.9 | - | - | 10.4 | - | 0.930 |
14 | - | 8.6 | - | - | - | −32.1 | - | - | 6.0 | - | - | - | 13.0 | 22.3 | - | 6.5 | - | - | 11.5 | - | 0.910 |
15 | - | 9.7 | - | - | - | −29.6 | - | - | - | - | - | - | 14.5 | 25.4 | - | 5.9 | - | - | 14.6 | - | 0.907 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enes, T.; Aranha, J.; Fonseca, T.; Matos, C.; Barros, A.; Lousada, J. Residual Agroforestry Biomass–Thermochemical Properties. Forests 2019, 10, 1072. https://doi.org/10.3390/f10121072
Enes T, Aranha J, Fonseca T, Matos C, Barros A, Lousada J. Residual Agroforestry Biomass–Thermochemical Properties. Forests. 2019; 10(12):1072. https://doi.org/10.3390/f10121072
Chicago/Turabian StyleEnes, Teresa, José Aranha, Teresa Fonseca, Carlos Matos, Ana Barros, and José Lousada. 2019. "Residual Agroforestry Biomass–Thermochemical Properties" Forests 10, no. 12: 1072. https://doi.org/10.3390/f10121072
APA StyleEnes, T., Aranha, J., Fonseca, T., Matos, C., Barros, A., & Lousada, J. (2019). Residual Agroforestry Biomass–Thermochemical Properties. Forests, 10(12), 1072. https://doi.org/10.3390/f10121072