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Abstract: Warmer and drier climates over Amazonia have been predicted for the next century with
expected changes in regional water and carbon cycles. We examined the impact of interannual and
seasonal variations in climate conditions on ecosystem-level evapotranspiration (ET) and water use
efficiency (WUE) to determine key climatic drivers and anticipate the response of these ecosystems to
climate change. We used daily climate and eddyflux data recorded at the Guyaflux site in French
Guiana from 2004 to 2014. ET and WUE exhibited weak interannual variability. The main climatic
driver of ET and WUE was global radiation (Rg), but relative extractable water (REW) and soil
temperature (Ts) did also contribute. At the seasonal scale, ET and WUE showed a modal pattern
driven by Rg, with maximum values for ET in July and August and for WUE at the beginning of
the year. By removing radiation effects during water depleted periods, we showed that soil water
stress strongly reduced ET. In contrast, drought conditions enhanced radiation-normalized WUE
in almost all the years, suggesting that the lack of soil water had a more severe effect on ecosystem
evapotranspiration than on photosynthesis. Our results are of major concern for tropical ecosystem
modeling because they suggest that under future climate conditions, tropical forest ecosystems will
be able to simultaneously adjust CO2 and H2O fluxes. Yet, for tropical forests under future conditions,
the direction of change in WUE at the ecosystem scale is hard to predict, since the impact of radiation
on WUE is counterbalanced by adjustments to soil water limitations. Developing mechanistic models
that fully integrate the processes associated with CO2 and H2O flux control should help researchers
understand and simulate future functional adjustments in these ecosystems.
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1. Introduction

The Amazon basin plays a crucial role in the regional and global climate system due to its large
contribution to the global surface water and carbon cycle [1]. However, drier and warmer climates
over Amazonia have been predicted, due to climate change for the next 100 years [2], along with
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increasing drought frequency and severity. How tropical forests respond to these climate extremes is
still an intense subject of debate [3–7].

Ecosystem evapotranspiration (ET) is an important component of the global water cycle and has
a critical role in ecological and hydrological processes [8]. However, little is known about the mechanisms
associated with the interannual variability of ET. While some ecosystem process models present ranges
of interannual variability similar to those actually measured at flux towers (e.g., Soil-Plant-Atmosphere
model [9]), others underestimate annual ET [9]. Deeper investigation into the factors determining the
interannual variability of ET is therefore needed to address these discrepancies, particularly in tropical
rainforests. Moreover, the seasonality of ET in the Amazon has been the subject of debate for over two
decades. Field observations, flux measurements and modelling studies at multiple sites in Amazonian
forests have generally shown higher ET rates during the dry season than during the wet season [10–15],
thus indicating that the Amazon forest transpires more in the dry season.

In a changing environment, another major issue is how tropical rainforest ecosystems regulate and
optimize the ratio between CO2 assimilation (GPP, gross primary production) and evapotranspiration,
as described by ecosystem water use efficiency (WUE). The equilibrium between assimilation and
evapotranspiration reflects a set-point of foliar functioning and depends on how much the stomata of
the tree open. Under limiting resource conditions (e.g., low radiation, lack of water), this equilibrium
depends on the trade-off at the ecosystem level between limiting the rate of assimilation of CO2

(benefit) and the transpiration speed (cost) [16]. Whether tropical rainforest ecosystems can adjust
WUE over long time scales, particularly when soils are becoming drier, is a major question ecosystem
models need to address.

Several factors have been found to control ecosystem ET and WUE. Many studies have reported
that solar radiation enhances annual [17] or seasonal [10–12,18–20] ET rates. In contrast, hydraulic
stress and/or stomatal control associated with depleted soil water restricts transpiration during drier
conditions [21]. Yet, analyzing or simulating the drivers of WUE is more complex than meets the eye,
since variations in WUE result from variations in ET and GPP, which can be decoupled. At the annual
scale, ecosystem WUE was found to be positively correlated with radiation [22], precipitation [23]
or temperature [24] in various tropical forest ecosystems. It should be noted that long-term trends
for solar radiation and temperature do not vary much from year to year in the neo-tropical Amazon
rainforest [25]. This means that fluctuations in soil water at the seasonal scale, brought about by
changing rainfall patterns, may become predominant in determining the variations in the GPP/ET
relationship. Studying the relations between climatic variables and water fluxes in the Amazon
region may provide important new knowledge and reduce the uncertainty concerning the ecosystem’s
response to natural climate variations and possible extreme conditions in the future.

In this study, we used a single eddy flux dataset collected continuously over an 11-year period at
the Guyaflux site in the tropical rainforest of French Guiana to determine the interannual and seasonal
variations in ET and WUE and their climatic drivers. During the study period, from 2004 to 2014,
the intensity and duration of seasonal droughts varied, thus allowing us to test the impact of various
environmental factors (radiation, temperature, soil water stress) on ecosystem evapotranspiration and
water use efficiency. Herein, we specifically discuss (1) the temporal variations in ET and WUE at the
interannual and seasonal scales, including patterns during water depleted periods (WD), and (2) the
environmental drivers of these variations. We expected strong interannual and seasonal variations in
ET and WUE and hypothesized that radiation and soil water content would be the main drivers of
these variations.

2. Materials and Methods

2.1. Study Site

The study was conducted at the Paracou research station in French Guiana, South America
(5◦16′54′′ N, 52◦54′44′′ W) in a tropical rainforest. Detailed information about the Guyaflux site where
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the flux tower is located is presented in [25] and [26]; here, we mention only the most important points.
The climate shows large seasonal variations in rainfall [25]. Decadal (from 2004 to 2014) average
annual rainfall at the study site was 3102 mm ± 70 mm and the average annual air temperature was
25.7 ± 0.1 ◦C.

2.2. Climate and Flux Monitoring

Microclimate and eddy covariance data have been recorded continuously at the site since
December 2003 ([25,26]) following the Euroflux methodology [27]. This study covers an 11-year
period, from 2004 to 2014. Global and infrared incident and reflected radiation (CNR1, Kipp and
Zonen, Bohemia, NY, USA) were measured above the canopy. Temperature sensors (CS107, Campbell
Scientific Inc., Logan, UT, USA) were used to measure soil temperature (Ts, ◦C). A rain gauge (ARG100,
EM lmt, Sunderland, UK) measured bulk rainfall above the canopy. Rainfall data were incorporated
into a soil water balance model, developed and validated for the study site [28], to estimate relative
extractable water (REW) for trees from the soil surface down to 3-m in depth. REW is a dimensionless
variable that characterizes the water status of the soil at a given date relative to its maximum potential
soil water content.

Dataloggers (CR23X, CR1000 or CR3000, Campbell Scientific Inc., Logan, UT, USA) were used
to collect meteorological data at 1 min intervals and to compile them as 30 min averages or sums.
The 30-minute data were summed for rainfall and averaged for the other parameters to obtain daily
values. Our objective was to focus on the impact of these meteorological data on evapotranspiration
and water use efficiency while the canopy was fully active and under rather stable climate conditions.
We thus eliminated nighttime, early morning or early evening periods. We thus only considered
meteorological data taken during the period from 10:00 am to 16:00 pm, except for daily rainfall and
REW, which were summed or averaged for 24 h a day.

We used a 3-D sonic anemometer (R3-50; Gill Instruments, Lymington, UK) to measure wind
velocities and sonic temperature at 20 Hz. We used to an open-path infrared gas analyzer (Li7500,
LI-COR Inc., Lincoln, NE, USA) to monitor CO2 and H2O concentrations at 20 Hz. As the open-path gas
analyzer proved to be very sensitive to rain, a closed-path infra-red gas analyzer (Li7000, LI-COR Inc.,
Lincoln, NE, USA) was added to the system in June 2005 to gap-fill the missing data from the Li7500
analyzer. Eddy covariance data were saved with the EDDYLOGP software (Alterra, Wageningen,
The Netherlands) on 256 MB memory cards inserted into an HP200LX laptop (Hewlett Packard,
Palo Alto, CA, USA) and downloaded weekly to another computer.

2.3. Daytime Evapotranspiration (ET)

Water loss by evaporation at the ecosystem level during the daytime was determined from 30-min
values of the flow of latent heat (LE, W m−2) obtained with the eddy flux system. Based on these data,
we calculated daily daytime ET (kg H2O m−2 d−1) as the average of the LE data during the daytime
(10:00–16:00). We filtered 393 (9%) daytime outliers out of the total 4018 ET data points available when
daytime Rg was lower than 150 W m−2 following [29], or when daytime LE was lower than 50 W m−2.
We did not gap-fill any missing data after filtering.

2.4. Water Use Efficiency (WUE)

Ecosystem WUE was defined as the ratio of GPP to ET according to [30,31]. To estimate daytime
WUE (g C kg H2O−1), we used daily daytime averages for GPP (g C m−2 d−1) and ET (kg H2O m−2 d−1)
calculated from half-hourly measurements. Daily GPP raw data were extracted from a previous
study [28]. No further filtering on WUE was done.

2.5. Soil Water Stress Index (SWSI) and the Water Depletion Period

In order to determine the impact of water depletion on ET and WUE, an eco-hydrological drought
indicator called the soil water stress index (SWSI) was calculated [32]. SWSI is a dimensionless number
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that is calculated as the difference between the daily REW value and 0.4 (a threshold value for REW
that induces stomatal closure in most trees), divided by 0.4. Therefore, at field capacity (REW = 1),
SWSI equals 1.5; at wilting point (REW = 0), SWSI equals −1; SWSI equals 0 when REW = 0.4.

To test the effect of soil water limitation on ET and WUE, we selected the period when REW
drops from 1 down to its minimum value within the July–December window (Figure 1). This period is
hereafter referred to as the water depleted (WD) period. SWSI of each year (SWSIa) was calculated as
the algebraic sum of daily SWSI values during the WD period.
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Figure 1. Seasonal variations in relative extractable water (REW) for each year (2004–2014). The water
depletion period (WD, gray shaded area) is characterized by REW dropping from its field saturation
point (REW < 1~0.4, dotted line), passing through its threshold level (REW = 0.4, short thin straight
dashed line), down to its lowest point (solid line at the bottom of the lowest REW level).

2.6. Data Analyses

2.6.1. Normalizing ET and WUE

To analyze soil drought effect alone, we normalized ET and WUE with global radiation (Rg).
Indeed, from September to December, Rg decreases because of the Earth’s axial tilt and the presence
of clouds. To eliminate this potential effect on ET and WUE and test the direct effect of soil water
limitation, linear models were created to determine residuals from the relationships between ET or
WUE and Rg. These residuals were used to analyze the relationship between Rg-normalized ET or
WUE and SWSI during the WD period.

2.6.2. Isolating the Most Important Climate Variables

We used the Principal Component Analysis (PCA) procedure described in [25] to reveal the main
climate gradients of the dataset while reducing multicollinearity problems among the tested climatic
variables (global radiation (Rg), relative extractable water (REW), vapor pressure deficit, rainfall,
soil temperature (Ts), air temperature, evapotranspiration, relative humidity and water balance index).

2.6.3. Ecosystem Response to Climatic Drivers

As described in [25], we built generalized additive models with spline smoothers to predict ET
and WUE as a function of the PCA-selected climate variables. We used the gam function from the
mgcv package to build the models and the MuMin package to obtain the best smoothing dimension.
Spline term effects were ranked according to their F-values (Wald tests). Standardized major axis
(SMA) regressions performed with the smatr package in R were used to test the relationship between
soil water stress index and Rg-normalized ET or WUE. Smooth curve fitting was carried out with
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a locally weighted polynomial regression in the ggplot2 package. We analyzed the contribution of ET
and GPP to WUE (variance partitioning) with a general function and used the propagate package to
calculate uncertainty propagation by Taylor expansion and Monte Carlo simulation. All analyses were
processed in R version 3.4.2 (Vienna, Austria).

3. Results

3.1. Interannual Variations in ET, WUE and Climate

Over the 11-year period, ET and WUE exhibited significant interannual variability (p < 0.001)
(Figure 2). The amplitude of the interannual rate of change was 10.4% and 15.8% for ET and WUE,
respectively. There was a significant coupling of ET and GPP (data from [25]) (R2 = 0.35; p < 0.001).
Propagating GPP and ET variability into WUE, we found that 39.6% of the variance for WUE came
from GPP and 60.4% from ET.
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Figure 2. Interannual variations in ecosystem evapotranspiration (ET) (a) and (c) and water use
efficiency (WUE) (b) and (d) at the whole year scale (left) and during water depletion (WD) periods
(right). Daily data from 2004 to 2014 were used. In the boxplots, the thick line shows the median; the box
extends to the upper and lower quartiles; and dashed lines indicate the nominal range. For a given
graph, different letters denote significant differences among years (p < 0.05).

Inter-annually, radiation, temperature, wind speed and air humidity varied little at the study site
(2 to 12% variations between the minimum and maximum values) (Figure 3). Interannual variations in
REW and rainfall were stronger (19% and 16%, respectively). Years with highly negative total water
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stress indicator values (ie. severe water stress and long droughts) include 2005 (SWSIa = −5.06), 2008
(SWSIa = −2.11), 2010 (SWSIa = −5.64) and 2012 (SWSIa = −17.37) (Table 1 and Figure A1).
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Figure 3. Interannual and seasonal variations for climate variables. (a) Global radiation
(Rg, MJ m−2 d−1), (b) Air temperature (Ta, ◦C), (c) Air relative humidity (RH, %), (d) Precipitation
(Rain, mm), (e) Wind speed (WS, m s−1), (f) Potential Evapotranspiration (PET, mm), (g) Soil
temperature (Ts, ◦C), (h) Vapor pressure deficit (VPD, kPa), (i) Relative extractable water (REW,
unitless). Different colors were assigned for each year. Gray-shaded regions are the confidence intervals
and the colored line in the grayscale line is the smooth curve. The two vertical broken lines in each
panel represent the average day of the year for the beginning and end of the WD period. Monthly
sums for precipitation in (d) are presented in a bar plot.
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Table 1. Annual soil water depletion duration, annual sum of soil water stress index (SWSIa) during
the water depleted period, and annual minimum REW from 2004–2014.

Year Soil Water Depletion
Duration (no. of days) SWSIa Minimum REW

2004 143 13.2 0.21
2005 119 −5.60 0.06
2006 91 11.29 0.10
2007 127 40.04 0.20
2008 110 −12.11 0.09
2009 80 11.13 0.10
2010 83 −5.94 0.16
2011 57 29.97 0.23
2012 93 −17.37 0.08
2013 45 32.89 0.35
2014 122 26.65 0.17

Years with the most severe drought conditions during the water depleted period are indicated in bold.

Global radiation (Rg), relative extractable water (REW) and soil temperature (Ts) were the
three meteorological parameters that best represented the main climate gradients in our dataset.
On an annual basis, Rg appeared to be the best climate predictor for ET (R2 = 0.70; p < 0.001) and WUE
(R2 = 0.40; p < 0.001) (Table 2). REW and Ts were the second- and third-best predictors for both ET
and WUE.

Table 2. Results of the generalized additive model (GAM) analysis done to detect the best models and
rank predictor variables (Rg, REW, Ts) according to their ability to explain variations in ET and WUE,
annually and during the soil W) period, from 2004–2014. Daily data was used in the analysis. F-values
and p-values are statistics given by the GAM analyses.

Period/ Best Model Multiple Intercept Coefficients F value p Value
Dependent Variable Predictors R2 1 2

Annual
ET 0.70 2.92

Rg 0.46 0.71 1112.9 <0.001
REW 0.20 0.22 102.7 <0.001

Ts 0.06 0.04 6.8 <0.001
WUE 0.40 2.68

Rg –0.57 –0.54 164.0 <0.001
REW 0.09 –0.08 6.9 <0.001

Ts –0.17 –0.02 2.5 <0.050

Water depletion (WD)
period

ET 0.48 3.19
Rg 9.51 3.39 180.6 <0.001

REW 1.01 2.20 105.3 <0.001
WUE 0.34 2.48

Rg –0.16 –0.29 86.9 <0.001
Ts –0.12 0.08 21.9 <0.001

3.2. Seasonal Variations in ET, WUE and climate

A gradual increase in Rg was observed from January to September/October, followed by a rapid
slowdown towards the end of the year (Figure 3). In contrast, REW coincided with precipitation
patterns: REW remained rather constant from January to July and slowed down as the dry season
(water depleted period) began, with its lowest levels occurring in October/November (except for
2004). REW picked up again as the rainy season started towards the end of November. Like REW,
air humidity and vapor pressure deficit (VPD) remained constant from January to June. Air humidity
then decreased and reached a minimum in September. In contrast, the VPD increased from June to



Forests 2019, 10, 14 8 of 19

October. Wind speed was usually lower during the wet season, i.e., around May and June. Air or soil
temperature remained relatively constant all year round.

Each year, we observed opposing seasonal patterns between ET and WUE (Figure 4). ET increased
at the beginning of the year, peaked in August, and gradually declined towards November. In contrast,
the lowest WUE values were observed around mid-August and picked up slightly around the end of
the year, after major rain events returned (Figure 4).
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Figure 4. Seasonal variations (monthly means) in (a) ecosystem gross primary production (GPP),
(b) ecosystem evapotranspiration (ET), and (c) ecosystem water use efficiency (WUE) based on daily
smoothened values for each year from 2004–2014. Different colors were assigned for each year.
Gray-shaded regions are the confidence intervals and the colored line in the grayscale line is the
smooth curve. The two vertical broken lines in each panel represent the average day of the year for the
beginning and end of the water depletion (WD) period. GPP data are from [25].

3.3. Variations in ET and WUE during the Water Depletion (WD) Periods

There was an overall 9.3% increase in ET during the WD period (August–November) as compared
to the whole year (Figures 2 and 4). In contrast, WUE was 8.2% lower during the WD period as
compared to annual values (Figures 2 and 4). Within the WD period, we found a 4%–18% rate of
decrease in ET, except in 2005 when a negligible decline was observed (Figure 4). In contrast, WUE
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increased by 1%–17%, except in 2005 and 2014, when a slight decrease was observed during the WD
period (Figure 4).

During WD periods, the combined effect of Rg and REW drove 48% of the variability in ET
(Table 2); yet, Rg was the primary controlling factor. There was no effect of Ts on ET during the WD
periods (Table 2). There was a positive relationship between Rg-normalized ET and SWSI for each year
(Figure 5). These linear relationships differed among years; the slopes were much higher in the years
2004, 2008 and 2012–2014, and these slopes were all statistically different from those for 2005 and 2006
(Tables A1 and A2).
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Figure 5. Linear relationship between radiation-normalized evapotranspiration (ET) and soil water
stress index (SWSI) during the water depletion period (WD). Gray-shaded regions are the confidence
intervals and the black line in between is the linear trend. Each dot corresponds to one day. The greater
the SWSI, the lower the soil water stress.

Variations in WUE during WD periods were also driven by Rg, with a slight influence of Ts
(Table 2). REW had no control over WUE. The relationship between Rg-normalized WUE and SWSI
differed among years (Figure 6). We observed no relationships between the two variables in 2008, 2011,
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and 2014, whereas the relationships were negative in 2004, 2006, 2007, 2009, 2010, 2012 and 2013, and
positive in 2005.
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4. Discussion

4.1. Interannual Variations in ET and WUE

Many studies in the Amazon have addressed aspects of seasonal variations in ET; yet little
information is available on ET interannual variability, especially over long time scales. In this study,
annual mean ET was 2.95 kg H2O m−2 d−1 (95% CI (2.93, 2.98)), which is within the range of values
found in other studies conducted in Amazonia (Table 3). We found a 10.4% year-to-year variation
in ET within the 11-year period. This variation is low and consistent with the 5%–10% variations
previously observed in an Amazonian forest [18], but is lower than in tropical forests outside the
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Amazon. For example, subtropical forests in Malaysia and China showed between 10% and 25%
variability [1,17,33,34].

Annual mean WUE was 2.65 g C kg H2O−1 (95% CI (2.62, 2.67)) and interannual variations in
WUE were low (15.8%). WUE-related literature on tropical forests is scarce (unlike for ET) [35] and
this makes a comprehensive comparison of WUE values difficult. Yet, our year-to-year variations in
WUE were much lower compared to the 35% variability found in a subtropical forest in China [34].
A decline in leaf WUE has been observed since the 1950s in many studies, associated with the
functional response of foliage to increasing atmospheric CO2 concentrations and 13C enrichment of
atmospheric CO2 (e.g., [36]). We did not observe any such decreasing trend at the ecosystem level for
our study period. As ecosystem-level WUE results from the integrative mean of leaf-level tree WUE,
interspecific variability in the response of trees to these CO2 changes could also be an explanation.
In any case, the interannual variability in WUE we observed suggests that, although annual ET and
GPP respond to the same primary climate drivers (Table 2 and [25]), the extent of their responses
varies among years. Furthermore, the combined effect of radiation, soil water and temperature only
explained 40% of the between-year variance in WUE; biological control mechanisms may also be
playing a major role at this time-scale. Inherent rhythms of leaf phenology [37], structural changes in
vegetation [38], major mortality events [39], changes in surface conductance mediated by stomata [10]
or the consequences of forest disturbance [1], both individually or in combinations do affect WUE and
could very well be involved in these year-to-year variations. Long-term monitoring of these biological
mechanisms is needed at eddy flux tower sites to assess their potential contribution to WUE.

Table 3. Comparison of evapotranspiration (ET) in various studies from the Amazon and other
tropical forests.

Location/Ecosystem Study Period
Interannual Variations

in ET (%)
Daily Average ET (kg H2O m−2 d−1)

References
Annual Period Water Depletion Period

Southern Brazil,
Amazon 2000–2002 5–10 2.7 [18]

Tropical forests mostly
Amazon 3.75 [19]

(modelling study)
Amazon forests 1996–2006 [13]

-Manaus 3.3–3.9
-Santarem 3.3–3.9

-Jaru 1.3–3.3
-Javaes 1.3–3.3
-Sinop 1.3–3.3

-Pe de Gigante 1.3
Eastern Amazon 2000–2001 3.51 3.96 [40]

Amazon [10]
-Manaus 1999–2000 3.58 3.70

-Santarem 2000–2003 3.49 3.59
-Jaru 2000–2003 3.57 3.27

-Sinop 2004–2005 3.11 3.18
Amazon forest, Brazil 2002–2006 18 2.4–3.76 3.41 [17]
Sub-tropical forest in

China 2003–2005 15.5 2.62 [34]

Tropical forest in
Malaysia 2000–2009 12 3.62 [33]

Tropical forest in 2004–2014 10.4 2.95 3.23 This study
French Guiana

4.2. Seasonal Variations in ET and WUE

There was a strong seasonal pattern for both ET and WUE (Figure 4). ET showed a minimum
value at the beginning of the year and reached a maximum around August (Figures 2 and 4); these
seasonal variations could be driven by climatic conditions either directly or indirectly, through their
effect on biotic mechanisms, such as leaf phenology. What precise functional mechanisms explain
why ET is elevated during seasonal dry periods? First, several studies conducted in the Amazon
region have reported that ET is mainly driven by global radiation, both annually [1,10,19] and during
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seasonal dry periods [10–12] and Rg was indeed the main driver of seasonal variations in ET at our
site (Table 2). High monthly radiation can be reached either when cloud cover is low during the dry
season or when the Earth’s axial tilt maximizes incident solar radiation at this latitude (i.e., at the
end of March and the beginning of September). During these periods of high Rg, the large amount
of solar energy induces strong evaporative demand resulting in high ecosystem evapotranspiration
rates [10–13,18–20]. Second, at the ecosystem level, the potential reduction in leaf transpiration by
stomatal closure is compensated for in part by dry air entrainment from above the boundary layer
and by changes in leaf temperature [41], meaning that canopy evaporation may not be reduced
despite stomatal closure. Third, tropical rainforests can continue transpiring during periods of limited
precipitation, because canopy trees are able to use available water from deep soil layers, thanks to
a deep rooting system [42,43]. Hydraulic redistribution and upward soil capillary water flux may also
help sustain ET during the dry season [39,44], though such mechanisms have not been documented at
our study site [42]. Fourth, the seasonal dynamics of leaf emergence and leaf fall (i.e., leaf phenology)
has also been suggested as a possible explanatory mechanism for the dry-season maxima of carbon
and water fluxes in tropical forests [17,45], with leaf fall together with new leaf emergence peaking at
the onset of the dry season. All of these patterns may, in one way or another, have contributed to the
increase in ET during the WD period at our site.

The seasonal pattern for WUE was different from that of ET. We expected a lesser decrease in ET
than in GPP during water deficit conditions (WD period), which would lead to higher WUE. Actually,
the opposite pattern clearly occurred. Within any given year, the WD period had the lowest WUE
values (on average, 7.6% lower than during the rest of the year; 1%–17%) (Figure 4). Subtropical
forest ecosystems in China suffering from frequent drought also showed lower WUE during dry
periods [24]. A decline in WUE with drought in semi-arid/sub-humid ecosystems was also reported
in an overview [31], where a decrease in ET that was smaller than the GPP response during the dry
period led to lower WUE in drier years. Seasonal variations in WUE are complex and difficult to
analyze, since WUE results from a trade-off at the ecosystem level between water loss and carbon
gain, and numerous factors affect these fluxes, and to different extents. Divergent patterns in WUE
have indeed been revealed under contrasted soil water conditions. In a study of a long-term, extreme,
experimental drought [9], the increase in WUE was indeed caused by a stronger decline in ET than in
GPP; yet, the observed pattern was different in the control treatment (no rain exclusion) where the
moderate decline in soil water availability did not actually affect ET. We show that the decrease in
WUE during WD periods was the result of both an increase in ET (this study) and GPP ([25]), but to
different degrees (rates of 4%–18% for ET and 2%–10% for GPP, [25]). The observed reduction in WUE
during the WD period as compared to the rest of the year cannot be solely explained by expected
patterns of change in ET and GPP when environmental conditions become extremely dry. Indeed,
the decrease we found was driven mainly by light availability (Table 2) and by a greater positive
effect of increased radiation during the WD period on GPP than on ET. This result is consistent with
previous modeling approaches pointing out that tropical rainforests are mainly light-limited rather
than water-limited [46] and that radiation is a major driver of both ET and WUE [35]. The asynchronous
response of GPP and ET illustrates the decoupling that can occur between carbon and water cycles
in this ecosystem. Simulations of tropical rainforest ecosystem responses to climate change should
include this decoupling to better predict carbon and water cycling at the planetary scale.

4.3. Variations in ET and WUE within the WD Period

The impact of seasonal drought on ET in tropical forest ecosystems was found to be inconsistent
among studies (Table 3). During water depleted periods, evapotranspiration of tropical rainforests was
found to be reduced due to stomatal closure resulting from limited soil water content [10,24]. However,
other studies claim that ET is greater during seasonal water depleted periods [13–15,19], pointing out
that the positive effect on ET of increased solar radiation during seasonal dry periods was greater than
the possible negative effect of soil water limitation. At our site, strong variations in ET (25%) occurred
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during the WD period (Figure 4). In general, ET was highest at the beginning of the WD period, then
linearly decreased during the period, clearly indicating that the changing environmental conditions
during the seasonal dry period had a negative effect on ecosystem transpiration.

A combination of different abiotic drivers may explain this pattern. During the WD period, Rg
decreased over time, mainly because of the rotation of the earth, while relative water content strongly
decreased because of reduced rainfall (Figure 3). This combined decrease in Rg and REW may have
induced a decrease in ET during the WD periods. Yet, Rg was found to be the strongest predictor of ET
during the WD periods over the 11 years (Table 2). Air humidity also varied during the dry season
(Figure 3) and the decrease in vapor pressure deficit could also have contributed to the decrease in
ET. Stronger stomatal control during the day when air humidity is low and vapor pressure deficit is
high can indeed result in lower ET. However, this potential impact was impossible to disentangle from
the impacts of Rg and REW (see PCA on climatic factors in [28]). When the effect of reducing solar
radiation from September to November was removed to analyze soil water effect alone (Figure 5),
Rg-normalized ET exhibited a strong sensitivity to water stress, which was proportional to WD
intensity, with lower evapotranspiration occurring when soil water content worsened. This occurred
because low REW, likely linked to water demand approaching or exceeding supply, induced stomatal
regulation to restrict transpiration [21]. As drought conditions became harsher, the sensitivity of
transpiration to water deficit was stronger, suggesting a predominant down-regulation of stomatal
conductance, which lowered tree transpiration under extreme droughts.

It is noteworthy that interannual variations in the intensity and the duration of the WD period at
our site (Figure 1) caused in-between-year Rg-normalized ET slopes to differ significantly (Table A1),
except in 2007, 2010 and 2011 (Table 1). This indicates that soil water stress levels induce different
levels of evapotranspiration change when radiation is not limiting. This year-to-year variation in the
slopes between Rg-normalized ET and SWSI may have occurred because, at the tree level, while some
species may have suffered from the drought conditions, others some may not have, depending on
drought intensity levels [47,48].

Within the WD period, variations in WUE were low (Figure 4) and the variations observed were
not consistent among years (Figure 4). We did not expect this pattern, owing to the large variations
in ET (Figure 4) and GPP [25] observed during the WD period at this site. Yet, as WUE represents
a trade-off between these two fluxes at the ecosystem level, the absence of major variations in WUE
during the WD period confirms that, even though all the processes involved in the carbon and water
fluxes may vary individually, all together they converge towards rather stable water use efficiency.
This is a very important result for ecosystem modeling as it suggests that, despite strong variations in
environmental factors and carbon and water fluxes during water depleted periods, ecosystem WUE
can be parameterized with a constant value during water depleted periods in these models.

A wealth of literature is available on the climatic drivers of ET and GPP, but to date, information
about drivers of WUE during drought periods in tropical forests have been wanting. In our long-term
study, we found that the weak variations in WUE observed during the WD periods were mainly
controlled by global radiation and soil temperature, not by soil water (Table 2). In contrast to the
effects of Rg on ET and GPP, Rg explained little of the variability of WUE during the WD period
(Table 2). However, the Rg/WUE relationship was negative. This suggests that under future climate
conditions with longer WD periods, less cloudy conditions, higher CO2 concentration, and greater
solar radiation [2], tropical forest ecosystems may adjust their CO2 and H2O flux control and become
less efficient, transpiring a greater amount of water as compared to the CO2 absorbed for growth.
Such a scenario must be considered with great care, however, as, again, the observed variations in
WUE during WD periods were very low.

When the influence of Rg on WUE during the WD periods was removed (Rg-normalized WUE),
the decrease in REW induced a slight increase in normalized WUE for most WD periods (Figure 6).
Such a pattern of normalized WUE increasing with soil water deficit is consistent with the general
literature on WUE/soil water content effects [23,44]. The observed diverging effects of Rg and soil
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water content on WUE during drought periods once again illustrates the complexity of the drivers of
seasonal variations in WUE and the challenges that must be overcome before ecosystem process models
will be able to precisely simulate these variations. The origin of the patterns we found can be discussed
based on our knowledge of leaf-level responses of CO2 and H2O exchanges to drought. At leaf level,
stomatal closure during drought usually induces a stronger down-regulation of transpiration than
of photosynthesis [47]. Photosynthesis is usually reduced less than transpiration during severe dry
conditions, since transpiration is linearly related to stomatal conductance, whereas photosynthesis
may be limited by a variety of other factors and does not respond linearly to instantaneous changes
in stomatal conductance [49]. The decline in Rg-normalized WUE during water depleted periods
suggests that these mechanisms might indeed drive the observed ecosystem-level patterns observed at
our site.

5. Conclusions

This study enriches the scarce literature on what drives short- and long-term variations in
ecosystem evapotranspiration and WUE in tropical rainforests and contributes to improving the
structure and calibration of ecosystem models and to a better understanding of vegetation-climate
feedback loops in the tropics [35]. We present current trends on how well tropical rainforest ecosystems
effectively utilize available solar radiation and respond to limited soil water during water depleted
periods. Interannual variations in ET and WUE remained low whereas seasonal variations were strong.
As for carbon fluxes, solar radiation was the major driver of variations in water consumption and
water use efficiency at the different time-scales we considered. Yet, removing the solar radiation
influence and directly investigating the influence of soil water availability during water depleted
periods revealed differing response patterns of normalized ET and WUE to water deficit. Our results
suggest that the lack of soil water has a more severe effect on ecosystem evapotranspiration than on
ecosystem productivity, and that the ecosystem must have adjusted its fluxes to reduce water use
when soil water is limiting. We also found that the response of ET to drought is dependent on the
severity and duration of the water depletion period, as part of the tree community in this ecosystem
may or may not be affected by drought. On the other hand, the greater the solar radiation, the lower
ecosystem WUE became, suggesting that enhanced radiation during the dry season induced a greater
increase in ET than in GPP.

These results are of major concern for tropical ecosystem modeling, because they imply that
under future climate conditions in this region, tropical forest ecosystems may adjust their CO2 and
H2O flux control. Yet, the direction of the future change in WUE at the ecosystem scale for tropical
rainforests is hard to predict since the impact of increased radiation and soil water limitations on WUE
can be divergent. Furthermore, the impact of long-term changes in temperature and atmospheric
CO2 concentrations, which are both expected to rise beyond the interannual variations explored here,
will also interact with these effects. Developing mechanistic models that fully integrate the processes
associated with CO2 and H2O flux control from tropical rainforest sites should help us understand and
simulate future functional adjustments in these ecosystems. Our results reveal that changes in H2O
fluxes at this tropical forest site during seasonal dry periods directly reflected the down-regulation of
these fluxes at leaf-level, as if ecosystem functioning was simply the additive functioning of single-tree
or single-species in this ecosystem. A potential change in species composition of these ecosystems in
the future, due to climate change will then surely impact CO2 and H2O flux control of these ecosystems.
Confirmation of similar patterns from other tropical sites would be helpful before simplifying any
up-scaling and modeling efforts.
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Figure A1. Interannual variations in soil water stress index (SWSIa), an eco-hydrological drought
indicator. Daily data was used from 2004–2014. Tukey honest significant difference tests were
performed for pairwise comparisons; years which were not significantly different at p < 0.05 are
represented by the same letter. In the boxplots, the thick line shows the median, the box extends to the
upper and lower quartiles, dashed lines indicate the nominal range, and open circles indicate points
which lie outside of the nominal range. The greater SWSIa is, the lower soil water stress is.

Table A1. Regression coefficients between Rg-normalized ET or Rg-normalized WUE and soil water
stress index (SWSI). Slopes with 95% confidence intervals (CI) and y-axis intercepts according to the
SMA analysis are shown. Daily data over the 2004–2014 period were used.

Variables Year Slope
Slope CI

y-axis Intercept
Lower Upper

Rg-Normalized
ET and SWSI

2004 0.89 0.78 1.01 −0.13
2005 0.46 0.39 0.54 −0.28
2006 0.51 0.41 0.61 −0.05
2007 0.65 0.55 0.77 −0.29
2008 0.81 0.69 0.94 0.07
2009 0.76 0.64 0.89 0.09
2010 0.69 0.57 0.84 0.03
2011 0.63 0.49 0.80 0.07
2012 0.80 0.69 0.93 0.23
2013 0.98 0.73 1.31 −0.70
2014 0.86 0.70 1.04 0.04

Rg-Normalized
WUE and SWSI

2004 −0.75 −0.87 −0.64 0.18
2005 0.58 0.48 0.69 0.26
2006 −0.40 −0.49 −0.33 −0.16
2007 −0.61 −0.73 −0.52 0.22
2008 −0.68 −0.82 −0.56 −0.35
2009 −0.48 −0.58 −0.39 −0.01
2010 −0.72 −0.89 −0.58 0.31
2011 −0.57 −0.75 −0.44 0.17
2012 −0.60 −0.73 −0.49 −0.04
2013 −0.86 −1.15 −0.64 0.55
2014 0.67 0.54 0.83 −0.43
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Table A2. Comparison of slopes of Rg-Normalized ET or Rg-Normalized WUE and the soil water stress
index (SWSI) for each year from 2004–2014 based on standardized major axis (SMA) regression analyses.

Variables
Comparison of Slopes

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Rg-Normalized
ET

2004
2005 ***
2006 *** -
2007 - - -
2008 - *** ** -
2009 - *** - - -
2010 - - - - - -
2011 - - - - - - -
2012 - *** * - - - - -
2013 - *** ** - - - - - -
2014 - *** ** - - - - - - -

Rg-Normalized
WUE

2004
2005 -
2006 *** -
2007 - - -
2008 - - ** -
2009 *** - - - -
2010 - - *** - - -
2011 - - - - - - -
2012 - - - - - - - -
2013 - - *** - - - - - -
2014 - - ** - - - - - - -

Significant differences between SMA slopes for different years are shown by (*) and (-) symbols. Significance level: *,
0.01–0.05; **, 0.01–0.001; ***, <0.001; (-), non-significant relationships.
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