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Abstract: Dynamic programming is a classical algorithmic paradigm, which often allows
the evaluation of a search space of exponential size in polynomial time. Recursive problem
decomposition, tabulation of intermediate results for re-use, and Bellman’s Principle of
Optimality are its well-understood ingredients. However, algorithms often lack abstraction
and are difficult to implement, tedious to debug, and delicate to modify. The present
article proposes a generic framework for specifying dynamic programming problems.
This framework can handle all kinds of sequential inputs, as well as tree-structured
data. Biosequence analysis, document processing, molecular structure analysis, comparison
of objects assembled in a hierarchic fashion, and generally, all domains come under
consideration where strings and ordered, rooted trees serve as natural data representations.
The new approach introduces inverse coupled rewrite systems. They describe the solutions
of combinatorial optimization problems as the inverse image of a term rewrite relation
that reduces problem solutions to problem inputs. This specification leads to concise yet
translucent specifications of dynamic programming algorithms. Their actual implementation
may be challenging, but eventually, as we hope, it can be produced automatically. The
present article demonstrates the scope of this new approach by describing a diverse set of
dynamic programming problems which arise in the domain of computational biology, with
examples in biosequence and molecular structure analysis.
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Glossary

Variable conventions

symbols used for
F,G signatures
A,B,C evaluation algebras
a, b, c, ... variables for alphabet characters
s, t variables for core terms
x, y, z values of core terms under some algebra
w multiset of subterms or their values
X, Y, Z subterm variables in rules

Definitions

notions meaning defined in section
V set of variables Machinery
T (F, V ) term algebra over signature F Machinery

and variable set V
∼ associative operator any signature where needed
ε neutral element with ∼ wherever ∼ is
G tree grammar over some F Machinery
L(G) language of G, subset of T (F ) Machinery
A(t) value of term t under algebra A Machinery
A various alphabets where needed

Naming conventions

Example convention used for
HAMMING small capitals ICORE names
RNASTRUCT small capitals grammar names
SCORE small capitals evaluation algebra names
SEQ, STR three/four capital letters, italics signature names
del, ins typewriter font signature operators
’a’, ’b’, ’<’ symbols in single quotes, concrete alphabet symbols

typewriter font
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1. Introduction

Mapping from concrete to abstract
is always the easier way.

Harald Ganzinger

1.1. Motivation

In the field of biosequence analysis, combinatorial optimization problems on sequences and trees
arise in never-ending variety. These problems include string comparison, prediction and comparison of
molecular structures, pattern matching in trees and forests, and modeling of families of related sequences
or structures. Often, there is a prototypical algorithm, which is based on the dynamic programing
paradigm [1] and must be adapted to different applications. Let us skim over the domains from which
we draw the algorithmic problems described in this manuscript.

For determining similarity in genes and proteins, there is the “Needleman-Wunsch” alignment
algorithm, refered to as “string edit distance” in the broader field of computer science [2,3]. It is
used with a variety of scoring schemes that differ in their treatment of matches and mismatches, in
their modeling of gaps, and by either minimizing distance or maximizing similarity. Equally famous in
bioinformatics is the “Smith-Waterman” algorithm for finding most conserved sub-sequences in genes
and proteins [4], also refered to as the “local similarity” algorithm. It is derived from string edit distance
by allowing the algorithm to skip prefixes and suffixes of both sequences free of charge. Except for
minimizing distance (which makes no sense with local similarity), local similarity comes with the same
variants as global string edit distance. Then, there are hybrids of both algorithms: Matching a complete
sequence to a sub-sequence of a longer one, or “free shift” alignment, where one sequence may be
displaced with respect to the other, but else, a global distance or similarity is sought. When searching
sequence databases, one of the two inputs may be fixed, giving rise to a (potentially faster) matching
algorithm. In all applications, sometimes we only ask for a similarity or distance score, sometimes
we want an optimal alignment which justifies this score, and sometime we even want to obtain all
near-optimal alignments up to some score threshold, to perform further analysis on them.

Analysis of structural RNAs is also a source of algorithmic problems. RNA structure prediction is
achieved by dynamic programming algorithms, based on stochastic or thermodynamic models. Again,
one asks for optimal or near-optimal structures, for good local structures, for structures that match
a given model structure, and so on. A more sophisticated problem is addressed by the Sankoff
algorithm [5], which predicts an optimal consensus structure for two RNA molecules. On a very
abstract level, one could say that this algorithm uses two instances of the RNA folding algorithm and
one instance of sequence alignment simultaneously and with a joint optimization objective. Ideas from
string comparison are re-used in a more general form in the comparison of structures. RNA secondary
structures are naturally represented as ordered, rooted trees. On trees and forests, a familiar set of
problem variants arises. Edit distance and alignment are slightly different problems on trees. Again,
we ask for distance/similarity, local/global comparison, atomic/composite gaps, optimal/near-optimal
solutions, and we may be interested only in the optimal score or also in the underlying alignment. Where
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hidden Markov models describe sequence families, families of structures are described by covariance
models, a special form of stochastic context-free grammars.

While there is much re-use of algorithmic ideas in combinatorial optimization problems on trees and
sequences, this is not transparent in the way we represent concrete algorithms. Their formulation as
dynamic programming algorithms requires us to integrate all problem aspects–construction of the search
space, scoring, tabulation of intermediate results, and reporting one or more solutions. This leads to
algorithms with a low level of abstraction, and to programs that are non-trivial to write, tedious to debug,
and delicate to modify. Code reliability and code re-use suffer from this low level of abstraction. With
new problem variants, it is often not clear at the outset how the search space should be modeled and how
the objective function should be defined in detail. It would be advisable to experiment with different
approaches, but the high implementation effort prevents this.

1.2. Overview

We introduce Inverse Coupled Rewrite Systems (ICOREs) as a high-level and unified view on a diverse
set of combinatorial optimization problems on sequences and trees. ICOREs are based on the following
ideas: Candidate solutions of optimization problems have a natural representation in some term algebra,
whose function symbols reflect the case analysis required by the problem at hand. A tree grammar
may be used to further refine the search space by describing a language of well-formed candidates.
Optimization objectives are specified as interpretations of these terms in a suitable scoring algebra,
together with an objective function. The relation between input terms and their candidate solutions
is established by a term rewrite system. This rewrite system works in the wrong direction, mapping
solutions back to the input(s) of the problem they solve. For problems with several inputs, the rewriting
to these inputs is performed by different rules, but in a coupled manner.

These constituents provide a mathematically precise and complete problem specification. Implementing
an algorithm to solve the problem is non-trivial. To actually solve a problem for given inputs, the
coupled rewrite relation must be inverted. Candidates must be constructed, evaluated, and have the
objective applied to them. To do so efficiently, all the dynamic programming machinery must eventually
be brought in—but no allusion to dynamic programming appears in the problem specification.

The goal of such work is twofold. One wants to

• describe optimization problems on a declarative level of abstraction, where fundamental ideas are
not obscured by implementation detail, and relationships between similar problems are transparent
and can be exploited;
• implement algorithmic solutions to these problems in a systematic or even automated fashion,

thus liberating algorithm designers from error-prone coding and tedious debugging work, enabling
re-use of tried-and-tested components, and overall, enhancing programmer productivity and
program reliability.

In the present manuscript, we focus on the former of these goals. We will develop a substantial number
of problem specifications expressed in our new framework, all drawn from the application domains of
computational biology. However, as much as sequences, trees and dynamic programming are ubiquitous
in computer science, this article covers only a small sub-domain of the potential scope of our approach.
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For example, the tree comparison techniques we use with RNA secondary structure have also been
employed to compare objects assembled by robots, or to extract and compare documents from the
web [6,7]. By presenting a diverse set of real-world examples from bioinformatics, we are hoping to
convince the reader that the second goal, developing implementation techniques for ICOREs, is a new
and rewarding research challenge.

1.3. Previous Work

Quite early in the young field of bioinformatics, researchers have advocated general techniques
for specifying and implementing such algorithms. In a series of papers, Searls introduced the use of
concepts from formal language theory palwith problems in biosequence analysis [8–10]. In particular,
context free grammars were advocated for molecular pattern matching, and letter transducers were
introduced to model problems related to string edit distance of DNA sequences. This work has been
very influential in attracting computer scientists to the problems of biosequence analysis, but has
not led to competitive implementation techniques. Not much later, Lefebvre advocated the use of
s-attributed grammars [11]. He showed that not only sequence comparison, but also complex problems
such as simultaneous alignment and folding of two RNA sequences (introduced above as the Sankoff
algorithm [5]) can be described by grammars and solved by a suitable (generated) parsing algorithm.
However, s-attributed grammars are the most restricted class of attribute grammars [12], offering
little more advantage than amalgamating construction of a parse tree with its evaluation by structural
recursion. Maybe because of this limitation and the notational overhead that comes with attribute grammars,
this work has received less interest in the bioinformatics community than it may have deserved.

Algebraic dynamic programming (ADP) [13] provides a declarative approach to dynamic programming
problems over sequence data. It goes beyond the aforementioned approaches by enhancing
grammar-based descriptions with an algebraic semantics, allowing to formally model not only search
space construction, but also its evaluation under varying objectives. Several implementations of ADP as
a domain-specific language for dynamic programming over sequence data have been developed [14–16].

In Section 9, after we have laid out our new framework and have explored its range of applications,
we will explicitly relate our ideas to Searls’ letter transducers and Lefebvre’s s-attributed grammars.
We will also show that the new framework properly generalize the present ADP framework, and will
argue that it even improves its intuitive appeal.

1.4. Article Organization

This article is organized as follows. Section 2 shows a first application example, even before the
formal definitions are given. In Section 3, we collect technical definitions which are familiar from the
literature. Readers with a strong background in these concepts may skip their formal exposition and
jump right ahead. In Section 4, we formally introduce ICOREs. We suggest a pseudocode notation for
writing ICOREs, add some notational conventions, and offer an ICORE design exercise to the reader.
Then, we proceed to model various problems in biosequence and structure analysis. Section 5 discusses
sequence comparison problems in various guises, Section 6 deals with folding RNA sequences into a
secondary structure and related problems such as stochastic RNA family models, and Section 7 focuses
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on several variants of tree comparison and pattern matching. Table 1 summarizes the ICOREs presented
in this manuscript. Curious readers are invited to skip all the technicalities and take a look ahead, to
see how the problem they are most familiar with is dressed up as an ICORE. While Sections 5–7 are
concerned with the construction of the search spaces for various problem types, Section 8 deals with
the evaluation of search spaces, including the combined use of several scoring schemes and objective
functions. In Section 9, we relate ICOREs to the present state-of-the-art in implementing algebraic
dynamic programming, and to other computational models from older work. In the Conclusion, we
review some design decisions that were made with this first exposition of ICOREs, and discuss the
challenges of ICORE implementation.

Table 1. A summary of the Inverse Coupled Rewrite Systems (ICOREs) presented in this
manuscript. In a few cases, not a complete ICORE is specified, but only a grammar that
extends another ICORE.

ICORE/Grammar Dim. Problem addressed In Section Page

EDITDISTANCE 2 simple edit distance/alignment 4.2 77
AFFINE 2 edit distance, affine gaps 5.1 82

AFFIOSCI 2 oscillating affine gaps 5.1 84
AFFITRACE 2 sequence traces, affine gaps 5.1 84

LOCALSEARCH 2 generic local alignment 5.2 85
MOTIFSEARCH 2 short in long alignment 5.2.1. 86
SEMIGLOBALIGNMENT 2 semi-global alignment 5.2.2. 86
LOCALALIGNMENT 2 local alignment 5.2.3. 86
MATCHSEQ S 1 hardwired sequence matching 5.3.1. 88

MATCHAFFI S 1 same with affine gap model 5.3.1. 88
MATCHSEQ S 1 profile HMM 5.3.2. 88

with position-specific scores

RNAFOLD 1 RNA folding 6.3 93
STRUCTALI 2 struct. Alignment prototype 6.4 97
SIMULTANEOUSFOLDING 2 generalized fold and align 6.5 98
EXACTCONSENSUSSTRUCTURE 2 exact consensus structure 6.5.2. 98

for two RNA sequences
SANKOFF 2 simultaneous fold and align 6.5.3. 99
S2SGENERIC 2 covariance model, generic 6.6.1. 101
S2SEXACT 2 match RNA sequence 6.6.2. 100

to target structure
MATCH S2S R 2 exact local motif matcher 6.6.4. 103
MATCH S2S R’ 1 motif matcher, hard coded 6.6.4. 104
SCFG 1 stochastic context free grammar 6.3 93
COVARIANCEMODEL R 1 covariance model, hard coded 6.6.5. 106

TREEALIGN 2 classical tree alignment 7.2 111
TREEALIGENERIC 2 tree alignment protoype + variants 7.2.2. 113
OSCISUBFOREST 2 tree ali. with oscillating gaps 7.2.2. 117
TREEEDIT 2 classical tree edit 7.3 119
RNATREEALI 2 RNA structure alignment 7.5 127
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2. A Motivating Example

Before going to formal definitions, we start with a simple example to illustrate the main ideas behind
ICOREs. We consider the classical string edit distance problem. We are given two sequences U and V ,
to be compared under a simple edit model. There are three edit operations: Replacement of a character
symbol, deletion of a character, and insertion of a character, which can be used to transform U into V or
vice versa. Each position in U and V is edited exactly once. (Without this restriction, we would arrive
at the more general notion of a transformation distance. Only when the basic edit model satisfies the
triangle inequality, optimal edits and transformations coincide.) The space of candidate solutions is the
set of all edit scripts for U and V , defined as sequences of edit operations which transform U into V .
All edit operations are associated with an additive score, and eventually, the edit script with the minimal
overall score defines the edit distance between U and V .

We propose to treat these edit scripts as formal objects, and more precisely to encode them as terms.
To this end, we define three function symbols, one for each edit operation: rep, del, and ins. Each
such operator takes as arguments the character symbol(s) involved in the operation. We also introduce a
constant operator mty, which represents the empty edit script.

For example, consider the two strings U ="ACGTA" and V = "AATAG" on the DNA alphabet
{A,C,G,T}. One possible edit script is :

replacement of ’A’ by ’A’,
replacement of ’C’ by ’A’,
deletion of ’G’,
replacement of ’T’ by ’T’,
replacement of ’A’ by ’A’,
insertion of ’G’

This edit script is represented by the term

c =rep(A,A,rep(C,A,del(G,rep(T,T,rep(A,A,ins(G,mty))))))

We call these terms core terms, as they represent the search space of candidate solutions. A visually
better representation of this edit script would be an alignment of the two sequences, in this case

A C G T A -

A A - T A G

A term representing an edit script contains in some sense the two input sequences: U is the concatenation
of the first arguments of rep and of del. V is the concatenation of the second arguments of rep and the
first arguments of ins. This projection is formally expressed with two term rewrite systems:

rep(a, b,X) → a∼X rep(a, b,X) → b∼X
del(a,X) → a∼X del(a,X) → X

ins(a,X) → X ins(a,X) → a∼X
mty → ε mty → ε
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The alphabet character symbols a and b serve as nullary function symbols, extended by
two operators ∼ and ε. ∼ is a binary operator for the concatenation of two strings (or a character
and a string), and ε is the empty string. So U is A∼C∼G∼T∼A and V is A∼A∼T∼A∼G.

By construction, the two rewrite systems have the same left-hand sides. So we can conveniently
merge their representation into a single tabular form.

a∼X ← rep(a, b,X) → b∼X
a∼X ← del(a,X) → X

X ← ins(a,X) → a∼X
ε ← mty → ε

Since we search for the optimal edit script, we need to rank all candidate terms. The operators
{rep, del, ins, mty} constitute a signature (comparable to an interface in the programming language
Java), where the operators are functions whose argument and result types are generic. Therefore, it is
possible to assign a score to each core term with a score algebra implementing rep, ins, del, and mty as
functions over some concrete score data type. For example, the unit cost model used in the Levenshtein
distance is expressed by the score algebra UNITSCORE.

rep(a, b, x) = if a == b then x else x+ 1

del(a, x) = x+ 1

ins(a, x) = x+ 1

mty = 0

φ = min

φ = min means that we search for the edit script of minimal cost. Under interpretation by algebra
UNITSCORE, our example core term c evaluates to a score of 3 (which happens to be optimal).

Given these ingredients, a solution to the edit distance problem is defined as any core term which
rewrites to U and V by the above rewrite rules, and evaluates under the algebra UNITSCORE to the
optimal score of all such terms.

Signatures and terms, rewrite rules and algebras—this may seem a bit of a technical overhead for
defining the Levenshtein distance of two strings. However, note that we have achieved a perfect
separation of search space definition and scoring. This pays off when it comes to specifying more
sophisticated problems. More flexible scoring schemes for the edit distance problem are easily provided.
For example, our functions can score in a character-dependent fashion. Similarity scoring can replace
distance scores, with positive scores for matches, negative scores for gaps and proper replacements, and
switching to φ = max. Under a probabilistic scoring algebra, scores should multiply (rather than add up),
and we better set mty = 1. Such variations to the scoring scheme only require a new algebra definition.
Other changes affect the signature, and consequently the rewrite rules. We shall see in Section 5 that
to introduce affine gap scoring, for example, it is enough to add operators open del and open ins to
the signature.

In optimization there are many situations where we want to restrict the set of admissible solutions to
those satisfying additional criteria. To this end, we add to our formal machinery one more feature:
We will use tree grammars to restrict the universe of candidates to a subset of the algebra of core
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terms. Let us come back to the string edit distance problem, and specialize it at hand. We now require
that an edit script must not have two adjacent indels (insertion or deletion). This type of constraint is
applied, for example, in RNA-RNA interaction. We design a tree grammar that restricts the candidate
space accordingly:

A∗ → rep(a, b, A) | del(a,M) | ins(a,M) | mty
M → rep(a, b, A) | mty

A and M are non-terminal symbols. The asterisk marks A as the axiom symbol of the grammar. The
set of edit scripts satisfying the constraint on indels is exactly the language of core terms accepted by
the grammar.

This concludes our informal presentation of ICOREs. The reader who feels familiar with established
concepts such as signatures, rewrite rules and tree grammars may skip ahead from here to the definition
of ICOREs in Section 4.

3. Machinery

We now introduce the formal definitions that will be needed throughout this article. Term rewriting
is a keystone of our ICORE concept. Term rewriting is a well established computational model with
a profound body of theory [17,18]. The charm of term rewrite systems as a specification formalism is
that they also have a strong intuitive appeal, as everyone is used to a bit of equational reasoning from
elementary algebra.

In general, term rewriting is Turing complete, and termination of term rewriting is not decidable. Here
we are aiming at a certain class of combinatorial optimization problems. We will restrict term rewriting
in a way such that it becomes feasible to evaluate (via dynamic programming) a search space in the
following form: Given a term t, efficiently find all terms that rewrite to t, and choose from this set the
best candidate under some evaluation function. Therefore, what we draw from term rewriting theory is
not the full power of term rewriting, but mainly the established technical notions (i.e., signatures, rewrite
relations, rewriting modulo associativity), and the fact that terms are conveniently given an algebraic
interpretation. We first recall basic definitions and fix notations. Next, we introduce term rewrite systems
and the restricted form in which we will use them here.

3.1. Variables, Signatures, Alphabets, Terms and Trees

We start with signatures and term algebras.

• Let S be a set of sorts. Sorts are names or placeholders for abstract data types.
• We assume the existence of countably infinite sets of variables Vα for every sort α of S. The union

of all Vα is denoted by V .
• We assume a finite S-sorted signature F . An S-sorted signature is a set of function symbols

together with a sort declaration α1 × . . .× αn → α for every f of F . Here α1, . . . , αn, α ∈ S and
n is called the arity of f . Function symbols of arity 0 are called constant symbols.
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• A signature F may include an alphabet A, which is a designated subset of the nullary function
symbols (constant symbols) in F . Where the distinction matters, the function symbols in A are
called characters, and the other function symbols are called operators.
• T (F, V ) denotes the set of well-typed terms over F and V . It is the union of the sets Tα(F, V ) for
α in S that are inductively defined as follows:

1. each variable of Vα is a term of Tα(F, V ),
2. if f is a function symbol of F with sort declaration α1 × . . .× αn → α and ti ∈ Tαi

(F, V )

for all 1 ≤ i ≤ n, then f(t1, . . . , tn) is in Tα(F, V ).

T (F, V ) is called the term algebra over F and V . The set of variables appearing in a term t is
denoted by var(t), and its sort by sort(t) such that sort(t) = α when t ∈ Tα(F, V ).
• T (F ) denotes the set of ground terms of T (F, V ), where var(t) = ∅.
• A substitution σ maps a set of variables to a set of terms, preserving sorts. The application of a

substitution σ to a term t replaces all variables in t for which σ is defined by their images. The
result is denoted tσ.
• Terms and trees: We adopt a dual view on terms as trees. A term can be seen as a finite rooted

ordered tree, the leaves of which are labeled with constant symbols or variables. The internal nodes
are labeled with function symbols of arity greater than or equal to 1, such that the outdegree of
an internal node equals the arity of its label. Note that alphabet characters, being nullary function
symbols, can only occur at the leaves of a tree.
• A position within a term can be represented as the sequence of positive integers that describe the

path from the root to that position (the path is given in Dewey’s notation). We denote by t|p the
subterm of t at position p and t[u]p the replacement of t|p in t by u.

3.2. Rewrite Systems

Next, we introduce term rewrite systems and the special form in which we will use them here.

• A rewrite rule is an oriented pair of terms, denoted ` → r, such that sort(`) = sort(r) and
var(r) ⊆ var(`). Because of the last requirement, generally r → ` is not a legal rewrite rule, and
rewrite rules cannot be reversed without generating unbound variables. Furthermore, we disallow
` ∈ V , as such a rule would allow to rewrite any term, while r ∈ V is perfectly legal.
• A term rewrite system R is a finite set of such rewrite rules. The rewrite relation induced by R,

written→R, is the smallest relation closed under context and substitution containing each rule of
R. In other words, a term t rewrites to a term u, written t →R u, if there exist a position p in t,
a rule ` → r in R and a substitution σ such that t|p = `σ and u = t[rσ]p. →∗R is the reflexive
transitive closure of→R.
• In the sequel, we will consider term rewrite systems with disjoint signatures. We say that R is a

term rewrite system with disjoint signatures if it is possible to partition F into two subsets ζ and
Σ such that for each rule ` → r of R, the left-hand side ` belongs to T (ζ, V ), and the right-hand
side r belongs to T (Σ, V ). In this manuscript, ζ is called the core signature, and Σ the satellite
signature. Ground terms of T (ζ) are called core terms. ζ and Σ can both contain an associative
binary operator, denoted ∼ζ and ∼Σ respectively (see below).
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In practice, core signatures may share function symbols with satellite signatures (possibly not with
the same arity). Often, they share the alphabet. By convention, when a shared symbol occurs in
a rewrite rule, it belongs to the signature ζ on the left-hand side, and to Σ on the right-hand side.
Elsewhere, symbols of ζ will be subscripted for clarity.
• Syntactic conditions: Rewrite rules may have associated syntactic conditions for their applicability,

as in
f(a, b,X)→ X∼a if a = b for a, b ∈ A

In our framework, these conditions will only refer to characters from a finite alphabet. This
is merely a shorthand against having to write too many similar rules, and does not contribute
computational power. It must not be confused with general conditional term rewriting as in
f(x, y) + y → 2 ∗ x if x = y, where the rule is applicable if x and y can be rewritten to a
joint reduct by the given rewrite system.

3.3. Rewriting Modulo Associativity

In certain applications, we will use rewriting modulo associativity. In such cases, the signature
contains an associative binary function symbol, always denoted ∼. For each such symbol ∼, we provide
a neutral element symbol ε and a set of equations, which are to be seen as symmetric rules:

A = { (X∼Y )∼Z = X∼(Y∼Z), X∼ε = X, ε∼X = X }

=A is the smallest equivalence relation closed under context and substitution containing A. A term t

rewrites modulo A to a term u for the rewrite rule `→ r, denoted t→A,`→r u if there exist two terms t′

and u′ such that t =A t
′, u =A u

′ and t′ rewrites to u′ by the rule `→ r.
Why do we need such associative function symbols? The first reason is that strings can be described

alternatively as compositions of unary functions or as sequences of nullary operator symbols. The first
case appears somewhat artificial. In the latter case, we need to introduce one extra, binary associative
operator ∼. Consider nullary function symbols a, b, c and d, the term a ∼b∼c∼d refers to the string
"abcd". This notation is convenient to do pattern matching on sequence input. For example, the term
X∼a∼b∼Y will match to any occurence of "ab" in a longer sequence, and X∼a∼b∼Y∼a ∼b ∼Z
to any repeated occurence, with interspersed characters matched to Y . Where used, associativity adds
quite a bit of expressiveness to rewrite systems.

Aside from convenience when dealing with strings, the second reason to use the operator ∼ comes
from the desire to include problems defined on ordered, labeled, rooted trees in our framework. They
are commonly not defined over a signature, but over an (untyped) operator alphabet where each operator
can label any tree node with any number of subtrees. Considering them as function symbols, they have
flexible arity, and use only a single sort. A “tree node labeled f” with a variable number of subtrees, such
as f(x, y) and f(x, y, z), will be written in our framework as f(x∼y) and f(x∼y∼z), which allows us
to specify f as a unary operator in the signature.
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3.4. Tree Grammars

A signature F defines a language of terms, T (F ). We will provide the possibility to limit the set of
terms under consideration by the use of tree grammars. ( Our dual view on terms as trees is not strictly
necessary. Our tree grammars are actually “term grammars”, describing subsets of T (F ). Our tree
alignments, discussed later, could as well be called “term alignments”, and so on. However, when terms
are considered as data structures, as we do it here, the tree terminology is the more established one.)
A tree grammar G over a signature F is defined by the tuple G = (N,F, Z, P ), where

• F is the signature,
• N is a set of non-terminal symbols, disjoint from F , where each element is assigned a sort.
• Z is the starting non-terminal symbol, with Z ∈ N , and
• P is a set of productions of the form X → t, where X ∈ N , t ∈ T (F,N), and X and t have the

same sort.

L(G) denotes the language of G. It is the (sub)set of terms of T (F ) that can be derived from Z using
productions of P .

3.5. Algebras

Every aspect of scoring and applying objective functions in our combinatorial optimization problems
will be modeled by algebras.

• Given signature F , an F -algebra A associates a carrier set (i.e., a concrete data type) with each
sort symbol in F , and a function of the corresponding type with each f ∈ F . A(t) denotes the
value obtained by evaluating term t under the interpretation given by algebra A. Often, we shall
provide several algebras to evaluate terms.
• An objective function is a function φ: M → M , where M is the domain of multisets (bags)

over some carrier set in a given algebra. (Multiple carrier sets give rise to one overloaded instance
of φ on each carrier set.) Typically, φ will be minimization or maximization, but summation,
enumeration, or sampling are also common. Our objective functions are defined on multisets
rather than sets, as we want to model problems such as finding all co-optimal solutions of a
problem instance.
• An F -algebra augmented by an objective function for multisets over each of its carrier sets is called

an evaluation algebra.

Up to here, we have collected technical notions that have been used in diverse fields of theoretical
computer science. We are now going to assemble them to make ICOREs.

4. Inverse Coupled Rewrite Systems

In this section, we make concrete the sketch of ideas laid out in Section 2. We give the formal
definition of ICORES and their semantics, and suggest a semi-formal notation in which examples will
be presented.
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4.1. ICORE Definitions

Definition 1. Inverse coupled rewrite system.
Let k be a positive natural number. An ICORE of dimension k consists of

• a set V of variables,
• a core signature ζ , and k satellite signatures Σ1, . . . ,Σk, such that ζ ∩ (Σ1 ∪ . . . ∪ Σk) = ∅.

(Function symbols of ζ are disjoint from all Σi, except for a possible shared alphabet.)
• k term rewrite systems with disjoint signatures, R1, . . . , Rk, which all have the same left-hand

sides in T (ζ, V ). (Those systems are called the satellite rewrite systems.)
• optionally a tree grammar G over the core signature ζ ,
• an evaluation algebra A for the core signature ζ , including an objective function φ.

In the satellite rewrite systems, the multiple right-hand sides for the same left-hand side are also
called rule projections and are written in the form r1 ← ` → r2 for k = 2, or with a double arrow
`⇒ r1 | . . . | rk for any dimension k.

Since the core signature and the satellite signatures are disjoint, each rewrite step erases all operator
symbols present in the left-hand side of the rewrite rules, and all satellite rewrite systems are terminating.
No part of a term can be rewritten twice: Once an function symbol is read as part of a left-hand side, it is
consumed. This ensures that a position in a term may take part in a rewrite only once, which corresponds
to the classical edit model in string comparison: Each character in a string is to be edited at most once.
This essential restriction compared to general term rewriting will be further discussed in Section 9.4.

How to compute with an ICORE? We introduce the notion of coupled rewriting which means in
simple words that a core term is rewritten into k satellite terms by using the same rewrite rules in the
same positions. Technically, this definition is a bit complicated as it requires to keep track of what are
“same” positions over a series of rewrite steps.

Definition 2. Coupled rewrite relation. Let c be a core term of T (ζ, V ), seen as a tree (This means that
∼ symbols are omitted, and the position of a symbol is not modified when we apply associativity of ∼).
We provide each operator symbol occuring in c with its initial position in c (for example using Dewey’s
notation). A coupled rewrite of c is a sequence of k rewrite derivations c →∗R1

t1, . . . , c →∗Rk
tk such

that there exist some number j and intermediate reducts (t01, . . . , t
j
1), . . . , (t0k, . . . , t

j
k) satisfying

1. c = t01 = · · · = t0k (start of a coupled derivation),
2. t1 = tj1, . . . , tk = tjk (end of a coupled derivation),
3. for each e, 0 ≤ e < j (step in a coupled derivation), there exists a rule projection `⇒ r1 | . . . | rk

such that tei rewrites modulo associativity to te+1
i with the rule ` → ri and all rewrites apply

simultaneously at the same place. In other words, for each i, there is a term vi, a position pi in vi
and a substitution σi such that tei =A vi, vi|pi = `σi, te+1

i = vi[rσi]pi , and all operator symbols in
` have the same initial position in c.
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In the sequel, we shall write t1 ←∗ c→∗ t2 to denote that c→∗ t1 and c→∗ t2 is a coupled derivation.
We will use the double arrow symbol to designate a coupled rewrite of a core term c for any dimension
k, c⇒∗ t1 | . . . | tk .

Example 1. In Section 2, we have introduced an ICORE of dimension 2 for the string edit
distance problem with core signature operators {rep, ins, del, mty}. For this ICORE, the core term
c = rep(A,A, rep(C,A, del(G, rep(T,T, rep(A,A, ins(G, mty)))))) allows for the following coupled
rewriting derivation.

rep(A,A, rep(C,A, del(G, rep(T,T, rep(A,A, ins(G, mty))))))

↙ ↘

A∼rep(C,A, del(G, rep(T,T, rep(A,A, ins(G, mty))))) A∼rep(C,A, del(G, rep(T,T, rep(A,A, ins(G, mty)))))
↓ ↓

A∼C∼del(G, rep(T,T, rep(A,A, ins(G, mty)))) A∼A∼del(G, rep(T,T, rep(A,A, ins(G, mty))))
↓ ↓

A∼C∼G∼rep(T,T, rep(A,A, ins(G, mty))) A∼A∼rep(T,T, rep(A,A, ins(G, mty)))
↓ ↓

A∼C∼G∼T∼rep(A,A, ins(G, mty)) A∼A∼T∼rep(A,A, ins(G, mty))
↓ ↓

A∼C∼G∼T∼A∼ins(G, mty) A∼A∼T∼A∼ins(G, mty)
↓ ↓

A∼C∼G∼T∼A∼mty A∼A∼T∼A∼G∼mty
↓ ↓

A∼C∼G∼T∼A A∼A∼T∼A∼G

At each step, the active function symbol involved in the rewriting is underlined. We say that the two
strings "ACGTA" and "AATAG" are the coupled reducts of c, or equivalently that c is an inverse coupled
reduct of "ACGTA" and "AATAG" . We write

"ACGTA"←? t→? "AATAG"

In the above example, aside from the core term c, there are many other core terms that also rewrite to
the two satellite inputs. Together, they constitute the search space of an optimization problem.

Definition 3. ICORE candidate solutions. Given a k-tuple of satellite terms (t1, . . . , tk), the set of
candidate solutions for (t1, . . . , tk) is the set of core terms c such that

1. c is recognized by the tree grammar: c ∈ L(G), and
2. c has a coupled rewriting into all inputs: c⇒∗ t1 | . . . | tk.

Fact 1. The set of candidate solutions of an ICORE is recursive.

Proof. This comes from the fact that each rewrite system in an ICORE is terminating. Hence, there is
only a finite number of derivations starting from a given core term, and all these derivations are finite.
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We do not go into deeper details about efficient algorithms to build the set of candidate solutions. This
is out of the scope of this paper. Some lines of research will be exposed in Section 10. Which problem
an ICORE actually solves is given by the set of optimal candidate solutions. This set depends on the
evaluation algebra and its objective function.

Definition 4. Solution of an ICORE. Given an ICORE and a k-tuple (t1, . . . , tk) in T (Σ1)×· · ·×T (Σk),
the multiset of optimal solutions is given by

φ([A(c) | c ∈ L(G), c⇒∗ t1| . . . |tk])

The use of multisets in this definition calls for some explanation. Although the most common
application in our type of problem is to compute a single answer, we also want to do k-best optimization,
or return all answers up to a score threshold. There is no upper limit on the number of answers, which
calls for a answer set. Furthermore, there may be cases (some times for certain sub-problems) where no
solution exists, which is gracefully handled by returning ∅. But why multi-sets? While c ∈ L(G) denotes
a set, [A(c) | c ∈ L(G), . . .] denotes a multiset, because several candidates may evaluate to the same
score under A. We want to be able to speak, for example, about the number of co-optimal candidates
in a solution. These candidates may be evaluated under a second algebra B and selected from by yet
another choice function associated with B. Of all the most tasty pizzas in our search space, we want the
cheapest ...–more on this in Section 8. This is why we provide for multiple elements in Definition 4.

Definition 4 makes clear why we speak of inverse rewrite systems. While c rewrites to t1, . . . , tk by
the rules of R1, . . . , Rk, terms ti are the actual inputs of a problem instance, and the core term c must be
found by constructing in reverse the (coupled) rewrites c→∗ ti, for all such c.

Definitions 1, 2, 3 and 4 complete our formal framework of ICOREs. Later, in Section 8, we
will introduce operations that built sophisticated evaluation algebras from simpler ones. Since such a
product of two algebras is just another algebra, this will add convenience, but not a conceptual extension
to ICOREs.

4.2. ICORE Pseudocode

Let us introduce a semi-formal, pseudocode notation for ICOREs. Our goal is to describe ICOREs in
a way that is both concise–easy to write and read–and complete in the sense that there is all information
required to actually compile the ICORE into executable code. And even more: we want a certain level
of redundancy that allows a compiler to safeguard against human errors. For example, types of functions
must be declared, although in principle, it might be possible to infer them automatically. The notation
we propose here is preliminary and open to change.

ICORE presentation. We summarize our string edit distance example of Section 2 in ICORE
EDITDISTANCE in our pseudocode. We assume the alphabet A to be known from the context, but it
could also be listed explicitly or be declared as one of a set of predefined alphabets, such as all ASCII
characters or the DNA alphabet {A,C,G,T}.
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[H] ICORE EDITDISTANCE: dimension 2

Satellite signature SEQ = A ∪ {∼, ε} with

a : → A∗ -- for a ∈ A single letter sequence (variable)
∼ : A∗ ×A∗ → A∗ -- sequence concatenation
ε : → A∗ -- the empty sequence

Satellite signature SEQ -- the second input also uses signature SEQ
Core signature ALI = A ∪ {rep, del, ins, mty} with

rep : A×A× Ali → Ali -- replacement
del : A× Ali → Ali -- deletion
ins : A× Ali → Ali -- insertion
mty : → Ali -- empty aligment

Grammar T (ALI) -- no need for a tree grammar
Rules

a∼X ← rep(a, b,X) → b∼X
a∼X ← del(a,X) → X

X ← ins(a,X) → a∼X
ε ← mty → ε

Algebra UNITSCORE Ali = N

rep(a, b, x) = if a == b then x else x+ 1

del(a, x) = x+ 1

ins(a, x) = x+ 1

mty = 0

φ = min
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The first line gives the name of the ICORE and its dimension, i.e. the number of inputs. The first
satellite signature is explicitly declared, while its name SEQ is simply re-used for the second satellite
signature. Two dashes start a comment that extends until the end of the line. Specifying T (ALI) in
place of a tree grammar, we express that all core terms are legal members of the overall search space.
(Although not needed here, we strongly recommend the use of tree grammars to explicitly restrict the
search space. This is safer than the common practice of making such restrictions the responsibility of
the scoring scheme, for example by penalizing mal-formed candidates with a score of ±∞. In that case,
we still have an unknown number of zombies that populate the search space. They may not surface
as optimal solutions, but how about evaluating, in addition, the size of the search space, or compute a
score average ...?]) The rewrite rule set is not given an extra name, but is refered to by the ICORE name
if necessary.

An arbitrary number of algebras for the core signature can be specified. Here we only show algebra
UNITSCORE. Next to the algebra name, the carrier sets for all the sorts in the signature are specified.
Here, there is only one sort, Ali, which is interpreted by natural numbers. Functions operating on such
values, such as min and +, are imported from a suitable programming environment.

For functional programmers, a signature such as ALI resembles an algebraic data type, here with
constructors {rep, del, ins, mty}. In fact, such a data type can be supplied as an algebra for enumerating
the search space in symbolic form. While infeasible for realistic input sizes, it is instructive to do such
enumeration on small inputs during program development.

We will always present the components of an ICORE in the above order, although there is no intrinsic
need for it. As these concepts are declarative, any order would have the same meaning, as given by
Definition 4. We give explicit names to many ICORE components, and allow them to be imported by
name and possibly extended in further ICOREs. We will make extensive use of inheritance (as in object
oriented languages) by means of an extends . . . with . . . construct.

Further notational conventions. As we deal with a large number of ICORE examples, introducing an
even larger number of component names, we adhere to the following naming conventions.

• ICORE, grammar and algebra names are written in SMALL CAPITALS.
• Signatures have three- or four-letter names in ITA LICS.
• Sort names have an inital upper-case letter.
• Operators are written in typewriter font.
• Concrete alphabet symbols are written in typewriter font, such as A, +.
• Variables a, b, c refer to alphabet characters, X, Y, Z to (sub-)terms in rewrite rules (that may

undergo further rewriting), and x, y, z to values derived from core terms in some algebra.
• The variable w is reserved for multisets of candidate values, on which objective functions operate.

4.3. An ICORE Exercise

Although our ICORE notation as introduced above requires quite some detail, ICORE design starts
on a more informal level. In this section, we define a small but non-trivial problem to be solved, sketch
the first design ideas, and leave it to the reader to add in the remaining detail. Our problem is the
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following: Given two strings, we want to determine their minimal Hamming distance under the unusual
convention that palindromic subsequences in either input string may be ignored, contributing a fixed
score of 1 (independent of their length) to the distance. This turns the Hamming distance problem
into an optimization problem, because different decisions about which palindromes to ignore lead to
different scores.

Example 2. For the sequences "aabbccbb" and "aaccbbaa", we have distance scores of 2, 3, 4,
and 6 for four example candidates:

aaBBccbb aa bBCCBb AABBccbb aabbccbb

aa ccbbAA aaCCb bAA AA ccbbAA aaccbbaa

where the capital letters indicate the palindrome choices, and the small letters the matched characters.
Note that "AABB" marks two adjacent palindromes of length 2 in the third case. Of course, there are
many more candidates which must be considered to find the minimum.

As the input data types are normally clear when a problem is posed, the first step in ICORE design
is to decide upon the signature of core terms ( In a sense, this overthrows common practice and most
textbook advice on dynamic programming (unless you already adhere to the algebraic style). There, a
data type representing candidate solutions is not defined explicitly. In the implementation, we clearly
do not want to explicitly represent a search space of exponential size. But for developing an algorithm,
the candidate trees are really at the heart of the design. We trust on our eventual ICORE compiler to
perform the deforestation, taking care that candidates are evaluated instead of explicitly constructed. We
will return to this aspect in the concluding discussion.) All the situations that we want to distinguish and
score differently must be captured, so it is good to draw an example candidate as a tree. The leftmost
candidate of the above might look like this:

rep

b

rep

b

turn
a

pal
mty

ipal

b

repc

rep

rep

c

turn

pal

dpal

rep

a

a

This example hopefully contains all the relevant cases. Note that with rep, only one character is
specified. In this application, “replacements” are exact matches, and there is no need to have the same
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character twice in the core term. Distinguishing matched parts from ignored palindromes calls for a
signature with two sorts: A for any kind of sequences and P for palindromic sequences.

Core signature
rep : A× S → S

mty : S

dpal : P × S → S

ipal : S × P → S

pal : A× P → P

turn : → P

dpal is used to initiate a palindrome in the first input, ipal one in the second input. Even if we plan to
score these cases symmetrically, we must distinguish them, because they must rewrite differently. pal
generates the palindrome characters; each character is represented just once. Now let us try for some
rewrite rules. The first two deal with character matches, the others deal with palindromes:

a∼S ← rep(a, S) → a∼S
ε← mty → ε

P∼S ← dpal(P, S) → S

S ← ipal(S, P ) → P∼S
a∼P∼a← pal(a, P ) → a∼P∼a

ε← turn → ε

With these rules, our candidate term must have a coupled rewrite to the inputs. It is insightful to perform
the coupled rewrite by hand a few times. For

t = rep(a, rep(a, dpal(pal(b, turn), rep(c, t′)))) where

t′ = rep(c, rep(b, rep(b, ipal(mty, pal(a, turn)))))

we find
"aabbccbb"← t→ "aaccbbaa"

as expected. Thus, our design might be on the right track. We leave it to the reader to try write down
the other candidates as terms, and to add some scoring algebras. The first would be an algebra B such
that B(t) = 2 as postulated above. Which operator(s) should account for the palindrome score? Should
we worry about empty palindromes? Have we covered single-letter and odd-length palindromes at all?
What if we wanted to assign, more generally than formulated above, an affine, length dependent score to
palindromes? And so on. Have fun.

4.4. Why Rewriting the Wrong Way?

Before we proceed to real-world applications, let us reflect for a moment on the “inverse” in ICOREs.
Why do we specify problems by rewriting solutions to inputs, rather than the other way round?

Satellites terms pose problem instances and define a search space of different solutions. Core terms
represent individual solutions, and all details of scoring. In doing so, core terms are more concrete
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than satellites. Mapping from concrete to abstract is always the simpler direction–all the information
is there, we just transform it and may discard parts of it. Left-hand sides match the core term,
right-hand sides produce the satellite. Variables on the left-hand side are instantiated to parts of the
the core term, but may be dropped in the emerging satellite. Good for us, as this makes our rewrite
rules well-formed, satisfying the requirement var(r) ⊂ var(l). Trying to rewrite the other way, from
abstract to concrete, detail must be generated, and unless the solution is unique, it must be chosen from
many possibilities by an optimization process. Technically, the reversed rewrite rules would introduce
free variables, to be instantiated by a search process. This process must be described, for example, by
crafting DP recurrences, and we are back at the cumbersome and low-level practices of the past.

The convenience offered by ICOREs come from the fact that we allow designers to specify their
problem in the easy direction: CONCRETE→ ABSTRACT, or RESULT→ PROBLEM, and the semantics
of ICOREs reverses the direction. Definition 4 requires to construct the whole search space and evaluate
it efficiently. In simple words: Modelers describe how answers relate to questions, and we hope to
automatically provide the transformation from questions to answers.

5. ICOREs for Sequence Analysis

We have used the string edit distance as an expository example in Section 2. We now demonstrate the
expressivity and the universality of the ICORE framework on several other popular problems in sequence
analysis. Sequence comparison is used in many flavours in computational biology, dealing with DNA,
RNA or protein sequences. Just as well, we might be comparing text documents or sequences of peaks
from mass spectrum analysis. We will consider alignments with affine gap models, local search, and
approximate matching, and show how ICOREs allow to move from a given problem to another one in a
systematic way. Figure 1 summarizes all these problems. Throughout this section, we assume a generic
alphabet A and use the core signature ALI = A ∪ {mty, rep, ins, del}.

5.1. Sequence Comparison with an Affine Gap Model

5.1.1. Standard Affine Gap Model

We refine the simple edit distance approach with an affine gap model, such as introduced in Gotoh’s
algorithm [19]. The idea of affine gap scoring is that a gap of length n should be charged a cost of type
o + (n− 1)e, where o is a (high) initial “opening” charge while e is a smaller charge for gap extension.
This model is motivated, for example, by gene comparison, where breakage of the DNA is rare, but once
it is broken, an insertion or deletion of any length is likely. For that, we need to introduce new operators
in the core signature, open del and open ins, while we retain del and ins which now designate
gap extension.
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Figure 1. Overview of sequence analysis problems addressed in Section 5. Solid arrow lines
indicate transformations between icores that are detailed in the text. Dashed arrow lines
indicate transformations that are left as exercise for the reader.
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ICORE AFFINE: dimension 2

Satellite signature SEQ, SEQ
Core signature AFF extends ALI with

open del : A× Ali → Ali -- deletion gap opening
open ins : A× Ali → Ali -- insertion gap opening

Grammar AFFI

A∗ → rep(a, b, A) | open del(a,D) | open ins(a, I) | mty
D → del(a,D) | rep(a, b, A) | open ins(a, I) | mty
I → ins(a, I) | rep(a, b, A) | open del(a,D) | mty

Rules extends EDITDISTANCE with

a∼X ← open del(a,X) → X

X ← open ins(b,X) → b∼X

Algebra AFFINESCORE: We leave it to the reader to define a scoring algebra that assigns a
(relatively) large cost to deletion and insertion openings, and a smaller cost to extensions.
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ICORE AFFINE is our first case where it is convenient to use a tree grammar for defining precisely
the candidate space. The grammar ensures that each gap begins indeed with a gap opening, followed
possibly by extension operations. One can note that the dependency graph (Recall the definition of a
dependency graph of a grammar: the nodes are the non-terminal symbols. There is an edge from the
node labeled by the non-terminal S to the node labeled by the non-terminal T if there is a production of
the form S → c(T )) of the grammar AFFI has the same architecture as the finite state transducer usually
associated to alignments with affine gap costs, such as displayed in a classical textbook ([20], chapter 2).
This transducer takes as input the first string, and outputs the second string. The edit script is obtained as
the list of states visited, and each transition arc can be assigned a score. Figure 2a shows this transducer,
and 2b shows the dependency graph of AFFI.

Figure 2. (a) Finite State Automaton for alignment with affine gap weights (source [20]);
(b) Dependency graph for the grammar AFFI; (c) for the grammar AFFIOSCI; (d) and for the
grammar AFFITRACE. The start state/axiom symbol is marked by an arrowhead.
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Example 3. For the pair of sequences "GCTGTCCA" and "ACGAATGCA" the core term

c = rep(G,A, rep(C,C, open ins(G, ins(A, ins(A, rep(T,T, rep(G,G,

open del(T, del(C, rep(C,C, rep(A,A, mty)))))))))))

encodes the alignment

G C - - - T G T C C A

| | | | |

A C G A A T G - - C A

On the other side, a term such as rep(A,A, del(T, rep(G,T, mty))) is banned by the grammar because
the gap extension has no preceding gap opening. It does not correspond to a legal alignment in the affine
gap model. A borderline example is a term such as rep(A,C, open del(G, del(A, open del(T, mty)))),
because the “same” gap contains two gap opening operations. Many formulations of affine gap alignment
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allow for this case–it will never score optimally, so why care. However, should we be interested also in
near-optimal solutions, it is more systematic to keep malformed candidates out of the search space. Our
grammar rules out this candidate solution.

5.1.2. Variants of the Affine Gap Model: Oscillating Gaps and Traces

By modifying the grammar AFFI, we can also adjust the kinds of alignments actually considered in
search of the optimal one. We give two such examples.

In a first variant, let us provide for oscillating gaps. With grammar AFFI, adjacent deletions/insertions
or vice versa are charged two gap opening costs. With oscillating gaps, switching from a deletion directly
to an insertion (or from an insertion directly to an insertion) is not charged by an extra gap opening cost.
To express this change, we merely have to replace the grammar AFFI with AFFIOSCI. Rather than two
distinct gap modes–nonterminal symbols D and I , we only have a single state G. (Experts know that in
the implementation, this reduces three dynamic programming tables to two.) The dependency graph is
given in Figure 2c.

Grammar AFFIOSCI

A→ rep(a, b, A)| open del(a,G)| open ins(a,G)| mty
G→ del(a,G) | ins(a,G) | rep(a, b, A) | mty

In the second variant, we consider traces rather than alignments. The trace of an alignment is the
sequence of matched residues. This means that traces do not specify an order between adjacent deletions
and insertions. In the graphical representation of an alignment, this can be modeled by enforcing a
convention that deletions always precede adjacent insertions. In the following example, the leftmost
alignment satisfies the trace condition, the others are considered redundant.

AACC--TT AA--CCTT AA-CC-TT AAC-C-TT AAC--CTT

|| || || || || || || || || ||

AA--GGTT AAGG--TT AAG--GTT AA-G-GTT AA-GG-TT

Starting from grammar AFFI, we design grammar AFFITRACE, which disallows transitions from state I
into state D. The dependency graph is given in Figure 2d.

Grammar AFFITRACE

A → rep(a, b, A)| open del(a,D)| open ins(a, I)| mty
D → del(a,D) | rep(a, b, A) | open ins(a, I)| mty
I → ins(a, I) | rep(a, b, A) | mty

So, if there are to be adjacent insertions and deletions in an alignment, this can only be
expressed by a core term where deletions come first. AFFITRACE allows a core terms such as
open del(C, open ins(G, X)). By the asymmetry of its productions, it precludes the core term
open ins(G, open del(C, X)) which would redundantly designate the same trace. Note that, when
moving from standard affine gaps to oscillating gaps or traces, this only requires a different grammar,
while the rest of the ICORE remains unchanged.
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ICORE LOCALSEARCH: dimension 2 extends X with X ∈ {AFFINE,AFFIOSCI,AFFITRACE}
Core signature LOC extends AFF with

skip del : A× Ali→ Ali -- skipping a character in the first input
skip ins : A× Ali→ Ali -- skipping a character in the second input

start : Ali× Ali→ Ali -- start of the proper alignment

Rules extends X with -- rules from ICORE X as chosen above, plus

a∼X ← skip del(a,X) → X

X ← skip ins(a,X) → a∼X
X∼Y ← start(X, Y ) → X∼Y

Algebra LOCALSCORE extends AFFINESCORE with

skip del(a, x) = x

skip ins(a, x) = x

start(x, y) = x

5.2. From Global Comparison to Local Search

So far, we have been interested in global comparison: The alignment spans the entire length of the
input sequences. How to transform the previously introduced ICOREs to be able to identify regions of
local similarity within long sequences? We can do this in a unified way. We add three new operators
to the core signature: skip del to allow for skipped characters at the beginning and end of the first
input sequence, skip ins to allow for skipped characters at the beginning and end of the second input
sequence, and start that indicates the start position of the alignment. start takes two subterms–the
left one contains the proper alignment, the right one covers any trailing sequence parts. We capture these
ideas in a generic ICORE, called LOCALSEARCH and presented on page 85, that will be specialized to
different applications.

The ICORE LOCALSEARCH is to be completed (Note that by construction, LOCALSEARCH is a
complete ICORE, still using the grammar from the extended ICORE X. This grammar does not make
use of any of the extensions. Thus, the search space of LOCALSEARCH is the same as that of X,
and by Definition 4, both ICOREs return the same solutions.) by the choice of a grammar. In the
subsequent examples, we assume thatX= AFFINE. LOCALSEARCH extends ICORE AFFINE, and hence,
the grammars specified are extensions of AFFINE’s grammar AFFI. We could as well use AFFIOSCI or
AFFITRACE, which implement alternative gap models in the matched parts of the inputs.
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ICORE MOTIFSEARCH: dimension 2 extends LOCALSEARCH with

Grammar MOTIFSEARCH extends AFFI with

T ∗ → skip ins(a, T ) | start(A,U)

U → skip ins(a, U) | mty

ICORE SEMIGLOBALIGNMENT: dimension 2 extends LOCALSEARCH with

Grammar SEMIGLOBALALIGNMENT extends AFFI with

T ∗ → U | V

U → skip ins(a, U) | start(A,W )

V → skip del(a, V ) | start(A,Z)

W → skip del(a,W ) | mty

Z → skip ins(a, Z) | mty

5.2.1. Motif Searching

Find the best occurence of the first sequence in the second sequence.
Since we seek a complete match of sequence x within sequence y, the grammar only uses the

skip ins operator, allowing us to skip a prefix and a suffix of y without charge according to
algebra LOCALSCORE.

5.2.2. Semi-Global Alignment

Find the best possible alignment that includes the start of x and end of y, or vice versa.
This grammar allows an alignment to skip a prefix of y (via skip ins) and a suffix of x (via

skip del), or vice versa, at no charge according to algebra LOCALSCORE. It disallows all the other
combinations of skipped pre- or suffixes.

5.2.3. Local Alignment

Find the pair of substrings with the best possible alignment. This is also known as the
Smith-Waterman algorithm.

ICORE LOCALIGNMENT: dimension 2 extends LOCALSEARCH with

Grammar LOCALIGNMENT extends AFFI with

T → skip ins(a, T ) | skip del(a, T ) | start(A,U)

U → skip ins(a, U) | skip del(a, U) | mty
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This grammar permits arbitrary skipping of prefixes and suffixes, before the proper alignment (under
the gap model of AFFI). Prefix and suffix skipping can use insertions and deletions in any order.
We leave it to the reader to provide a grammar that enforces an unambiguous way [21] of prefix and
suffix skipping.

5.3. Approximate Motif Matching and HMMs

So far, our alignment problems expect two input sequences, called U and V in Section 2. Now we
consider the scenario where one of the sequences is fixed. We shall use the letter S instead of U . When
the fixed S is to be matched against many “query” sequences V , a specific matcher for S is of interest.
Such a program has S hardwired into it, takes V as its only argument, and has the potential to be more
efficient than our generic alignment algorithms. Furthermore, it can be equipped with a scoring algebra
that applies position-specific scores, derived from S.

Hardwiring S means we are heading towards an ICORE of dimension 1 by eliminating the dimension
related to S. In this process, the grammars of the previous ICORES are specialized towards S, which
then is no longer required as input. There is a systematic construction for a such specialization. We start
from multiple copies of grammars for core terms that are alignments of S and V . Then, we specialize
the grammar to produce only core terms that rewrite to S in the first component. When this is achieved,
we can simplify and delete all reminiscence of S, and dispense with the first component of the rewrite
rules. The overall derivation process can be seen as the partial evaluation of the original ICORE with
respect to the given argument S.

5.3.1. Approximate Matching

Let us start from ICORE EDITDISTANCE of Section 2 to develop an approximate matcher
MATCHSEQ S. This matcher will solve the same problem as EDITDISTANCE applied to S and V , but
has only V as its input. It will be obtained from EDITDISTANCE by modifying the grammar.

EDITDISTANCE is a plain ICORE where the underlying grammar was just:

S → rep(a, b, S) | del(a, S) | ins(b, S) | mty

In this grammar, the occurences of a are responsible to rewrite to the characters of the non-input S
(which is why we use S also for the name of the non-terminal symbol).

The core language of MATCHSEQ S should be composed exactly of the subset of core terms of
EDITDISTANCE that rewrite to S for the first satellite system. To specify this set, we specialize the
grammar in the following way: Assume S = s1 . . . sn. We take n + 1 copies of the grammar, where we
rename S into S1 . . . Sn+1. S1 is the start symbol, and Sn+1 is used in the terminating rule. In the i-th
copy, we replace a by the known character si. This gives the grammar MATCH S shown below.

The rewrite rules of MATCHSEQ S are simply rules of EDITDISTANCE, where we now drop the first
dimension 1. When the rewrite rules are applied to reduce a core term of L(MATCH S), variable a
always binds to a character of S that is hard-coded in the grammar, while variable b binds to a symbol of
the query sequence V .
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ICORE MATCHSEQ S: dimension 1

Satellite signature SEQ
Core signature ALI
Grammar MATCH S

Si → rep(si, b, Si+1) | del(si, Si+1) | ins(b, Si) for 1 ≤ i ≤ n

Sn+1 → ins(b, Sn+1) | mty

Rules

rep(a, b,X) → b∼X
del(a,X) → X

ins(b,X) → b∼X
mty → ε

In the above example, we chose to derive our approximate matcher from the simpler ICORE
EDITDISTANCE. We could as well have derived it from the ICORE AFFINE, or any of its variants.
For example, the specialized grammar derived from grammar AFFI is as follows:

Grammar MATCHAFFI S

Ai→ rep(si, b, Ai+1) | open del(si, Di+1) | open ins(b, Ii)

Di→ del(si, Di+1) | rep(si, b, Ai+1) | open ins(b, Ii)

Ii→ ins(b, Ii) | open del(si, Di+1) | rep(si, b, Ai+1)

An+1→ open ins(b, In+1) | mty
Dn+1→ open ins(b, In+1) | mty
In+1→ ins(b, In+1) | mty

We leave the other cases, AFFIOSCI and AFFITRACE as an exercise for the reader. These new grammars
are named MATCHOSCI S and MATCHTRACE S, and their dependency graphs are shown in Figure 3.
Whatever variant of AFFI we start from, we will arrive at a matcher ICORE of dimension 1 with different,
inherited properties.

5.3.2. From Approximate Matching to Profile HMMs

Proceeding from an approximate matcher to an HMM is mainly a change of view. Indeed, the
grammar MATCHAFFI S already has the architecture of a profile HMM. This is shown in Figure 3.
Here are some differences and adaptations:

• HMMs are normally described as Moore machines, which emit symbols on states, independent of
transitions. In our grammar, ”emissions” are associated with the transitions: symbol si is generated
on transition into from Si to Si+1. In this sense, they are closer to Mealy machines.
• In a profile HMM, the target model is built from a multiple sequence alignment, rather than from

a single sequence. In the target S, the “characters” now are columns from that alignment. Each
matching state of the HMM (square state) is a position in the target sequence.
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• Scoring parameters in HMMs are position-specific. This implies that the scoring algebra of the
ICORE should take into account the position in the core term: In rep(si, b, x), column si is
represented simply by i, which is used to look up the score parameter for this position.

Figure 3. (a) Graphical representation of a profile HMM (left, source: [20],
Figure 5.2.); (b) dependency graph for grammar MATCHAFFI S; (c) for MATCHOSCI S;
and (d) MATCHTRACE S.
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Looking at HMMs as special ICOREs sheds a new light on profile HMMs. For example, the textbook
model allows for state sequences such as D1I1I1I1D2D3I3I3I3..., which is but one of many different
transition paths for the same situation: an adjacent group of (say) 6 insertions and 3 deletions has

(
6+3

3

)
state paths, and their probabilities must be added to obtain the correct probability of this situation.
Returning a most likely state path is meaningless in this situation. Our MATCHSEQ S, derived from
EDITDISTANCE, shares this undesirable property.

But starting from an ICORE using grammar AFFITRACE instead, we obtain alternative profile HMMs
with better properties. Consider Figure 3d: a matcher derived from AFFITRACE inherits the avoidance
of such ambiguity, by enforcing the convention that deletions must precede insertions whenever they
are not separated by a replacement. With this architecture, we have a state transition sequence
A1D1D2D3I3I3I3I3I3I3 as the only representation of the critical situation, and it collects the probability
of this situation in a single state path.

6. ICOREs for RNA Secondary Structure Analysis

6.1. RNA Structure Analysis Overview

RNA is the active form of genetic information. In contrast to DNA, RNA is a single chain molecule,
and with its backbone bending back onto itself, it forms structure that is responsible for an enormous
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variety of biological functions. Certain bases arranged on the backbone may form hydrogen bonds, and
this set of base pairs, abstracting from their spatial arrangement, is called the secondary structure of an
RNA molecule. A tiny example is shown in Figure 4. Computational analysis of RNA gives rise to a
number of problems related both to the sequence and the secondary structure of the molecule: structure
prediction, structure comparison, structural motif search, and more. The purpose of this section is to
show how all these problems can be adressed in an unified way with ICOREs. Relationships between
the different problems become explicit when formulated as ICOREs, while in the traditional dynamic
programming recurrences, they are buried by detail.

Figure 4. Example of RNA secondary structure. This diagram shows a 2D representation
of a secondary structure for the sequence "ACGACGGAUCUU" (left). This structure contains
four base pairings: A-U, C-G, G-C and G-C. We also display its bracket-dot representation
(middle), and its encoding within the satellite signature RNA, SAS and DOT (right).
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We begin with the simplest version of RNA structure prediction, starting from a single sequence.
This also serves to introduce readers without a bioinformatics background to RNA structure problems.
We then continue with the problem of RNA structural alignment, where two sequences with a known
or to-be-predicted structure are aligned for best agreement of sequence and structure. This problem
will serve as a general template for subsequent problems: simultaneous folding and alignment of RNA
sequences, and sequence to structure comparison.

6.2. Satellite Signatures for RNA Sequences and Structures

Before proceeding, we introduce the three satellite signatures that will be shared by the upcoming
ICOREs. Input to our problems will be one or more RNA sequences, with or without secondary structure
indicated. The first signature RNA is used to denote plain sequences over the alphabet of RNA bases
A(denine), C(ytosine), G(uanine), and U(racil).

Satellite signature RNA
alphabet {A,C,G,U}
operators {∼, ε}
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The second signature SAS describes an RNA sequence together with its secondary structure in a concise
way. The name SAS stands for “structure-annotated RNA sequence”. ([This is closely related to, but
not to be confused with “arc-annotated sequences”, which we will use in Figure 5. An arc indicates
a base pair and knows its two end positions. In an SAS, you need a little parser to find the matching
<U for a given >A.]) Here, we consider only secondary structures without the so-called pseudoknots.
This means that base pairs correspond to well-parenthesized expressions. The alphabet for sequences
annotated with structure is the product of the well-known dot-bracket notation for secondary structures
with the alphabet {A,C,G,U}. Dots denote unpaired bases, while matching brackets indicate based pairs.
Hence, this alphabet contains 12 novel character symbols. (In practice, one will use two strings of ASCII
characters, one holding the base sequence, one holding the annotation. However, since their positions
are strictly coupled, this is formally a one dimensional problem over an extended alphabet.)

Figure 5. Operators for edit operations in the core signature. Deletion of a base pair
may remove both bases (pair del) or solely the 5’ or 3’ partner leaving the remaining
partner as a bulge (pairL del and pairR del). Symmetrically, we have all operators for
insertion operations.

single del ins pair pair ins pair del

pairL del pairR del pairLR del pairL ins pairR ins pairLR ins

Satellite signature SAS
alphabet {•A, •C, •G, •U,<A,<C,<G,<U,>A,>C,>G,>U}
operators {∼, ε}

The third signature DOT will serve for strings indicating structure without sequence information:

Satellite signature DOT
alphabet {•,<,>}
operators {∼, ε}

Figure 4 shows the usual two-dimensional representation for an RNA sequence, accompanied by its
notation in bracket-dot format, and for the signatures RNA, SAS and DOT.
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6.3. RNA Folding

Our first RNA-related ICORE is a version of the classical Nussinov algorithm which, given a single
RNA sequence, predicts its secondary structure by maximizing the number of base pairs [22]. This
problem is of dimension 1. The input is a plain sequence represented as a string from the satellite
signature RNA, and the output is a secondary structure. We need a core signature STR to describe such
secondary structures. For that, we use four operators. Operator mty represents the empty structure, pair
takes as input two letters and a substructure and builds a base pair around the latter, single takes as
input one letter and adds it as an unpaired base to a structure, and split is for the concatenation of two
structures, used when a structure branches as in Figure 4.

Example 4. Figure 6 shows a core term for the plain sequence "ACGACGGAUCUU". This core term
represents the secondary structure displayed in Figure 4.

Figure 6. Core term for secondary structure of Figure 4.
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The grammar SECSTR (see below) guarantees that this representation is unique. It uses a production
of tree height 2 to make sure that core terms uniquely represent secondary structures, disallowing core
terms such as split(mty, mty) Grammar SECSTR does not impose a restriction on the two bases in
pair(a, S, b), so the structure terms may also represent structures with non-standard base pairs. For the
RNA folding problem, legal base pairing is enforced in the rules, where basep is a syntactic predicate
defining legal base pairs. The standard definition is

basep(a, b) = {(a, b) ∈ {(A,U), (U,A), (C,G), (G,C), (G,U), (U,G)}

to allow for canonical base pairs (Watson-Crick or wobble base pairs). By setting

basep(a, b) = TRUE

we would allow also non-canonical pairs and let the scoring makes the difference. This is commonly
done in stochastic RNA family models, where non-standard base pairs are allowed with low probability.
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ICORE RNAFOLD: dimension 1

Satellite signature RNA
Core signature STR

mty : → S -- the empty structure
single : RNA× S → S -- adding a single base

pair : RNA× S × RNA→ S -- adding a base pair
split : S × S → S -- structure branch

Rules
single(a,X) → a∼X
split(X, Y ) → X∼Y
pair(a,X, b) → a∼X∼b if basep(a, b)

mty → ε

Grammar SECSTR
S∗ → mty

| single(a, S)

| split(pair(a, S, b), S)

Algebra BPMAX

single(a, x) = x

split(x, y) = x+ y

pair(a, x, b) = x+ 1

mty = 0

φ = max

Algebra DOTPAR

single(a, x) = ’.’ ∼ x

split(x, y) = x∼y
pair(a, x, b) = ’(’ ∼ x ∼ ’)’

mty = ε

φ(w) = w

Algebra PROB

single(a, x) = πa ∗ x
split(x, y) = πsplit ∗ x ∗ y
pair(a, x, b) = πab ∗ x

mty = πmty

φ = max
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The rewrite rules explain how to build the secondary RNA structure from the plain sequence: either
by creating a base pair with pair, or by adding a single base with single, or by concatenating two
structures with split. Completed with some algebras, the resulting ICORE RNAFOLD is displayed
on page 93.

We propose three algebras with ICORE RNAFOLD:

• Algebra BPMAX implements base pair maximization as our objective function, as it is done in the
Nussinov algorithm.
• Algebra DOTPAR serves to visualize predicted structures as strings in a dot-bracket notation. Used

by itself in a call to RNAFOLD(DOTPAR, s), this algebra would enumerate the full candidate space
for input s. Normally, it is used in a product with other algebras (cf. Section 8), where it reports
optimal candidates.
• Algebra PROB assigns a probability score to each core term, such as it is done with stochastic

context free grammars [20,23,24].

Algebra PROB deserves more comments. Stochastic context free grammars (SCFGs) allow to parse a
string into (context free) structures of any kind, and a stochastic scoring scheme allows us to select the
most likely parse for it, or to compute the probability sum over all parses.

The parameters πa, πab, and πsplit reflect the probability of encountering an unpaired base a, a base
pair (a, b), and a structural split; they must be estimated from a set of training data. More sophisticated
SCFGs will replace the grammar SECSTR by a more refined grammar, leading to a larger number of
parameters, but in principle, nothing else changes. Calling RNAFOLD with algebra Prob an input
sequence s and φ = max, we can find the most likely parse of sequence s, which indicates a structure
of high likelihood. Since the grammar SECSTR is semantically non-ambiguous [21,25] (i.e., each parse
designates a different structure), this is also the most likely structure assigned to s under the given
model. This is known as Viterbi scoring. Choosing φ = sum instead, we obtain the overall probability
of sequence s under the given model, summed up over all parses. This is also known as inside scoring.

6.4. Structural Alignment

Structural alignment is used to compare two RNA sequences taking into account both levels of
information: sequence and secondary structure. Not only base sequences are aligned, using gaps as
usual, but when two bases are aligned that are involved in base pairs, their respective partners must
be aligned preferentially with each other, too. This condition cannot be met by simply aligning two
sequences from the SAS alphabet by the algorithms of Section 5. In fact, structural alignment gives rise to
many interesting, related problems, and has attracted a large amount of research in RNA bioinformatics.

A commonly seen visualization of a structural alignment is given in Figure 7. Two sequences are
annotated with different, but similar structures, and are aligned with respect to these structures. You may
spot four gap symbols in this Figure, which mark three different situations and will score differently.
The first gap (from the left) marks a G base inserted in the lower sequence. The second marks a C-G pair
in the upper sequence, where the C residue has been lost in the lower sequence, while the G is still there
and unpaired. The remaining two gap symbols mark a G-C pair in the upper sequence, where neither
base has a counterpart in the lower sequence.
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Figure 7. Example of a structural RNA alignment. Vertical bars indicate matching bases in
the sequences. Note that the two structures are different, but similar.

(((((...-((((((.....))))))....(((((........))))))))))..

AUCGUACG-UGACGAUGCGUUCGUCAAGGCUGCUGAAGCGGCUCAGCAACGGUUC

| || ||| ||| ||| |||| ||||||||||| |||||||| |||| || | |

AGCGUACGGUGA-GAUUAGUUCGUCAAGGCUGCU-AAGCGGCU-AGCAACGCUAC

((((.....(((-((.....)).)))....((((-........-)))).))))..

6.4.1. Core Signature and Grammar for Structural Alignment

A core signature for structural alignments must be elaborate enough to accommodate all these and
similar situations, to allow for their independent scoring. We consider here the most general set of edit
operations, such as introduced in [26], that is used with arc-annotated sequences and that allows for
any kind of mutational event. Edit operations representing structural matches between single bases or
base-pairings are mty, single, split, and pair. We re-use the names from signature STR, but note
that single and pair now hold bases from both sequences as their arguments. For mismatches, we
need edit operations for deletion and insertion of unpaired residues: del and ins, which both have
exactly the same semantics as in sequence alignment (Section 5). We must also allow that a base pair
in one sequence may be not present in the other sequence, because one or both bases are missing or
because the pair cannot be formed, as dictated by predicate basep. These cases give rise to eight
new operations, pair ins, pair del, pairL ins, pairL del, pairR ins, pairR del, pairLR ins,
pairLR del. Therefore, we have a total of 12 edit operations (This does not account for mty and split,
as in the standard model. An edit operation where the left or right part of a split has been lost might well
be useful. It has been overlooked in the edit model of [26], probably because the graphical representation
of structures as arc-annotated sequences has no explicit representation for structural branching.), which
are summarized graphically in Figure 5. Collecting the above cases, we arrive at a core signature STRAL
with 14 operators.

In the definition of STRAL, R denotes the RNA alphabet {A,C,G,U}, and StrAli is the (only)
sort of terms from the core signature. Akin to grammar SECSTR, the grammar for structural
alignment, STRUCTALI, should avoid ambiguous structure representations, and does so by using an extra
non-terminal symbol P . The ICORE is presented on page 97.

Example 5. Consider the following structural alignment, presented in dot-bracket notation.

( . - - ) ( )

A G - - U C G

| | | |

A G C C U C A

( ( ) . ) . .

It is encoded by the core term
c = split(pair(A,A, split(pairL ins(G,G, mty,C), ins(C, mty)),U,U), pairLR del(C,C, mty,G,A)
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which satisfies
<A •G >U<C>G ←∗ c→∗ <A<G>C •C >U •C•A

Core signature STRAL

mty :→ StrAli -- the empty alignment
single :R×R× StrAli→ StrAli -- two matching single bases
split : StrAli× StrAli→ StrAli -- structure branch
pair :R×R× StrAli×R×R → StrAli -- two matching base pairs
del :R× StrAli→ StrAli -- deletion of a single base
ins :R× StrAli→ StrAli -- insertion of a single base

pair del :R× StrAli×R → StrAli -- deletion of a base pair
pair ins :R× StrAli×R → StrAli -- insertion of a base pair

pairLR del :R×R× StrAli×R×R → StrAli -- deletion of the base pair bond
pairLR ins :R×R× StrAli×R×R → StrAli -- insertion of the base pair bond
pairL del :R×R× StrAli×R → StrAli -- right paired base deletion
pairL ins :R×R× StrAli×R → StrAli -- right paired base insertion
pairR del :R× StrAli×R×R → StrAli -- left paired base deletion
pairR ins :R× StrAli×R×R → StrAli -- left paired base insertion

6.4.2. Structural Alignment in the Prism of Tree Alignment

Prior to [26], approaches to structural alignment were less refined and considered base pairs as a unit
which could only be deleted or inserted [27]. This amounts to considering RNA secondary structures
as ordered rooted trees: each base pair is an internal node, and each single base is a leaf. Hence, a
situation such as our pairL del, resulting from a single point mutation in the genomic sequence, had to
be modeled and scored as two changes, a pair deletion plus a single base insertion. This more restricted
model is obtained from ICORE STRUCTALI simply by dropping rules (α9)− (α14). (Note that we need
not formally restrict the core signature to take out specific edit operations. Since they no longer show up
in the rewrite rules, they are not part of the inverse image of the input sequences, and by Definition 4,
they play no role in the search space.)

6.5. The Sankoff Algorithm for Simultaneous Alignment and Folding, with Variations

We now turn to the problem of simultaneous alignment and folding: We are given two plain RNA
sequences, and the goal is to infer a conserved consensus structure. This problem makes sense when the
two input sequences are assumed to be homologous. It was first addressed by Sankoff [5], and has given
rise to many related problem formulations since then.

To design ICOREs for this new family of problems, we explain how the ICORE STRUCTALI for
structural alignment presented in Section 6.4 can be systematically modified to deal with plain RNA
sequences whose secondary structure is not known.
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ICORE STRUCTALI: dimension 2

Satellite signature SAS, SAS
Core signature STRAL
Grammar STRUCTALI

S∗ → single(a, c, S)

| split(P, S)

| mty
| del(a, S)

| ins(a, S)

P → pair(a, c, S, b, d)

| pair del(a, S, b)

| pair ins(c, S, d)

| pairLR del(a, c, S, b, d)

| pairLR ins(a, c, S, b, d)

| pairL del(a, c, S, b)

| pairL ins(a, c, S, d)

| pairR del(a, S, b, d)

| pairR ins(c, S, b, d)

Rules
ε ← mty → ε (α1)

•a∼X ← single(a, c,X) → •c∼X (α2)

X∼Y ← split(X, Y ) → X∼Y (α3)

<a∼X∼>b ← pair(a, c,X, b, d) → <c∼X∼>d (α4)

•a∼X ← del(a,X) → X (α5)

X ← ins(c,X) → •c∼X (α6)

<a∼X∼>b ← pair del(a,X, b) → X (α7)

X ← pair ins(c,X, d) → <c∼X∼>d (α8)

<a∼X∼>b ← pairLR del(a, c,X, b, d) → •c∼X∼•d (α9)

•a∼X∼•b ← pairLR ins(a, c,X, b, d) → <c∼X∼>d (α10)

<a∼X∼>b ← pairL del(a, c,X, b) → •c∼X (α11)

•a∼X ← pairL ins(a, c,X, d) → <c∼X∼>d (α12)

<a∼X∼>b ← pairR del(a,X, b, d) → X∼•d (α13)

X∼•b ← pairR ins(c,X, b, d) → <c∼X∼>d (α14)

Algebra SCORE -- omitted
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ICORE SIMULTANEOUSFOLDING: dimension 2

Satellite signature RNA, RNA
Core signature STRAL
Grammar STRUCTALI

Rules

ε← mty → ε (β1)

a∼X ← single(a, c,X) → c∼X (β2)

X∼Y ← split(X, Y ) → X∼Y (β3)

a∼X∼b← pair(a, c,X, b, d) → c∼X∼d if basep(a, b)&basep(c, d) (β4)

a∼X ← del(a,X) → X (β5)

X ← ins(c,X) → c∼X (β6)

a∼X∼b← pair del(a,X, b) → X if basep(a, b) (β7)

X ← pair ins(c,X, d) → c∼X∼d if basep(c, d) (β8)

a∼X∼b← pairLR del(a, c,X, b, d)→ c∼X∼d if basep(a, b) (β9)

a∼X∼b← pairLR ins(a, c,X, b, d)→ c∼X∼d if basep(c, d) (β10)

a∼X∼b← pairL del(a, c,X, b) → c∼X if basep(a, b) (β11)

a∼X ← pairL ins(a, c,X, d) → c∼X∼d if basep(c, d) (β12)

a∼X∼b← pairR del(a,X, b, d) → X∼d if basep(a, b) (β13)

X∼b← pairR ins(c,X, b, d) → c∼X∼d if basep(c, d) (β14)

Algebra SCORE -- omitted

6.5.1. Structural Alignment without Given Structures

How to transform an alignment between structure-annotated sequences into an alignment between
sequences whose structure is to be guessed? Just let us eliminate structure annotation from the input of
STRUCTALI. The satellite signatures change from SAS to RNA, and we adjust the right-hand sides of the
rewrite rules in consequence. We replace each symbol of SAS of the form <a, >a, or •a with the symbol
a from RNA. As the structure is no longer given, we impose legal base pairing by means of the predicate
basep in the rewrite rules. Otherwise, the new rules are a literal copy from STRUCTALI. This is what
is done with ICORE SIMULTANEOUSFOLDING, presented on page 98. Operators of the core signature
and the grammar are left untouched.

Let us now study two simplifications of this new ICORE.

6.5.2. Exact Consensus Structure

If we restrict SIMULTANEOUSFOLDING to rules (β1) − (β4), only operators mty, single, split,
and pair are authorized. We get an ICORE which we call EXACTCONSENSUSSTRUCTURE, where the
two sequences are folded into the same structure, which is their exact consensus structure selected from
the intersection of the folding spaces of the two sequences. No insertions and deletions are allowed,
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and hence, both sequences must be of the same length. If their lengths differ, the search space of exact
consensus structures will simply be empty.

Example 6. What are the possible consensus structures of sequences "GAUA" and "CAGU"? We find
that there are (only) three core terms that rewrite to our pair of example sequences:

split(pair(G,C, single(A,A, mty),U,G), single(A,U, mty))

single(G,C, single(A,A, split(pair(U,G, mty,A,U), mty))), and
single(G,C, single(A,A, single(U,G, single(A,U, mty))))

which correspond to the following exact consensus secondary structures (in the same order, from left
to right):

G A U A G A U A G A U A

( . ) . . . ( ) . . . .

C A G U C A G U C A G U

For example, the first core term c = split(pair(G,C, single(A,A, mty), (U,G)), single(A,U, mty))

rewrites as "GAUA"←∗ c→∗"CAGU". In contrast, the core term

c′ = single(G,U, split(pair(A,A, mty,U,G), single(A,U, mty)))

fails to rewrite to the left satellite "CAGU", because the condition basep(A,G) in Rule (β4) fails.

6.5.3. The Sankoff Algorithm

Adding back in rules (β5)− (β6), we go one step further and consider alignments with insertion and
deletion of unpaired residues in the alignment, such as the two alignments below.

G-UCC -GUCC

(.).. .(..)

AUUG- AUU-G

This is exactly the model used in the Sankoff algorithm. Intuitively, it merges the ideas of sequence
alignment with those of RNA structure prediction [5]. With the ICORE formalism, this is literally what
happens: We obtain the ICORE SANKOFF by augmenting EXACTCONSENSUSSTRUCTURE with the
indel rules from EDITDISTANCE.

Example 7. For example,

t = split(pair(G,A, ins(U, mty),U,U), single(C,G, del(C, mty)))

represents the structural alignment on the left above. We find "GUCC" ←∗ t →∗ "AUUG". We leave it
to the reader to script the core term representing the structural alignment in the right.



Algorithms 2014, 7 100

6.6. Sequence-to-Structure Alignment and RNA Family Modeling

The two preceding subsections have cast the structure alignment problem and the simultaneous
folding problem in a unified approach. This opens the door to many variations of these themes,
allowing any combination of input sequences, either plain RNA sequences from RNA or sequences
including secondary structure information from SAS, or even DOT if we have a structure model without
sequence information.

We examine here in more detail the sequence-to-structure alignment problem: One input is a target
structure–from SAS or DOT –, the other a plain sequence from RNA. We want to know how well the
plain RNA sequence can fold into the target structure. This problems comes in two variations: When
the structure can be given as an input parameter, we call this a generic structural matching problem.
If the target structure is fixed, it can be hard-coded into the matcher, which then takes the form of an
RNA motif matcher. This RNA motif matcher can be used to define an RNA family model.

6.6.1. A Generic Structure Matcher

A generic structure matcher allows us to fold a plain sequence into a target structure, using the
full range of edit operations available in the core signature STRAL. For that, we start from ICOREs
SIMULTANEOUSFOLDING and STRUCTALI. Recall that the rewrite rules of SIMULTANEOUSFOLDING

reduce a core term to two plain RNA sequences, while STRUCTALI reduce the same term to two
structure-annotated sequences. To obtain an ICORE for the sequence-to-structure matching problem, all
we have to do is take half of each: rules of STRUCTALI for rewriting to the target structure t, and rules of
SIMULTANEOUSFOLDING for rewriting to the RNA sequence s. We call this new ICORE S2SGENERIC

(page 101). With inputs t from SAS and s from RNA, it will predict a structure for s that aligns best
(however defined by algebra SCORE) to the t. Changing the first satellite signature from SAS to DOT
(and replacing •a with • etc. in the rules) would solve the same task for a target that is a pure structure
without an associated sequence.

6.6.2. Generic Exact Structure Matching

If we restrain ICORE S2SGENERIC to rules (γ1)− (γ4), we get an ICORE S2SEXACT for the exact
structure match problem: does the RNA sequence fit exactly into the target structure? Being a little less
strict, and keeping also rules (γ5)− (γ6), we would allow gaps with respect to unpaired bases, while still
all base pairs in the target must be formed in the query.

Example 8. Consider the core term

t = split(pair(C,<, single(A, •, mty),G,>), ins(C, t′)), where

t′ = split(pair(A,<, split(pair(A,<, single(G, •, mty),U,>), mty), (U,>)), mty)

We find
"CAGCAAGUU"←∗ t→∗ " < • ><< • >> "

Note in detail that the second C is considered an insertion in the query.
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ICORE S2SGENERIC: dimension 2

Satellite signature SAS, RNA
Core signature STRAL
Grammar STRUCTALI

Rules

ε ← mty → ε (γ1)

•a∼X ← single(a, c,X) → c∼X (γ2)

X∼Y ← split(X, Y ) → X∼Y (γ3)

<a∼X∼>b ← pair(a, c,X, b, d) → c∼X∼d if basep(c, d) (γ4)

•a∼X ← del(a,X) → X (γ5)

X ← ins(c,X) → c∼X (γ6)

<a∼X∼>b ← pair del(a,X, b) → X (γ7)

X ← pair ins(c,X, d) → c∼X∼d if basep(c, d) (γ8)

<a∼X∼>b ← pairLR del(a, c,X, b, d) → c∼X∼d (γ9)

•a∼X∼•b ← pairLR ins(a, c,X, b, d) → c∼X∼d if basep(c, d) (γ10)

<a∼X∼>b ← pairL del(a, c,X, b) → c∼X (γ11)

•a∼X ← pairL ins(a, c,X, d) → c∼X∼d if basep(c, d) (γ12)

<a∼X∼>b ← pairR del(a,X, b, d) → X∼d (γ13)

X∼•b ← pairR ins(c,X, b, d) → c∼X∼d if basep(c, d) (γ14)

Algebra SCORE -- left open
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6.6.3. From Generic to Hard-Coded Structure Matching

In the previous subsection, we spoke of generic sequence and structure matching, because we used
ICOREs of dimension 2, where both the RNA plain sequence and the target secondary structure are given
as inputs. Structural matchers such as produced by the tools RNAMOTIF or LOCOMOTIF [28,29] only
take a single parameter, the query sequence, while the structure to be matched against is hard-coded in
the program (for better efficiency). We show how to design two types of specialized matcher ICOREs of
dimension 1, using the internalization mechanism introduced in Subsection 5.3 for sequence analysis.

For the two following sections, let the target structure be r = <A<G •U >C •G >U<C>G•A. A hard-coded
matcher for r re-uses the constituents of the generic matcher of dimension 2, but replaces the grammar by
a specific grammar, that is derived by parsing r with SECSTR, and keeping track of which rules are used
to produce which symbols in r. Let us explicitly annotate symbols in r with their position in superscript:

r = <1
A<

2
G •3

U >
4
C •5

G >
6
U<

7
C>

8
G•9

A

6.6.4. A Structural Matcher for Exact Search

For sake of clarity, we first head for the hard-coded version of the simple ICORE S2SEXACT, that
contains only four rules, (γ1)− (γ4). The goal is to construct a grammar that restricts the search space to
all and only the core terms that rewrite to r on the first satellite. Given this grammar, there will no longer
be a need to rewrite a core term to r, and hence we will be able to eliminate altogether the first satellite
and the rewrite rules that produce it. We start from the grammar STRUCTALI, and ignore all rules that
deal with deletions and insertions, as we are heading for an exact matcher. This leaves us with four rules,
which reduce to three after “inlining” the nonterminal symbol P for simplification. The grammar now
is simply

S → single(a, c, S) | split(pair(a, c, S, b, d), S) | mty

As r has 9 residues, we create 10 copies of this grammar, which use 10 non-terminal symbols, indexed
by the positions in r. This gives the grammar template

Si → single(a, c, Si+1) | split(pair(a, c, Si+1, b, d), Sj+1) | mty

where j is determined as the position of the closing base partner of position i. Now we specialize this
grammar template to retain productions that can be applied in a successful derivation of residue i in r,
and then drop whatever refers to the first satellite input. For each symbol •ia in r, we have a production

Si → single(a, c, Si+1)

and for each pair of matching brackets <ia and >jb in r, we have a production

Si → split(pair(a, c, Si+1, b, d), Sj+1)

This leads to the grammar and ICORE named MATCH S2S R for the sequence-to-structure alignment
problem with target r, that is displayed on page 103. For clarity, we have added the position of each
character in r in a superscript in the grammar.
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ICORE MATCH S2S R: dimension 1 -- for R = <A<G •U >C •G >U<C>G•A
Satellite signature RNA
Core signature STRAL

Grammar MATCH S2S R

S∗1 → split(pair(A1, c, S2,U6, d), S7)

S2 → split(pair(G2, c, S3,C4, d), S5)

S3 → single(U3, c, S4)

S4 → mty

S5 → single(G5, c, S6)

S6 → mty

S7 → split(pair(C7, c, S8,G8, d), S9)

S8 → mty

S9 → single(A9, c, S10)

S10 → mty

Rules
mty → ε (γ1)

single(a, c,X) → c∼X (γ2)

split(X, Y ) → X∼Y (γ3)

pair(a, c,X, b, d) → c∼X∼d if basep(c, d) (γ4)

Algebra SCORE -- left open
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ICORE MATCH S2S R’: dimension 1 -- for R = << • > • ><> •
Satellite signature RNA
Core signature STR

Grammar MATCH S2S R’

S∗1 → split(pair(c, S2, d), S7)

S2 → split(pair(c, S3, d), S5)

S3 → single(c, S4)

S4 → mty

S5 → single(c, S6)

S6 → mty

S7 → split(pair(c, S8, d), S9)

S8 → mty

S9 → single(c, S10)

S10 → mty

Rules
mty → ε (γ1)

single(c,X) → c∼X (γ2)

split(X, Y ) → X∼Y (γ3)

pair(c,X, d) → c∼X∼d if basep(c, d) (γ4)

Algebra SCORE -- left open

Example 9. With ICORE MATCH S2S R, we find that there is some core term t such that

t→∗ "GGUCUCAUG"

while there is no core term t′ such that

t′ →∗ "AGUCUCAUG"

The core terms generated by the grammar of MATCH S2S R contain all the sequence information
about the target structure, and so, a core signature algebra can implement position and sequence specific
scoring. If no scoring depending on the sequence content of the internalized target is desired, the ICORE
can be simplified by not reproducing the residues of the target. The core signature simplifies from
STRAL to STR, and we obtain an new ICORE, MATCH S2S R’ presented on page 104. In this simplified
form, this ICORE is the same as RNAFOLD (page 93), except for the grammar. Naturally–all we do is
predicting a structure for a plain RNA sequence, restricted to match the target. This ICORE, without the
provision for target specific scoring, could also have been derived from RNAFOLD directly.
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6.6.5. A Structural Matcher for Covariance Models

Covariance models (CMs) [20,30,31] describe families of RNA sequences, based on sequence
similarity and structure conservation. A group of related sequences is aligned, a consensus structure
is determined, and a model is built with a particular choice of architecture. Stochastic parameters are
trained from the data. Model and parameters are applied to short query sequences, or in local search
mode to scan whole genomes, to find additional family members. New members can be included into
the set that defines the model, and parameters re-trained. Included sequences constitute the core of the
model, called the “seed alignment” in Rfam terminology [32], while all known sequences that match the
model above a certain threshold score constitute the “full aligment”. So, there it a lot more going on than
just solving a straighforward combinatorial optimization problem–but at the heart of the approach, there
is the task of aligning a plain RNA sequence s to a target structure r.

In contrast to the exact matcher MATCH S2S R, a covariance model allows for deletions from
the target structure, as well as for insertions in the RNA sequence. However, it does not allow for
all possible operations from the core signature STRAL. Insertions in the RNA sequence are always
considered unpaired (because for features not present in the model, one cannot train parameters).
Hence, we will make no use of pair ins, pairLR ins, pairL ins, and pairR ins. The operator
pairLR del also goes away: It stands for a case where two unpaired bases are aligned to a base
pair in the target. In covariance models, these bases are always considered paired, and scored
with a low probability if they cannot legally form a pair. So operator pair already takes care of this
case. Inlining non-terminal P as before, this reduces grammar STRUCTALI to the following productions.

S∗ → single(a, c, S)

| mty
| del(a, S)

| ins(c, S)

| split(pair(a, c, S, b, d), S)

| split(pair del(a, S, b), S)

| split(pairL del(a, c, S, b), S)

| split(pairR del(a, S, b, d), S)

For the moment, this is a generic matcher, with some edit operations disabled. To proceed to a
covariance model, the target structure must be internalized. All variables (a and b in the grammar
above) refering to the structure input will disappear. Applying the same internalization construction as
with MATCH S2S R, we obtain from ICORE S2SGENERIC a specific matcher COVARIANCEMODEL R.
We use the same target structure r as in the previous example.

Example 10. Consider sequence s = "GUCUCAGUG". It can be aligned to structure
r = “ << • > • ><> •” in manifold ways such as

G-UCUCAGUG
<<•>•><−>•

GUC--UCAGUG
<<•>•> - <−>•

GUCUCA-GUG-
-< - <•>•><>•
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ICORE COVARIANCEMODEL R: dimension 1 -- constructed for target r = "<< • > • ><> • "
Satellite signature RNA
Core signature STRAL

Grammar COVARIANCEMODEL R
S∗1 → ins(c, S1) |

split(pair(c, S2, d), S7) | split(pairL del(S2, d), S7) |
split(pairR del(c, S2), S7) | split(pairdel(S2), S7)

S2 → ins(c, S2) |
split(pair(c, S3, d), S5) | split(pairL del(S3, d), S5) |
split(pairR del(c, S3), S5) | split(pair del(S3), S5)

S3 → ins(c, S3) | single(c, S4) | del(S4)

S4 → ins(c, S4) | mty
S5 → ins(c, S5) | single(c, S6) | del(S6)

S6 → ins(c, S6) | mty
S7 → ins(c, Si) |

split(pair(c, S8, d), S9) | split(pairL del(S8, d), S9) |
split(pairR del(c, S8), S9) | split(pair del(S8), S9)

S8 → ins(c, S8) | mty
S9 → ins(c, S9) | single(c, S110) | del(S10)

S!0 → ins(c, Si) | mty
Rules

mty → ε (γ1)

single(c,X) → c∼X (γ2)

split(X, Y ) → X∼Y (γ3)

pair(c,X, d) → c∼X∼d (γ4)

del(X) → X (γ5)

ins(c,X) → c∼X (γ6)

pair del(X) → X (γ7)

pairL del(c,X) → c∼X (γ11)

pairR del(X, d) → X∼d (γ13)

Algebra SCORE -- left open
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The core term expressing the leftmost alignment of the query s to the covariance model
COVARIANCEMODEL R derived from r is

t = split(t′, split(pair(A, del(G, mty,U), single(G, mty)))) where

t′ = pair(G, split(pairL(single(U, mty,C), single(U, mty)),C)

The above ICORE describes the search space of a specific covariance model. Now let us turn to
scoring core terms. Note that even after all sequence information from r is eliminated, the grammar still
“knows” (by the subscripted non-terminal symbols) the positions in the target structure to which a part
of the query is aligned. For position specific scores, this information should be passed on to the scoring
functions. The operator pair, for example, is implemented in a stochastic algebra (cf. Section 6.3) as

pair(a, x, b) = x ∗ πab

It is used with S1, S2, and S7 in the specialized grammar. From the parameter estimation, we obtain
(potentially) different probabilities π1

ab, π
2
ab, and π7

ab for these residues. Different uses of pair must be
able to resort to these different parameters. Such position-specific scoring is accommodated by extending
the operators of the core signature by a position parameter, which is supplied when the core term is
constructed. The definition of pair changes to

pair(i, a, x, b) = x ∗ πiab

and the same applies to all other operators of the core signature. As a general technique, this extra
parameter keeps signatures small and accommodates the requirements of position specific scoring.

Example 11. The core term t of Example 10, now with position information, becomes

t = split(1, t′, split(7, pair(7,A, del(8,G, mty(8)),U), single(9,G, mty(10)) where

t′ = pair(1,G, split(2, pairL(2, single(3,U, mty(4),C), single(5,U, mty(6))),C)

However, often in practice when data are scarce, to avoid overfitting, parameters are tied together and
become less position-specific. S2SGENERIC may be called for with parameters trained from a similar
structure r′ and a background sequence composition. This can be done, in principle, even before family
members of structure r are known. S2SGENERIC may be an interesting research topic, and not just an
intermediate step between the Sankoff algorithm and bona fide covariance models.
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6.7. Conclusion on ICOREs for RNA Analysis

In this section, we have proposed ICOREs for a variety of RNA problems. All those ICOREs exhibit
common features and can be derived systematically : They use the same core signatures, the same rewrite
rules, or subsets thereof. Doing this, we have also shown that several well-known formalisms appear as
special cases of our framework. Figure 8 gives a panoramic overview of the five main problems addressed
in the section, and Figure 9 show the links that exist between the ICORE specifications of problems.

This way of seeing things also opens some new pespectives. Let us return to the full ICORE
SIMULTANEOUSFOLDING, introduced in Subsection 6.4. With its full set of rules (β1) − (β14), we
have combined the Sankoff approach with the full edit model. What is such a generic RNA aligner
good for? Its search space is the set of all possible structural alignments of two (yet unfolded) RNA
sequences. It would return the two structures that allow for the optimal structural alignment. No model
of this generality has been studied in the literature. It appears promising, although not trivial, as the
two optimization criteria, individual structure quality versus structure and sequence agreement, must be
balanced in a new and careful way. For structure quality, the thermodynamic model used in structure
prediction could be employed. Biologically, this idea has a strong appeal: the consensus structure, as
we compute it with present-day approaches, is a fictitious entity, whereas each RNA molecule folds and
operates individually, and will often produce base pairings consistent with, but not part of the consensus
structure. The new approach can deliver two structures that fold well, agree well, but need not be
identical, and these may come closer to biological reality.

Figure 8. Overview of all RNA related problems adressed in Section 6. These problems are
classified according to the edit operations they use (column on the left) and to the kind of
inputs. For each problem, we indicate meaningful restrictions that are detailed in the text.
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Figure 9. Relationships between our five main RNA problems.
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As for the problem of structural matching, with ICORE S2SGENERIC in Subsection 6.6, we have
seen that fixing the first input to a target structure, disregarding base pair insertion, and internalization
leads to ICORE COVARIANCEMODEL R, which exhibits the architecture of covariance models. Such
models are used today to define structural RNA family models. Reverting this view, S2SGENERIC can
be seen as a more general family model builder. Is has the following novel aspects: (i) we can use it with
a combination of scoring schemes, not necessarily stochastic; (ii) we can allow for structured insertions
in the query, e.g., an extra stem of a certain size range; and (iii) we can internalize t to a different
extent, using for example a structural skeleton, but with sequence motifs supplied upon search time. An
approach of this generality has not been studied in the literature. As with SIMULTANEOUSFOLDING,
our ICORE only gives the definition of the search space–the challenge of providing a meaningful
combination of scoring criteria remains open. Note also that the ICOREs presented here are a global
matchers, trying to fold their complete input into the target structure. To obtain localized versions,
which locate a subsequence matching the target inside a longer RNA sequence, the operators and rules
introduced for local sequence search in Section 5.2.3. can be re-used.

7. Tree Comparison and Related Problems

In this section, we consider problems on ordered, labeled trees. There are two main paradigms to
compare such trees: edit distance and alignment. We encode both of them in ICORE framework, and
show how they can combine. We also address the question of affine gap models. Finally, we shall
generalize the classical, atomic model of tree comparison towards a more expressive model, where tree
edit operations can be formulated as domain-specific bi-directional rewrite rules.

7.1. Notations and Signatures

A tree has a root node and a forest of subtrees, a forest is a (possibly empty) sequence of trees.
Problems on trees and forests recursively imply each other, and must be solved jointly. We follow the
tradition and simply speak of problems on trees.
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In the classical formulation, tree nodes carry labels without any meaning. In particular, they have no
fixed arity or argument types. This convention is strictly tied to the classical tree edit model, where a
node can be inserted or deleted anywhere in a tree. In tree languages over a signature, as we used so far,
this would result in a violation of the corresponding operator’s arity. Our trees with typed operators and
fixed arities require a more elaborate model, and we will look at them in Section 7.5.

For the moment, we adhere to the classical formulation, where nodes carry arbitrary labels. To
accommodate this in our rewriting framework, we will treat all node labels as unary operators, and
represent trees like a(x, y, z), a(x), and a as a(x∼y∼z), a(x), and a(ε), respectively. Forests are built
from trees by the associative binary operator ∼, such that a∼(b∼c) = a∼b∼c = (a∼b)∼c. Given a set
F of node labels, our satellite signature to represent trees will be
Satellite signature TREE

ε : → Tree empty forest
f : Tree → Tree node label, for f ∈ F
∼ : Tree× Tree → Tree concatenation of subtree forests

Our first core signature is designed to represent arbitrary tree alignments. The core terms representing
tree alignments will use operators rep, ins, del, while the operators from F used in the input signatures
now play the role of a leaf label alphabet.

Core signature TreeAl
alphabet F – see remark above

rep : F × F × Ali → Ali node label replacement
del : F × Ali → Ali node deletion
ins : F × Ali → Ali node insertion
mty : → Ali empty tree alignment
∼ : Ali× Ali → Ali subforest concatenation

The core signature uses an operator ∼ for concatenating forests of sub-alignments.

7.2. Tree Alignment

This section is devoted to Jiang’s classical tree alignment algorithm [27], and its more recent
variants. Tree alignment is not to be confused with the tree edit distance problem, which is covered in
Section 7.3. For the relationship between these (and other) modes of tree comparison, see [33]. The tree
alignment problem accepts two trees and constructs a common supertree which is optimal under some
scoring scheme.

7.2.1. Classical Tree Alignment

The ICORE TREEALIGN is given on page 111. Our simple scoring algebra TREESIMILARITY uses
additive similarity scoring, parameterized by a weight function w for replacements, and gap penalties δ
and γ for insertions and deletions.
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ICORE TREEALIGN: dimension 2

Satellite signature TREE, TREE
Core signature TreeAl
Grammar TreeAl
Rules

f(X)← rep(f, g,X) → g(X)

f(X)← del(f,X) → X

X ← ins(f,X) → f(X)

ε← mty → ε

X∼Y ← X∼Y → X∼Y

Algebra TREESIMILARITY

rep(f, g, x) = x+ w(f, g) -- weighted label replacement score
del(f, x) = x− δ -- node deletion penalty δ
ins(f, x) = x− γ -- node insertion penalty γ

mty = 0 -- empty tree simlarity score
x∼y = x+ y -- similarity score adds up
φ = max -- similarity scoring uses maximization
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Example 12. Consider the core term t =

rep(a, a, (del(e, rep(b, b, mty)∼del(c, mty))∼ins(f, (ins(c, mty)∼rep(d, d, mty)))))

We find
a(e(b, c), d) = a((e((b∼c)∼d)))←∗ t→∗ a(b∼f(c∼d)) = a(b, f(c, d))

and
TREESIMILARITY(t) = 2δ + 2γ + w(a, a) + w(b, b) + w(d, d)

The correspondence between sequence and tree alignment is clearly expressed in ICOREs
EDITDISTANCE and TREEALIGN. A tree which does not branch represents a sequence, e.g.,
a(b(c(d(ε)))) represents the string "abcd". In this case, rule (1) is not needed, and the
other rules of ICORE TREEALIGN are the same as in SEQALIGN, modulo the change of
representation. Alternatively, we can represent the sequence "abcd" as a forest of leaves,
a(ε)∼b(ε)∼c(ε)∼d(ε) = a(ε)∼(b(ε)∼(c(ε)∼d(ε)))). Two such forests give rise to alignments of the
form rep(a, a′, mty)∼del(b, mty)∼ . . . , rewriting to the left to a(ε)∼b(ε)∼ . . . . Rewrite rules 1–1 are
always combined with an application of 1. Integrating this step in the other rules, we obtain the rules

f(ε)∼X ← rep(f, g, mty)∼X → g(ε)∼X (1)

f(ε)∼X ← del(f, mty)∼X → X (2)

X ← ins(f, mty)∼X → f(ε)∼X (3)

ε← mty → ε (4)

which again, modulo the change of representation, resemble those of ICORE EDITDISTANCE.

7.2.2. Tree Alignment with Affine Gap Scoring

Tree alignment with affine gap scoring transfers the scoring models presented in Subsection 5.1 from
pairwise sequence alignment to tree alignment. The difference is that the problem splits up in several
variants because there are different ways to define a gap in a tree, all of which may be justified in a
particular application.

This variety is a good example to see how the components of ICOREs cooperate in a modular fashion.
The core signature captures affine scoring and the rewrite rules define the mapping between (all possible)
core terms, i.e., alignments, and their input trees. These components remain the same, while different
grammars come in to capture the different gap models which have been studied in the literature.

Core signature and rewrite rules for composite gap scoring. Starting from ICORE TREEALI

with its atomic gap model, we first need to extend the core signature to distinguish gap openings
from extensions, and describe suitable rewrite rules. We collect them in an ICORE template named
TREEALIGENERIC on page 113.
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ICORE TREEALIGENERIC: dimension 2

Satellite signature TREE, TREE

Core signature TreeAliAffine

rep : F × F × Ali → Ali node label replacement
open del : F × Ali → Ali node deletion opening

del : F × Ali → Ali node deletion extension
open ins : F × Ali → Ali node insertion opening

ins : F × Ali → Ali node insertion extension
mty : → Ali empty tree alignment
∼ : Ali× Ali → Ali subforest concatenation

Grammar to be supplied

Rules

f(X) ← rep(f, g,X) → g(X) (5)

f(X) ← open del(f,X) → X (6)

f(X) ← del(f,X) → X (7)

X ← open ins(f,X) → f(X) (8)

X ← ins(f,X) → f(X) (9)

ε ← mty → ε (10)

X∼Y ← X∼Y → X∼Y (11)

Algebra TREESIMILARITYAFFINE extends TREESIMILARITY with

open del(f, x) = x−∆ deletion opening penalty ∆

open ins(f, x) = x− Γ insertion opening penalty Γ
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Figure 10. Gaps for tree comparison.

complete subtree complete subforest

→

↓ ↓

→

arbitrary subtree arbitrary subforest

ICORE COMPLETESUBTREE: dimension 2 extends TREEALIGENERIC with

Grammar COMPLETESUBTREE

N∗ → rep(f, g,N)∼N | open del(f,D)∼N | open ins(f, I)∼N | mty
D → del(f,D)∼D | mty
I → ins(f, I)∼I | mty

TREEALIGENERIC is to be extended with different grammars, according to the type of gap
considered. In the literature, we can find a variety of ways to define composite gaps in a tree. We review
four of them, which are illustrated in Figure 10: (arbitrary) subtrees, complete subtrees, (arbitrary)
subforests, and complete subforests. Let T be a tree. A subtree t of T is a set of nodes of T satisfying the
two conditions: all the nodes of t have a lowest common ancestor, called the root of t, and for each node
x of t, with the exception of the root, the parent of x belongs to t. A complete subtree t of T is a subtree
such that for each node x of t, all descendants of x belong to t. A subforest F of T is a contiguous
sequence of of subtrees. A complete subforest is a contiguous sequence of complete subtrees, which all
share the same parent node.

Gaps as complete subtrees. In this mode, a gap node belongs to the same composite gap as its ancestor
node. The fact that we require that gaps are complete subtrees means that it is not possible to continue
an alignment in a subtree after a number of insertions and deletions. Such alignments are equivalent to
edit scripts including no deletion, neither insertion of internal nodes. Chawathe proposed a quadratic
algorithm for this problem with linear gap weights [34]. An alternative solution that allows for arbitrary
gap weights is to be found in [35]. We present here a grammar COMPLETESUBTREE for this kind of
gap, which uses three non-terminal symbols: N(o gap), D(eletion) and I(nsertion).

Example 13. Consider the trees a(b(c∼f)) and a(d(e∼f)). The core term

t = rep(a, a, t1∼t2)∼mty where
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ICORE COMPLETESUBFOREST: dimension 2 extends TREEALIGENERIC with

Grammar COMPLETESUBFOREST

N∗ → rep(f, g,N)∼N | open del(f,D)∼E | open ins(f, I)∼J | mty
D → del(f,D)∼D | mty
E → D∼E | N
I → ins(f, I)∼I | mty
J → I∼J | N

t1 = open del(b, del(c, mty)∼del(f, mty)∼mty)∼mty

t2 = open ins(d, ins(e, mty)∼ins(f, mty)∼mty)∼mty

represents the alignment where the subtree rooted by b is deleted, and the subtree rooted by d is inserted.
Note that the grammar provides no way to align the two nodes labeled f once we deleted/inserted b and
d. Also, a subtree below an open del can host neither insertions nor further deletion openings, and
vice versa for open ins.

Gaps as complete subforests. The preceding gap model can be extended by considering complete
subforests, instead of complete subtrees. Here, a gap node can be the extension of a larger gap for two
separate reasons - because its ancestor is a gap node (like for subtrees), or because its left sibling is
a gap node. With this definition, any gap in the tree is a gap on the underlying sequence of leaves.
In trees representing RNA secondary structure, any gap on the primary sequence that is consistent with
the secondary structure (i.e., the gap does not break any base pair) is a complete subforest gap in the tree.
Such gaps are implemented in [36–38].

Compared to COMPLETESUBTREE, the grammar COMPLETESUBFOREST needs two additional
symbols: E (sibling deletion) and J (sibling insertion).

Example 14. Consider the two trees a(b∼c(d)∼e∼f) and a(b∼f). In the complete subtree gap mode,
the alignment requires two gaps:

t1 = rep(a, a, rep(b, b, mty)∼open del(c, del(d, mty))∼open del(e, mty)∼rep(f, f, mty))∼mty

In the complete subforest mode, it requires only one gap:

t2 = rep(a, a, rep(b, b, mty)∼open del(c, del(d, mty))∼del(e, mty)∼rep(f, f, mty))∼mty

The alignment t1 is also in the search space of COMPLETESUBFOREST, where it competes with the
alignmnet t2 which uses only one deletion opening. Conversely, the grammar of COMPLETESUBTREE

does not allow to generate t2, and therefore, t2 is not in the search space of COMPLETESUBTREE.
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ICORE SUBTREE: dimension 2 extends TREEALIGENERIC with

Grammar SUBTREE

N∗ → rep(f, g,N)∼N | open del(f,D)∼N | open ins(f, I)∼N | mty

D → rep(f, g,N)∼D | del(f,D)∼D | open ins(f, I)∼D | mty

I → rep(f, g,N)∼I | ins(f, I)∼I | open del(f,D)∼I | mty

ICORE SUBFOREST: dimension 2 extends TREEALIGENERIC with

Grammar SUBFOREST

N∗ → rep(f, g,N)∼N | open del(f,D)∼E | open ins(f, I)∼J | mty
D → rep(f, g,N)∼D | del(f,D)∼D | mty
E → del(f,D)∼E | N
I → rep(f, g,N)∼I | ins(f, I)∼I | mty
J → ins(f, I)∼J | N }

Gaps as subtrees. The two preceding definitions of gaps do not allow to continue an alignment with
a replacement in a subtree below a number of insertions and deletions. This can be fixed by considering
arbitrary subtrees instead of complete subtrees (and arbitrary subforest instead of complete subforest, see
later). With subtree gaps, a gap node is the extension of a larger gap because its ancestor is a gap node,
like for complete subtrees. The difference is that a gap is not required to cover the complete subtree.
This definition of a gap is used in [35]. In order to continue with insertions below deletions, and then
with replacements further below, the grammar SUBTREE provides direct transitions between D and I
with gaps opened in the other tree.

Example 15. Returning to our previous example of trees a(b(c∼f)) and a(d(e∼f)), we can now align
the two nodes labeled f after deletion/insertion of b and d. The grammar allows us to derive the core
term

t = rep(a, a, t1)∼mty where

t1 = open del(b, del(c, mty)∼t2)∼mty

t2 = open ins(d, ins(e, mty)∼rep(f, f, mty)∼mty)∼mty

In contrast to the previous situation, sub-alignment t2 is now embedded in t1.

Gaps as subforests. This is our most general definition for a gap. A gap node can extend both an
ancestor gap node or a sibling gap node, like with complete subforests, and a gap can stop anywhere in
the tree, like with arbitrary subtrees. This definition is implemented in Schirmer’s algorithm [39].

Example 16. Consider the two trees a(b(c)∼d(e∼f∼g)∼h∼i(j∼k)) and a(b(c)∼f∼i(j∼k)). The first
tree is isomorphic to the one depicted in Figure 10. For all kinds of gap, there is a core term of the form

rep(a, a, rep(b, b, rep(c, c, mty))∼t∼rep(i, i, rep(j, j, mty)∼rep(k, k, mty)))
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ICORE OSCISUBFOREST: dimension 2 extends TREEALIGENERIC with

Grammar OSCISUBFOREST

N∗ → rep(f, g,N)∼N | open del(f, P )∼S | open ins(f, P )∼S | mty
P → rep(f, g,N)∼P | del(f, P )∼P | ins(f, P )∼P | mty
S → rep(f, g,N)∼N | del(f, P )∼S | ins(f, P )∼S | mty

where t is a core term that describes the sub-alignment between d(e∼f∼g)∼h and f . In the complete
subtree gap mode, this alignment requires three gaps: the first one to delete the complete subtree
d(e∼f∼g), the second one to delete the other complete subtree h, and the last one to insert the complete
subtree f .
tCompleteSubtree =

open del(d, del(e, mty)∼del(f, mty)∼del(g, mty))∼open del(h, mty)∼open ins(f, mty)

The two gap deletions can be merged into a single gap in the complete subforest mode:
tCompleteSubforest =

open del(d, del(e, mty)∼del(f, mty)∼del(g, mty))∼del(h, mty)∼open ins(f, mty)

In the subtree mode, the node labeled by f is no longer deleted nor inserted: we remove the subtree
d(e∼g), but retain f .

tsubtree = open del(d, del(e, mty)∼rep(f, f, mty)∼del(g, mty))∼open del(h, mty)

In the subforest mode, all deletion operations belong to the single gap:

tsubforest = open del(d, del(e, mty)∼rep(f, f, mty)∼del(g, mty))∼del(h, mty)

Finally, note that the tree alignments tcompleteSubtree, tcompleteSubforest, and tsubtree coexist with tsubforest
in the search space of SUBFOREST, but due to their larger number of gap openings, they will score worse
under an affine scoring algebra.

Oscillating gaps. As in Section 5, oscillating gap mode means that an alignment can switch between
insertions and deletions without incurring another gap opening penalty. The four previous grammars
can all be transformed to deal with oscillating gap mode. Essentially, one has to merge the non-terminal
symbols that distinguish between insertions and deletions. We illustrate this on grammar SUBFOREST.
The five symbols of SUBFOREST reduce to three: N(o gap), P(arent gap), and S(ibling gap) in ICORE
OSCISUBFOREST on page 117.

Example 17. Now consider the core term t,

t = rep(a, a, open del(e, rep(b, b, mty)∼del(c, mty))∼t′)

where t′ = ins(f, ins(c, mty)∼rep(d, d, mty))
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shown graphically in Figure 11. To understand how the grammar passes around information about gap
context, readers are invited to produce a derivation of this term. First, note that t ∈ L(OSCISUBFOREST)

and that it uses a single opening for two deletions and two insertions that form an oscillating gap.
We find

a(e(b, c), d) = a(e((b∼c)∼d))←∗ t→∗ a(b∼f(c∼d)) = a(b, f(c, d))

by the rewrite rules of TREEALIGENERIC.

Figure 11. Graphical view of tree alignment with oscillating gaps. Core operators mty

and ∼ are not shown. Note that after the gap opening for the deletion of e, oscillation allows
for a gap extension when inserting f . Indicated in red (gray) are the non-terminal symbols
used in a derivation of this core term with grammar OSCISUBFOREST.
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7.3. Classical Tree Edit Distance

The classical tree edit model is, akin to tree alignment, defined more generally on forests. As before,
we follow the tradition to discuss it as a problem on trees.

While the tree alignment model computes an optimal common supertree for its inputs, the tree edit
model computes an optimal common subtree. (In the present discussion, a subtree is a sub-set of tree
nodes, preserves ancestorship and order, but need not be contiguous.) This subtree is given by an injective
mapping that respects the tree structure. Essentially, the mapped nodes are the rep-nodes in a tree
alignment, whereas the del or ins nodes are not represented. Each tree alignment can be converted into
a tree edit mapping by deleting all insertion and deletion nodes, while the converse is not true: Certain
mappings cannot be embedded in a common supertree. The example used in Figure 11 is a case in point.
There, we can map all nodes carrying the same label onto each other, but we cannot embed this mapping
in a tree alignment. Thus, for a given pair of trees, the tree edit model has a larger search space than the
tree alignment model, and whether or not this is desirable depends on the application.
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ICORE TREEEDIT: dimension 2

Satellite signature TREE, TREE -- remember this uses a set F of unary operators
Core signature TreeAl -- operator ∼ is associative here
Grammar TTreeAl
Rules

a(X)← rep(a, b,X) → b(X) (12)

a(X)∼Y ← del(a,X∼Y ) → X∼Y (13)

X∼Y ← ins(a,X∼Y ) → a(X)∼Y (14)

ε← mty → ε (15)

X∼Y ← X∼Y → X∼Y (16)

Algebra TREESIMILARITY

Different algorithms for computing edit distance on trees have ben reported [40,41]. They implement
the same model, but use different problem decompositions. Hence, the recurrences which implement
them appear quite different. Specifying the tree edit distance problem by an ICORE, we remain
independent of implementation details, and this can be seen as a specification of either of these
algorithms. Conversely, the known algorithms witness the implementability of this ICORE, and the
implementation freedom it allows for.

For the input forests, we can re-use our satellite signature TREE, and for mappings, the core signature
TreeAl. While the former is obvious, the latter may come as a surprise. Though mappings cannot always
be embedded in supertrees, they can be represented by TreeAl terms together with a suitable set of rewrite
rules. This paradox is resolved below.

In ICORE TREEEDIT on page 119, we re-use algebra TREESIMILARITY; a common convention is
δ = γ = 0, such that only the mapped nodes contribute to the score.

Example 18. Reconsider the trees a(e(b∼c)∼d) and a(b∼f(c∼d)) of Figure 11. Under a reasonable
choice of score, the optimal tree edit maps the nodes labeled a, b, d, and also c onto each other, with
an optimal score of w(a, a) + w(b, b) + w(c, c) + w(d, d). The edit distance between a(e(b∼c)∼d) and
a(b∼f(c∼d)) is achieved by the core term t =

rep(a, a, del(e, rep(b, b, mty)∼ins(f, rep(c, c, mty)∼rep(d, d, mty))))

↓
a(del(e, b∼ins(f, c∼d)))

↙ ↘
a(del(e, b∼c∼d)) a(del(e, b∼f(c∼d)))

↓ ↓
a(e(b∼c)∼d) a(b∼f(c∼d))

In our diagram, rewriting positions are underlined. The first line summarizes four applications of the
replacement rule at independent subterms of t. The following steps make use of associative rewriting.
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In line 2, c∼d is grouped as (c∼d)∼mty to match the rule for ins. In line 3, b∼c∼d is grouped as
(b∼c)∼d to match the rule for del.

The use of associative rewriting is essential to accommodate the tree edit model in the ICORE
framework. This solves the paradox how we can represent a larger search space with the same core
signature. A single core term can have different rewritings, depending on the use of associativity. A
core term that does not rewrite to the inputs by the rules of ICORE TREEALIGN may still do so by the
rules of TREEEDIT. Or said the other way round: In the search space for a tree edit problem, certain
core terms have rewrite sequences that do not make use of associativity. They correspond to mappings
that can be embedded in a common supertree of the inputs, and also represent tree alignments. However,
there are additional core terms, which rewrite to the inputs modulo associativity, and they correspond to
mappings that cannot be embedded. The core term in the above example, using rules from TREEALIGN,
rewrites to a(e(b)∼c∼d), but not to a(e(b∼c)∼d).

Things being more sophisticated than with previous ICORES, let us supply a proof that TREEEDIT

actually serves its purpose.

Fact 2. ICORE TREEEDIT solves the tree edit distance problem.

Proof. Let A and B be two trees. We consider that a tree edit mapping between A and B is given by a
common subtree, or more formally by a pairs of two isomorphic treesA′ andB′ such thatA′ is embedded
in A (denoted A′ ⊆ A), B′ is embedded in B (B′ ⊆ B) and A′ and B′ are identical up to the renaming
of the node labels.

(1) Every rewriting of a core term indicates a mapping: Let t be a core term such thatA←+ t→+ B.
Then we can deduce from t a common subtree forA andB whose cost is the same as the evaluation under
the ICORE algebra for A←+ t→+ B.

We define the functions φ1 : T (TreeAl) → T (TreeAl) and φ2 : T (TreeAl) → T (TreeAl)

recursively as follows.

φ1(X∼Y ) = φ1(X)∼φ1(Y )

φ1(a(X)) = a(φ1(X))

φ1(del(a,X)) = φ1(X)

φ1(ins(a,X)) = φ1(X)

φ1(rep(a, b,X)) = a(φ1(X))

φ1(mty) = ε

φ2(X∼Y ) = φ2(X)∼φ2(Y )

φ2(a(X)) = a(φ2(X))

φ2(del(a,X)) = φ2(X)

φ2(ins(a,X)) = φ2(X)

φ2(rep(a, b,X)) = b(φ2(X))

φ2(mty) = ε

First note that the only difference betwen φ1 and φ2 lies in φ1(rep . . . ) and φ2(rep . . . ). It follows
that φ1(t) and φ2(t) are isomorphic trees.

Secondly, it is straightforward to verify that for any two terms u and v such that u →1 v

(resp. u →2 v), then φ1(u) ⊆ φ1(v) (resp. φ2(u) ⊆ φ2(v)). It follows that φ1(t) ⊆ φ1(A) and
φ2(t) ⊆ φ2(B). By construction, φ1(A) = A and φ2(B) = B. So the pair (φ1(t), φ2(t)) is a common
subtree of A and B.

(2) Every mapping has a core term that describes it: If there is a common subtree (T1, T2) for A
and B, then one can construct from (T1, T2) a core term t such that A ←+ t →+ B and the rewrite
derivation has the same cost as the tree mapping.
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We define a function ψ that takes as input two trees A and B and returns a core term t, such that
φ1(t) = T1 and φ2(t) = T2. Assume A = a(U)∼V and B = b(U ′)∼V ′. There are three cases.

- If a occurs in T1 and b in T2: ψ(a(U)∼V, b(U ′)∼V ′) = rep(a, b, ψ(U,U ′))∼ψ(V, V ′)

- if a is not in T1: ψ(a(U)∼V, b(U ′)∼V ′) = del(a, ψ(U∼V, b(U ′)∼V ′))
- if b is not in T2: ψ(a(U)∼V, b(U ′)∼V ′) = ins(b, ψ(a(U)∼V, U ′∼V ′))
Note that the two last cases overlap, when neither a nor b are in the mapping. In this case,

the construction is ambigous, and it is possible to apply the insertion rule before the deletion rule,
or vice-versa.

The fact that A ←+ ψ(A,B) →+ B is proven by induction on the size of A and B. For example,
if ψ(A,B) is of the form del(a, w) with w = ψ(U∼V, b(U ′)∼V ′), we have by induction hypothesis
U∼V ←+ w →+ b(U ′)∼V ′, hence

a(U)∼V ← del(a, U∼V )←+ del(a, w)→+ del(a, b(U ′)∼V ′)→ b(U ′)∼V ′

Other cases are similar.

It is worth noticing that the rewrite steps in this inductive proof are bottom-up: the rewriting first
eliminates operator symbols at the leaves of the term, and so on. Rewritings that proceed top-down may
take “wrong” turns and not arrive at the input trees. The bottom-up strategy may be useful to keep in
mind for implementing ICOREs.

Relation to sequence comparison. As tree edits determine an optimal common subtree, their
counterpart on sequences is the optimal common subsequence. This is also known as a sequence
“trace”, and is different from sequence alignment, as the order of adjacent indels between matched
residues remains unspecified–see also grammar AFFITRACE for ICORE AFFINE. When specializing
trees to sequences, we can again apply the non-branching-tree or the forest-of-leaves view. In the first
view, the variable Y always matches to mty, which is rewritten to ε. In the forest-of-leaves view, this
holds for the variable X . Deleting either X or Y from all rules except Equation (16) gives rules that
resemble those of sequence alignment (ICORE EDITDISTANCE, cf. Section 5) in either the linear tree
or the forest-of-leaves representation. In either case, all core terms sharing the same set of replacements
represent the same common subsequence, while they represent different sequence alignments.

Affine gap weights. Once we consider an edit distance model where indels contribute to the score,
we might as well consider the generalized gap models of the previous section. Since the core signature
for TREEEDIT is the same as for TREEALIGENERIC, we can extend it to TREEALIAFFINE and use the
same grammars for the same gap modes: COMPLETESUBTREE, COMPLETESUBFOREST, SUBTREE,
SUBFOREST. Note that the rewrite rules for open del and open ins resemble those of del and ins, as
they indicate the same situation, only with a different score.

Convex gap weights? Can we design ICOREs for tree edit distance with arbitrary convex gap weights
(of which the affine weights are a special case)? In [35], Touzet showed that this problem is NP-hard.
This means that either we cannot express arbitrary convex gap weights in our framework, or else, not
all ICOREs have a polynomial time implementation (unless P = NP). This would shatter our hope for a
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general, polynomial-time implementation technique for ICOREs. However, note how gaps are modeled
in ICOREs! They correspond to rewrite rules which, by rewriting a core term, produce a piece of input
tree in one dimension, but not in the other. A single rewrite rule can only produce a gap of constant size.
Successive rewrites by such rules constitute larger (composite) gaps of any size. The score of these gaps
will then be computed by the operators in the core term, interpreted in some algebra. By construction,
scores of composite gaps are therefore computed in a “piecemeal” fashion. Such gap scoring is a minor
generalization of affine scoring, but does not provide for arbitrary, convex gap scoring functions.

A devil’s advocate might challenge this reasoning in the following way: “I can express any convex
scoring gap score by essentially two functions, say open and ext! The ext operator merely collects a
representation of the gap, including all necessary information required for scoring it, such as gap size,
structure, and the concrete symbols deleted or inserted. The open operator marks the root of the gap. It
receives the gap information from the ext operators below it, and calls the convex scoring function on the
gap as a whole.” Fortunately, Richard Bellman grumbles from beyond: “Not even the devil himself could
provide an objective function satisfying the Principle of Optimality [1] with respect to the ext function.”
So, the ICORE of the devil’s advocate would be illegal. (It is interesting to note the similarity of this
argument to the discussion of the “yield parsing paradox” in [13], where Bellman’s Principle comes in
to explain why we cannot solve all problems in classical ADP in O(n3), in spite of the Chomsky Normal
Form transformation, which only seems to apply to all problems in the classical ADP framework.)

7.4. Variations on Tree Edit Distance and Alignment of Trees

On the abstraction level of ICOREs, it it easy to play with edit schemes and design variations of
the classical comparison models that have been presented in the two preceding subsections. Specific
applications often require special cases or minor extensions.

Why not combining tree edit distance and tree alignment? We may do an asymetric comparison, with
alignment rule for del and edit rules for ins;

a(X)← del(a,X) → X

X∼Y ← ins(a,X∼Y ) → a(X)∼Y

We may introduce label dependent comparison, with alignment rules for some labels, and edit rules for
other labels,

a(X)← del(a,X) → X

ā(X)∼Y ← del(ā, X∼Y ) → X∼Y
X ← ins(a,X) → a(X)

X∼Y ← ins(ā, X∼Y ) → ā(X)∼Y

or we can use another kind of label dependent comparison, where the subforest can only be cut before
some label b

a(X)∼b(Y )← del(a,X∼b(Y )) → X∼b(Y )

X∼b(Y )← ins(a,X∼b(Y )) → a(X)∼b(Y )
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and so on. For the moment, these variations are speculative, as we do not know about concrete
applications. In the next section, however, we turn to an application that calls for an even more
general concept.

7.5. Tree Alignment under a Generalized Edit Model

In our last contribution, we generalize the tree edit model to arbitrary tree edit operations, which
may arise from domain-specific knowledge about what the trees represent, and properties that must
be respected in an alignment. Tree alignment, as formulated above, operates on rooted, ordered,
node-labeled trees. Any node label can reside anywhere in the tree, independent of context, and can have
any number of subtrees. It can be aligned to any other label. Edit operations are atomic–parent nodes and
their siblings are considered independently. Written as bidirectional editing rules, the classical model
appears simple:

a(X) ↔ b(X) -- node (label) replacement
a(X) ↔ X -- node indel
X∼Y ↔ X∼Y -- no change

The last rule, “no change”, was added for formal completeness, such that when editing s into t, all
positions can actually be edited by some rule.

We are now setting out to refine this model into a generalized tree alignment model. Concrete
applications are often richer in meaning: Some node labels imply specific others at their sibling nodes.
More general edit rules are desirable, to express that some larger tree patterns should be edited as a whole
into specific target patterns. An example are distributivity laws, such as

f(a∼g(X∼Y ))↔ g(f(a∼X)∼f(a∼Y ))

or

f(X)∼f(Y )↔ f(X∼Y )

We want to assign a special (favourable) score to this edit operation, and to this end, it does not help that
the classical model can mimic this transformation by a combination of atomic edits.

A second motivation for generalization is the case where certain node labels should never be matched,
because this is meaningless in our interpretation and there is no justified scoring of the result. Think of
trees carrying numbers and characters at their leaves, where it makes sense to match up numbers with
numbers, characters with characters, but not characters with numbers– as would be allowed in the atomic
model. A penalty of −∞ for such an unwanted replacement comes to mind, but this does not remove
such illegal tree alignments from the search space, it only makes them non-optimal. We want to be able
to specify generalized edit operations, that declare explicitly what operations are allowed in place of the
standard, atomic tree edit model. This is the goal of the following definitions.

Definition 5. Generalized tree alignment
(1) Let F be a signature, and let V be a set of variables. A generalized edit operation is a pair of terms
of T (F, V ), denoted `↔ r, provided with a real value w, called the weight of the edit operation.
(2) The generalized tree alignment problem for trees s and t is to find the edit script of
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maximal accumulated weight that transforms s to t using a given, finite set of generalized edit
operations {`i ↔ ri}.

Alternatively to maximizing weight, we could ask for minimizing a distance score associated with the
edit operations.

In the above definition, the notion of an “edit script” has been carried over from Section 2. This notion
is yet informal and can be concretized in different ways; from here, one might strive for a generalization
of the tree edit model as well as for generalized tree alignment. In either case, each position in a tree is to
be involved in an edit operation exactly once; this is why we explicitly include “no change” rules with our
edit operations. Here, our goal is a generalization of tree alignment. Hence, in the construction to follow,
the core terms we will produce can be seen as data structures representing edit scripts. We will not make
use of associative rewriting (cf. the discussion in Section 7.3) and we make sure by construction of our
rewrite rules that the atomic tree alignment model is obtained as a special case.

Before we embark on the construction of ICOREs from generalized edit operations, a word must be
said on the difference between edit operations ` ↔ r and rewrite rules ` → r. Rewrite rules carry the
restriction var(r) ⊂ var(`). This is because term rewriting is functional model. Rewriting a term s at a
given position by ` → r, the result is uniquely determined. Edit operations, in contrast, are a relational
model. Two terms s and t may be related by an edit operation ` ↔ r, but given only s and ` ↔ r, we
cannot construct t. Insertions and deletions are only symmetrical operations when we know both sides,
the “source”and the “target”; without a known target, we would not know what to insert with insertions.
In the generalized edit model as defined above, both s and t are given, and hence, no condition is imposed
on the variables in `↔ r .

We now show how an ICORE is constructed for a generalized tree alignment problem.

Definition 6. ICORE construction for a generalized tree edit problem
Let F be a signature, and let {(`i ↔ ri, wi); 1 ≤ i ≤ n} be a set of generalized edit operations. We
define an ICORE as follows.

• Both satellite signatures are F .
• The core signature contains a single sort, the constant operator symbol mty, the alphabet of the

satellite signatures (if any) as nullary operators, and 2n operators: op1
1, op

2
1, . . . , op

1
n, op

2
n. The

arity of op1
i and of op2

i is the cardinality s of var(`i) ∪ var(ri).
• For each edit operation `i ↔ ri, we have two rewrite rules

`i ← op1
i (X̄) → ri

ri ← op2
i (X̄) → `i

where X̄ = var(`i) ∪ var(ri).
• The scoring algebra is

op1
i (X̄) = wi + X̄

op2
i (X̄) = wi + X̄

mty = 0

φ = max
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• The grammar accepts all core terms.

Note that by construction, the rewrite rules are well-defined, since X̄ contains both var(`i) and var(ri).
Also note that in the core signature, no associative operator is assumed, since we are heading for a
generalization of the tree alignment rather the tree edit model.

Fact 3. The above ICORE solves the tree alignment problem defined by {`i ↔ ri}.

Proof. By construction, two trees s and t are related by the edit operation `i ↔ ri applied at their root
position, if and only if there is a core c term rooted by op1

i or op2
i such that c can be rewritten under the

rule `i ← op1
i (X̄) → ri or ri ← op2

i (X̄) → `i. This argument applies recursively to the other positions
in the subtrees of s and t.

The simplest case of a generalized tree alignment problem is the classical one, using the atomic edit
model. So our first example is an old friend:

Example 19. The ICORE TREEALIGN for the alignment of trees is generated according to Definition 6
from the edit operations

a(X) ↔ b(X)

a(X) ↔ X

X∼Y ↔ X∼Y

where op1
1 = op2

1 = rep (the op2
1 case is redundant because it produces the same rule as op1

1 under
exchanging a and b), op1

2 = del, op2
2 = ins, and op1

3 = op2
3 = ∼ (the second case is redundant because

of rule symmetry).

Now let us move towards a non-trivial application the generalized tree alignment model. In
Section 6.4, we have approached the problem of RNA structural alignment using structure-annotated
sequences. Since the structures are already known when we assume structure annotated sequences as
our inputs, we could as well represent the structures directly as trees (which also include the sequence
information at their leaves). For our example, we use the tree representation underlying the tool
RNAforester [39]. There, the nodes labeled P indicate hydrogen bonds between base pairs: P (G, A, U, C)

indicates that bases G and C form a hydrogen-bonded base pair, while A, U constitute the hairpin loop.
Figure 12 shows an example. Therefore, the right- and leftmost sibling of a P -node must always be a
base, and not another P -node. The chosen representation is captured by the following satellite signature:

Satellite signature RST with

alphabet {A,C,G,U}
operators

P : Rst → Rst -- must have a subforest of at least two bases
∼ : Rst×Rst → Rst -- subforest concatenation
ε : → Rst -- empty subforest
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Figure 12. Structure representation where a P -node indicates a base pair bond between its
left- and rightmost child, while the other subtrees represent structures enclosed by this base
pair. In this representation, the left- or rightmost child of a P -node can never be another
P -node, while the other children can.
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Alignments of RST trees under the atomic edit model clutter the search space with candidates that
have no reasonable interpretation. For example, they allow to align a P node to a base node, or
insert a P node without the two bases that make the bond. Such aligments are meaningless in this
context. Replacement of P by an a must be avoided, and overall, P (a, ..., b) should be treated as a unit,
and so on. With generalized edit operations, we can define exactly the meaningful edit operations in
this scenario:

a ↔ b -- base match
a ↔ ε -- base indel

P (a∼X∼b) ↔ P (c∼X∼d) -- base pair match
P (a∼X∼b) ↔ c∼X∼d -- bond indel
P (a∼X∼b) ↔ X -- base pair indel
P (a∼X∼b) ↔ c∼X -- paired base loss intro right
P (a∼X∼b) ↔ X∼d -- pair base loss intro left

X∼Y ↔ X∼Y -- no change

for a, b, c, d ∈ R where applicable. These general edit operations ensure that editing always leads from
a legal RNA structure representation to another. To create the ICORE according to Definition 6 for tree
alignments under this edit model, we can almost re-use the core signature STRAL of Subsection 6.4. The
overall representation has changed a bit, as we have gone from sequences to trees. This also affects
the structure of their alignments. With STRAL, a base match also contains a sub-alignment of the
sub-sequences following the matched bases. With RST trees, all bases reside on leaves of the trees,
and sub-alignments are connected by forest concatenation instead. We design our new core signature
STRAL2 following STRAL, keeping the names for analog operations, but adjusting the types. The edit
operations for base match and base pair match are symmetric, and in STRAL2, they give rise to a single
operator each: b match and pair. The “no change” rule is also symmmtric and gives rise to a single
operator called ∼. The resulting ICORE RNATREEALI is shown on page 127.

While RNATREEALI only reformulates STRUCTALI based on a tree representation, we can use the
more general concept of tree edit operations to enrich our edit model by specific cases of interest. We
give one more example.
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ICORE RNATREEALI: dimension 2

Satellite signature RST, RST
Core signature STRAL2 with

alphabet R

mty : → StrAli -- empty tree alignment
b match : R×R → StrAli -- base match; replacessingle

∼ : StrAli× StrAli → StrAli -- subforest concatenation
pair : R×R× StrAli×R×R → StrAli -- base pair match
del : R → StrAli -- base deletion
ins : R → StrAli -- base insertion

pair del : R× StrAli×R → StrAli -- base pair deletion
pair ins : R× StrAli×R → StrAli -- base pair insertion

pairLR del : R×R× StrAli×R×R → StrAli -- bond deletion
pairLR ins : R×R× StrAli×R×R → StrAli -- bond insertion
pairL del : R×R× StrAli×R → StrAli -- closing base loss
pairL ins : R×R× StrAli×R → StrAli -- closing base intro
pairR del : R× StrAli×R×R → StrAli -- opening base loss
pairR ins : R× StrAli×R×R → StrAli -- opening base intro

Grammar STRAL2

Rules
ε← mty → ε

a← b match(a, b) → b

X∼Y ← X∼Y → X∼Y
P (a∼X∼c)← pair(a, b,X, c, d) → P (b∼X∼d)

a← del(a) → ε

ε← ins(b) → b

P (a∼X∼c)← pair del(a,X, c) → X

X ← pair ins(b,X, d) → P (b∼X∼d)

P (a∼X∼c)← pairLR del(a, b,X, c, d) → b∼X∼d
a∼X∼c← pairLR ins(a, b,X, c, d) → P (b,X, d)

P (a∼X∼c)← pairL del(a, b,X, c) → b∼X
a∼X ← pairL ins(a, b,X, d) → P (b∼X∼d)

P (a∼X∼c)← pairR del(a,X, c, d) → X∼d
X∼c← pairR ins(b,X, c, d) → P (b∼X∼d)

Algebra SCORE -- omitted
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Example 20. The iron response element is a regulatory structural motif in the ferritin pathway. It consists
of a ‘C’-bulge, a single cytosine nucleotide that emanates from a base-paired helix. The bulge can be
located upstream or downstream of the helix turn, as depicted below:

ACGCAGUGGACACUCGU ACGAGUGGACACUCCGU

(((.(((....)))))) ((((((....))).)))

An meaningful tree alignment should probably choose indels for both ’C’-bulges, and match the rest of
the structures, as in

ACGCAGUGGACACU-CGU

(((.(((....)))-)))

(((-(((....))).)))

ACG-AGUGGACACUCCGU

The penalty of two indels can make this alignment submerged in the suboptimal candidate space. Better
results can be expected with an additional edit operation such as

P (a∼C∼P (b∼X∼d)∼e) ↔ P (a∼P (b∼X∼d)∼C∼e)

Note that this edit operation only applies if the bulged-out nucleotide is a cytosine (C). We want this rule,
because biologically, it does not matter whether the bulge is upstream or downstream of the hairpin loop.
Having captured it by an edit operation, we can weight this situation as highly as a perfect match. In fact,
we may even assign a bonus score to this edit operation, because where present, this situation provides
evolutionary evidence for a conserved structural feature in the presence of sequence variation.

The tree alignment problem, in the generality as formulated here, has not been studied in the literature.
For specific sets of edit operations, used for example with RNA structure, implementations are known.
Overall, however, this model is an open implementation challenge. The generalized tree aligment is the
most general problem we have considerd in this exposition of the ICORE framework, and hence, the
solution of this problem is a central issue for the implementation of the ICORE framework as a whole.
Some aspects of this challenge will be discussed in Section 10.2.

8. Evaluation Algebras and Their Products

Up to this point, we were mainly concerned with modeling the search spaces for a variety of
optimization problems. Our focus was on signatures, rewrite rules and grammars. The evaluation
algebras we gave were simple, or even omitted. Where shown, they were examples of one kind of
scoring that could underlie our desired objective. This is fine as long as we think of each ICORE using
one particular algebra. In real applications, one is much more likely to work with combinations of several
algebras, called algebra products. Products do not formally extend the power of our approach, as each
product could also be hand-coded as a single algebra. The gain in terms of programming productivity
here comes from the fact that we can create more refined analyses from simpler ones without changing
tried-and-tested code.
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In algebraic dynamic programming, all scoring aspects are captured in the algebra. They are
independent of the grammar and the rewrite rules. Consequently, Bellman’s Principle can be established
looking at the algebra only. This, by itself, is an advantage, because we can separately experiment with
either algebra, tree grammar, or rewrite system as our modeling ideas evolve.

The second benefit of such perfect separation of search space and evaluation is that one can define
high-level “product” operations on two algebras over the same signature. G(A ∗ B, x) does an analysis
based on A and B, depending on the precise definition of “*”. And since A ∗ B is just another algebra,
we can build (A ∗ B) ∗ C, (A ∗ B) ∗ (C ∗ D) and so on. Thus, we can build up sophisticated scoring
schemes from simpler ones with a single keystroke, and if our framework understands and implements
the product operation, this requires no code modification on our side. Three such products were defined
with classical ADP [42], a Cartesian, a lexicographic, and an interleaved product. Let us recall the
definition of the most versatile one.

Definition 7. Let A, B be two algebras over a signature Σ. The lexicographic product A ∗ B is an
evaluation algebra over Σ which evaluates each candidate t according to (A∗B)(t) = (A(t), B(t)) and
applies the objective function

φA∗B[(a1, b1), . . . , (am, bm)] = [ (l, r) |
l ∈ set(φA[a1, . . . , am]),

r ∈ φB[ r′ | (l′, r′)← [(a1, b1), . . . , (am, bm)], l′ = l ] ]

(17)

where set reduces a multiset of values to a set.

Said in words: The search space is evaluated according toA, and the candidates resulting from this are
re-evaluated according to B. When both algebras optimize under some ordering, their product performs
optimization under the lexicographic combination of the two orderings; this motivates the name of the
product. But the lexicographic product is useful also in cases where some of the algebras involved do
not perform optimization.

To demonstrate the versatility of this product operation,, let A and B be two scoring algebras with
different optimization objectives, C a “counting” algebra which assigns to each candidate a score of 1,
and φ sums up the scores, D an algebra that computes a classification attribute from each candidate, and
P an algebra that computes a print representation from a candidate. For D and P , φ is the identity, i.e.,
no optimization is performed. For example, G(P, x) would simply print all candidates in the search space
of x. We show in Table 2 some analyses which can be achieved with A,B,C,D, and P in lexicographic
products. All three product operations mentioned above have been implemented for classical algebraic
dynamic programming in the Bellman’s GAP system [16,42], where they have proved useful in
real-world applications; they should work with ICOREs just as well.
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Table 2. Various uses of the lexicographic product, as given in Definition 7, with different
kinds of algebras.

Algebra Product Computes Remark

A optimal score under A

B optimal score under B

A ∗B optimal under lexicographic
order on (A×B)

C size of candidate space avoids exponential explosion!

A ∗ C score and number of co-optimal
candidates under A

A ∗B ∗ C score and number of co-optimal
candidates under (A×B)

P representation of all candidates complete enumeration!

A ∗ P , A ∗B ∗ P score and representation also known as
of co-optimal candidates co-optimal backtrace

D classification attributes all candidates’ attributes
of all candidates (useless by itself)

D ∗A, D ∗A ∗B optimal score within each “classified” DP
class as assigned by D

D ∗A ∗ P , D ∗A ∗B ∗ P opt. score and candidate
for each class

D ∗ C size of each class
(number of candidates)

9. Relation with Other Formal Models

This section covers the relation of ICOREs to earlier approaches, and also justifies some of our
decisions in defining ICOREs. We first review Algebraic Dynamic Programming (ADP) [13], Searls’
transducers [43] and Lefevbre’s S-attribute grammars [11]. We then discuss why ICOREs are not Turing
complete, and why grammars are mandatory in ICORE definition to guarantee the full expressiveness of
the model.
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ICORE SCHEMATIC ADP: dimension 1

Satellite signature SEQ with alphabet A
Core signature Σ with alphabet A
Grammar G
Rules for each production X → t(X1, ..., Xk) ∈ G, where t holds at least one function symbol,
there is a rule

t(x1, ..., xk) → x1∼...∼xk

Algebra E without change

9.1. “Classical” ADP Algorithms Seen as ICOREs

ICOREs build upon and extend the framework of ADP. Up to this point, ADP has been formulated
solely for problems where the inputs are sequences [13,42], whereas ICOREs can also handle ordered
trees. But the transition from ADP to ICOREs is deeper than just a change of the input data type. In
ADP, the tree grammar is responsible for defining the search space and relating its candidates to the input
sequence(s). A process called yield parsing serves as the underlying machinery for the implementation
of ADP programs. With ICOREs, the tree grammar takes only responsibility for defining the search
space over all problem instances, while the relation to a concrete problem instance is established by the
inverse coupled rewrite relation. This brings more expressive power–but a direct implementation in the
style of a yield parser is no longer at hand. What remains common to both ADP and ICOREs is the
evaluation of the search space via scoring algebras.

Claiming that ICOREs subsume ADP in a mathematically strict sense, we should indicate how an
ADP algorithm is re-coded as an ICORE. Formally, ADP uses input sequences over alphabets, tree
grammars and signatures, but no rewrite rules. Let Σ be a signature over alphabet A. A tree grammar
G over Σ specifies a language of trees, L(G) ⊆ TΣ as usual. The yield string y(t) of a tree t ∈ TΣ is
the string of its leaf symbols from A, in their left-to-right order. Let E be a Σ-algebra with objective
function φ, and let x ∈ A∗ be our input sequence. An ADP problem instance is defined by G, E , and x.
Its solution is

G(E , x) := φ[E(t)|t ∈ L(G), y(t) = x] (18)

where square brackets denote multisets. Another way to express the above definition would be (where ◦
denotes function composition and E(...) evaluates to a multiset.)

G(E , x) = (φ ◦ E)(y−1(x) ∩ L(G)) (19)

The process of computing y−1(x) ∩ L(G) is called yield parsing, and a top-down or bottom-up yield
parser is the basic engine behind ADP implementations.

Such an ADP specification given by Σ,G and E is converted into an equivalent ICORE as follows:

The ICORE SCHEMATIC ADPintroduces a satellite signature SEQ for the input sequence, uses Σ as
the core signature, and retains the tree grammar. In the rewrite rules of form, xi and xj are different
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variables even when Xi and Xj are the same non-terminal symbol, and the righthand side produces
a portion of the yield string of t(x1, ..., xk). Remember that t must not be a single variable, as term
rewrite rules of the form x → . . . are not allowed. Therefore, chain productions X → Y in G cannot
give rise to rewrite rules, and this is why we need to retain G as a grammar in the ICORE rather than
simply replacing it with TΣ. By construction, the rules in this ICORE rewrite a core term t ∈ L(G) to
its yield string y(t) ∈ A∗. Constructing the inverse of this particular relation is yield parsing. Hence,
the same set of core terms is evaluated in Equation (19) and in the ICORE SCHEMATIC ADP by virtue
of Definition 4).

The above construction was given for a n ADP program with single input. For several input sequences,
ADP uses a multi-track tree grammar. In this case, each track of the grammar gives rise to a component
in the coupled rewrite rules. This proves the equivalence of the search spaces in the ADP and the ICORE
problem specification.

On the side of evaluation algebras, there is no difference between ICOREs and ADP. In particular, the
product operations ∗,⊗, and × on algebras [42], as sketched for ∗ in Section 8, carry over to ICOREs
and provide the programming convenience already experienced with ADP.

9.2. Letter Transducers Seen as ICOREs

In Section 1.3, we mentioned the work of Searls, who proposed a general formalization of edit
distance based on a class of transducers, called editors [43]. We show here that the general mechanism
of editors, and more generally of any transducer, can be embedded in the framework of ICOREs.
Following [43], letR be a weighted finite transducer given by

• a finite set of states Q
• a set of initial states, I ⊆ Q

• an input alphabet Σ1

• an output alphabet Σ2 and
• a weighted transition relation δ ⊆ Q×Q× (Σ1 ∪ {ε})× (Σ2 ∪ {ε})× IR

Figure 13. Transducers for edit string distance: simple edit distance (left) and edit distance
with affine gap weights (right). In Searls’ terminology, these transducers are called editors.
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ICORE TRANSDUCER: dimension 2

Satellite signature S1 = Σ1 ∪ {∼, ε}
Satellite signature S2 = Σ2 ∪ {∼, ε}
Core signature TRS with

mty : → Ali

opqp : Σ1 × Σ2 × Ali → Ali

for each p ∈ Q, q ∈ Q, such that there exists a transition from p to q in δ.

Grammar The grammar contains one non-terminal symbol p̄ for each state p of Q. p̄ is a start
symbol if p is in I . Productions are

p̄→ opqp(a, b, q̄) | mty

for each p ∈ Q, q ∈ Q, a ∈ Σ1 ∪ {ε}, b ∈ Σ2 ∪ {ε} such that there exists (p, q, a, b, α) in δ for
some weight α.

Rules

a∼X ← opqp(a, b,X)→ b∼X

for each p ∈ Q, q ∈ Q, a ∈ Σ1 ∪ {ε}, b ∈ Σ2 ∪ {ε} such that there exists (p, q, a, b, α) in δ for
some weight α.

Algebra WEIGHT

opqp(a, b, x) = x+ α, for each (p, q, a, b, α) ∈ δ
mty = 0

φ = min

Such a transducer edits sequence u into sequence v, rewriting each character in u exactly once.
Each step makes a transition under δ, and the transition weights sum up to the weight of a derivation.
A derivation of minimal weight designates an optimal editing of u into v. Figure 13 shows two
tranducer examples.

We can build a corresponding ICORE of dimension 2 in the following way.

We have the following property: The string v in Σ∗2 is an output for u in Σ∗1 for R visiting
the list of states p1, . . . , pn and weight α if, and only if, there exists a core term t, character symbols
u1, . . . , un ∈ (Σ1 ∪ {ε}), character symbols v1, . . . , vn ∈ (Σ2 ∪ {ε}) such that

1. u = u1∼ · · ·∼un, v = v1∼ · · ·∼vn
2. t = opp2p1(u1v1, op

p3
p2

(u2, v2, . . . op
pn
pn−1

(un, vn, mty) . . . )

3. t belongs to the language of the grammar G
4. u←∗ t→∗ v
5. t evaluates to α

Example 21. (String edit distance) Searls and Murphy showed that the (weighted) edit distance of
two strings can be computed by a (weighted) single-state transducer and that edit distance with affine
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gap weights requires three states (see Figure 13). It is straightforward to verify that when we apply to
them the above construction, we arrive at the ICOREs EDITDISTANCE and AFFINE of Sections 4.2
and 5.1, respectively.

9.3. Multi-Tape S-Attribute Grammars

Lefebvre observed that Searls’ transducers could be described by regular grammars generating two
strings [11]. He suggested to use context-free grammars with several input “tapes” for comparative
structure analysis, named multi-tape S-attribute grammars (MTSAGs). Evaluation of structures was
modeled by attribute grammars [12]. Their simplest form uses only synthesized attributes, which permits
attribute evaluation by a pure bottom-up strategy as employed in dynamic programming. Lefebvre
suggested a special parser for MTSAGs, which better adapts to the actual complexity of a grammar
than the CYK algorithm. He modeled SCFGs by 1-tape MTSAGs, the Sankoff algorithm by a 2-tape
MTSAG, as well as a restricted class of pseudoknots by a MTSAG that reads the same sequence on two
tapes. Although full of innovative ideas, this line of work was not continued by others, possibly because
of the very specialised parsing technlogy. MTSAGs can be emulated by ICOREs where (1) all inputs
must be strings; (2) a “flat” tree grammar is used where righthand sides have tree height 1 or 0, and (3)
the core signature holds one function per grammar rule for computing the synthesized attribute. Point (3)
gives up the independence of search space construction and evaluation, and we would loose the flexible
combination of grammars and algebras over the same signature.

9.4. Relations between Turing Machines and ICOREs

We have shown in Fact 1 that ICOREs can not apply to undecidable problems. Still, it is well-known
that, as a formalism, rewrite systems are Turing-complete. In [44], Huet and Lankford simulate Turing
machines by term rewriting systems such that a given machine halts with the same result if, and only if,
the corresponding term rewrite system terminates for all terms. We give here a tentative adaptation of this
encoding within the ICORE framework, to highlight the frontier between decidability and undecidability.
We will see that we will be confronted to the imposed restriction that no part of a term is rewritten twice
in an ICORE.

Consider a one-tape Turing machine with tape alphabet A, set of states Q, and transition function δ.
We introduce a binary operator symbol head that takes as parameters the current state of the machine
and a symbol read from a cell of the tape. We represent the configuration of a Turing machine as a term

a1∼....∼ai−1∼head(q, ai)∼ai+1∼...∼an

where the finite information on the tape is a1∼....∼ai−1∼ai∼ai+1∼...∼an, the machine is in state q, and
the read-write head is on cell i.

a1 . . . ai−1 ai ai+1 . . . an

4
q

Since ICOREs are defined as inverse rewrite systems, the result of the Turing machine computation is
the core term, and the ICORE rules run the Turing machine transitions backwards.



Algorithms 2014, 7 135

non-ICORE TURING: dimension 1

Satellite signature TAPE extends SEQ with -- input sequence with head

head : Q× A→ A
Core signature TAPE

Grammar T (SEQ)

Rules

a′∼head(s, b) → head(q, a)∼b, when δ(q, a) = (s, a′,+1)

head(s, b)∼a′ → b∼head(q, a), when δ(q, a) = (s, a′,−1)

a → head(q, a), when δ(q, a) = STOP

Note that in these rules, a and b are not variables, but are a shorthand notation for one rule per alphabet
symbol, encoding the Turing machine’s transition table. So, all rules are legal rewrite rules. For example,
a′∼head(s, b)→ head(q, a)∼b indicates that in state q, the tape content a under the head is changed to
a′, the machine enters state s, and the head moves right when you apply the inverse of this rule.

TURING is not a legal ICORE, since the operator head occurs on both sides of the rewrite rules. This
has been explicitely banned in Definition 1: The core signature and the satellite signature should be
disjoint, so that a position in a core term can be rewritten only once. So what does this example tell us ?
This shows that allowing arbitrary rewrite sequences would bring us into the realm of Turing machines.
While it might be possible to relax this restriction in a controlled fashion, dropping it altogether would
render ICOREs Turing-complete, and we could no longer hope to achieve automated and efficient
ICORE implementations via dynamic programming.

9.5. A Trade-off between Grammar and Rewrite Rules

ICOREs provide two means to define the search space for given inputs, i.e., the set of core terms that
are meaningful solution candidates: (1) Given core signature C, the tree grammar G restricts the search
space to L(G), a subset of T (C). (Many ICOREs simply use the full set T (C).) (2) The rewrite rules
are such that some terms in L(G) cannot be rewritten, no matter what the inputs are. They are not in
the reverse image of the rewrite relation, and according to Definition 4, they are not candidates. In some
cases, there appears to be a trade-off between these two mechanisms. We illustrate it with the following
sequence alignment problem, which is a refinement of ICORE EDITDISTANCE.

Assume we are aligning protein-coding DNA sequences. Words in the genetic code consist of three
nucleotides. We therefore impose the condition that all gaps have a length divisible by 3. We sketch two
ICORE variants for this problem to demonstrate the above trade-off.

The first option is to modify the rewrite rules in such a way that only core terms that are legal
alignments can be reduced.
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Rules

a∼b∼c∼X ← del(a, del(b, del(c,X))) → X (20)

X ← ins(a, ins(b, ins(c,X))) → a∼b∼c∼X (21)

This set of rules defines a partial rewrite relation. A core term with singleton deletions, such as
e.g. rep(a, b, del(c, rep(e, f,X))) cannot be rewritten at all. This is intended, as this term encodes an
alignment that is not authorized in the edit scheme.

The alternative is to specify a more restrictive grammar for the core terms:

Grammar
S∗ → del(a,D1) | ins(a, I1) | rep(a, b, S) | mty
D1 → del(a,D2)

D2 → del(a, S)

I1 → ins(a, I2)

I2 → ins(a, S)

This has the same effect as the partial rewrite relation above: indels come in groups of three, and
alignments where this is violated are no longer in the search space. Here we can live with the original,
simpler rewrite rules such as del(a,X) → X and a complete rewrite relation, because the malformed
gap terms are forbidden by the grammar.

Given this trade-off, one might ask if the tree grammar is strictly necessary (aside from being
convenient) for the modeling power of ICOREs.

Fact 4. Tree grammars are a necessary concept in ICOREs.

Proof. We give a specific example where the search space restriction imposed by the grammar cannot
be expressed via the rewrite relation. Recall sequence alignment under the affine gap model, ICORE
AFFINE of Section 5. We have for some n > 1

an+1 ← open del(a, {del(a, }n mty{)}n → ε

which implies (With a finite rewrite system, we can require that up to k nested del operations can
only be rewritten together with a leading open del, but k would have to be a constant while n is
arbitrary.) that

an ← {del(a, }n mty{)}n → ε

Hence, without the grammar, this mal-formed term is in the search space, and under the usual kind of
scoring, it scores even better than the legal

open del(a, {del(a, }n−1 mty{)}n−1

Therefore, the grammar is required to ban malformed alignments from the search space.

We conjecture that grammars could be dropped from the ICORE framework by defining a more
sophisticated rewrite relation. However, we find it better to use two simple and well known mechanisms
in combination, rather than a single but more sophisticated one.
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10. Conclusions

ICOREs can serve two purposes in the development of combinatorial algorithms. First, they allow
to specify algorithmic problems in a concise and declarative way, such that ideas can be re-used
between related problems, and problems can be analyzed, refined or combined without being hindered by
implementation detail. In this paper, we have examined all these aspects, and we hope that the preceding
sections have given strong evidence of this virtue. Second, ICOREs may become the starting point for
painless algorithm implementation. One can boldly think of an ICORE language and compiler where
such a system would generate prototype implementations or even competitive code automatically from
the specifications. We conclude our study with a review of what has been achieved on the first issue, and
an outline research challenges that must be mastered to achieve the second goal.

10.1. ICOREs as a Declarative Specification Framework

Application range. We have taken our reader on a tour of about 30 dynamic programming problems
which arise in molecular sequence and structure analysis. These include various modes of pairwise
sequence comparison, pattern matching in sequences, structure prediction from a single sequence, and
consensus structure prediction from a pair of sequences. Structures are compared with a variety of
tree editing models. Families of sequences and structures are encoded as HMMs or SCFGs. Dressing up
classical bioinformatics algorithms systematically as ICOREs, we have also obtained some novel insight.

• In the introduction to this article, we informally stated that the Sankoff algorithm for consensus
structure prediction can bee seen as running two RNA folding and one sequence alignment
algorithm simultaneously. In creating the SANKOFF ICORE, we literally copied twice the
rules from RNAFOLD and imported two rules from EDITDISTANCE–this was the complete
SANKOFF specification.

• We feel that our description of covariance model construction in three steps, going from RNAFOLD

via SANKOFF and S2SEXACT to CM R is more systematic than what we find in the literature, and
in particular, it points out the role of RNAFOLD as a model architecture in covariance model
design. One could start from a different model architecture, but then proceed in the same fashion.
• The generic covariance model S2SGENERIC, the Sankoff-variant SIMFOLD and the generalized

tree edit model exemplified by RNATREEALI are new algorithmic problems and deserve further
investigation in their own right.

By this tour d’horizon, we hope to have convinced our readers that ICOREs are a useful concept for
algorithm design, and that their automated implementation is worth a substantial research effort.

Throughout this work, we have left open the problem of the formal expressivity of ICOREs: How
can we circumscribe the limits of what can be done with ICOREs? We have shown that ICOREs are not
Turing complete. This is not sufficient to give us any insight on what can be achieved conveniently with
ICOREs. Clearly, if problems have no sequence or tree-structured input, our machinery does not apply.
This holds for a large class of dynamic programming problems studied in operations research (see e.g.,
[45]) or in graph theory. (It is instructive to consider the knapsack problem, where n items with individual
weight and utility are given. A knapsack of maximum utility is to be packed, the overall weight of which
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must not exceed W . This is an NP-complete problem which whas a pseudo-polynomial solution by a
DP algrithm that runs in O(nW ). In one dimension, the recursion runs over a list of items, selecting
only from items 1 through i in each step. This dimension is easily captured in an ICORE KNAPSACK,
reading the lists of available items in some order and making yes/no decisions. The other dimension
recurs over weights from 0 to W . This requires us to do traditional style dynamic programming within
the scoring algebra, either by keeping multi-sets of partial utilities sorted by weight, or by computing
for each step i a single, optimal utility vector indexed by weight. Yet another alternative would be to
encode the recursion over weights in a tree grammar of size W ... In either case, we see no advantage in
using the ICORE approach with this problem.)

Note that ICOREs are not restricted to polynomial time problems. The inverse rewrite image of the
input is typically of exponential size. Our objective functions may compute more than a single result,
and they often do. “Classified” dynamic programming [16] uses a productA∗B to perform optimization
with respect to a scoring algebra B in a class-wise fashion, based on a classification attribute computed
by algebra A. Probabilistic shape analysis of RNA sequences [46] is a practical case where the number
of classes is (mildly) exponential. And it is not difficult to encode 3SAT as an ICORE, yielding an
exponential-time algorithm. So the question is: What can be done conveniently and efficiently with
ICOREs? Our hope and goal of future research is to show that if a class of problems over sequences
or trees has a known, efficient dynamic programming solution, then we can model such problems
as ICOREs.

Constraints and benefits in building ICOREs. ICOREs are based on a small number of
well-understood formal concepts: Algebras, grammars, and rewrite systems. Although those concepts
are likely to be familiar to any computer science graduate and have a strong intuitive appeal, we are that
aware that designing an ICORE requires some discipline.

Assume Paul is a programmer, experienced in the implementation of dynamic programming
algorithms in the classical, non-algebraic style. The last thing Paul would think of when facing a new
problem is to design a data type to explicitly represent the candidates in the search space. Indeed, the
efficiency of dynamic programming comes from the fact that candidates are not constructed explicitly.
Dynamic programming only derives score values from (some) candidates, and for the optimal one(s),
the backtrace constructs (only) a visualization. What is eventually printed in the output need not reflect
in full detail the case analysis that has rendered this particular candidate optimal. Therefore, from the
experience of Paul, there is no need for a candidate data type. In fact, when we look at present-day
algorithm textbooks, such as [47,48], there is not one case where such a data type is introduced.
With ICOREs, Paul will have to explicitly declare a core signature on which terms represent solution
candidates. The whole problem is now split in three parts: A grammar defines the universal search space,
rewrite rules define the search space of a problem instance (as the inverse rewrite image of the problem
inputs), and algebras provide scoring and optimization objective. If all Paul plans to do is solving a
single optimization problem under a simple scoring scheme, all this machinery must appear unnecessary
and verbose. However, we hope to have demonstrated that this separation of concerns, which emerges
from the core signature, has a profound and beneficial effect on how we develop specifications in more
sophistcated application scenarios.
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• The definition of the search space is independent of any scoring algebra. We can experiment with
altermative models, we can refine rules and/or grammar, for example to eliminate mal-formed
candidates from the search space (rather than tricking with ±∞). We can test how the size of
the search space is affected by design decisions, independent of scoring. We can worry about
(non-)ambiguity of our problem decomposition by studying properties of the grammar.
• When it comes to evaluating candidates, we can formulate arbitrary algebras over the given

signature. For each, we need to prove that it satisfies Bellman’s Principle. Fortunately, this is
independent of the search space and how it is constructed.
• Rewrite systems and algebras can be combined correctly in a modular fashion, bringing to bear the

software engineering principles of component re-use and ease of modification.
• Finally, as seen in Section 8, the ability to define product operations on algebras and produce

refined analyses from simpler ones is also due to the perfect separation of search space and
evaluation of candidates.

10.2. Research Challenges in ICORE Implementation

In this article, we have left open the question of how to produce automatically an implementation from
an ICORE specification. An ICORE implementation must, first of all, bring in the dynamic programming
machinery that allows us to evaluate search spaces of exponential size in polynomial time. Beyond this,
it should achieve the best asymptotic time efficiency, minimize the number of dynamic programming
tables required, and achieve reasonable constant runtime factors for the specific ICORE at hand.
Similar work has already been carried out with the Bellman’s GAP system for Algebric Dynamic
Programming [16]. This makes us optimistic about what can be achieved for ICOREs. We review
some problems, pitfalls, and sketch some lines of research.

Prototyping ICOREs. ICOREs can be easily coded in a functional-logic language. In such a language,
we can define some function f , specify a value y and solve equational queries such as f(x) = y,
producing all instances of x that satisfy the query equation. We have used the functional-logic language
Curry [49] to prototype the ICOREs EDITDITANCE and TREEALIGN. Of course, the standard inference
machine of such a language does not know that this particular type of query can be solved in polynomial
time by employing dynamic programming. It actually implements a generate-and-test strategy over a
search space of exponential size. We can only align trees up to five nodes in reasonable time. Still, this
is a quick way to test if a given ICORE does what it is supposed to do. Languages such as Haskell, or
Dyna could also be considered as host languages [50,51].

Implementing ICOREs. Aiming at more competitive implementations, quite a few technical
problems must be solved in order to efficiently implement the construction and evaluation of the inverse
rewrite image of a given problem instance.

• Search space construction: Grammar and rewrite rules must be used jointly to construct the search
space by an interleaved enumeration of core terms and their rewriting towards the input. This is
inherently a top-down process.



Algorithms 2014, 7 140

• Rewriting modulo associativity: where required, this contributes an implementation challenge of
its own to the above.
• Generating recurrences: Candidate evaluation by an algebra is simple, but is inherently a

bottom-up process, which must be amalgamed with search space construction. This amalgamation
takes the form of dynamic programming recurrences which must be generated.
• Tabulation design: In order to avoid exponential explosion due to excessive recomputation of

intermediate results, tabulation is used. This involves decisions on what to tabulate, and how to
efficiently map sub-problems to table entries.
• Repeat analysis: A special challenge arises from the fact that ICOREs allow for non-linear rewrite

rules. A variable may be duplicated on the righthand side of a rule. Two copies of a core term
naturally rewrite to identical sub-terms in a satellite, and the implementation must take care to
exploit this fact.
• Table number, dimension and size: While tabulating every intermediate result would be

mathematically correct and asymptotically optimal, space efficiency requires careful analysis of
the number of dynamic programming tables, their dimensions and sizes.
• Product optimizations: Certain tasks are conveniently expressed as algebra products, but for

competitive code, they require more efficient techniques than the generic implementation of a
product algebra. Two cases in point are full backtracing (for near-optimal solutions) and stochastic
sampling (based on a stochastic scoring algebra). For combinatorial optimization problems on
trees, no such techniques have been reported, and an implementation of ICOREs will have to
cover new ground in this respect.

Advancing theory. To ensure an ICORE is correctly implemented by dynamic programming
techniques, evaluation algebras must satisfy Bellman’s Principle of Optimality. For each algebra
originally written by the programmer, a proof of Bellman’s Principle remains a formal obligation. But
how about algebras that are constructued from given ones by products? With a keystroke, new types
of refined analyses can be composed from simpler ones. Often, Bellman’s Principle is preserved with
a product algebra, but in general, this is not guaranteed! There appear to be two routes to assist the
programmer in this situation. (1) One might seek for general theorems–conditions under which a product
preserves Bellman’s Principle; (2) One might generate proof obligations automatically from a specified
product, and hope to verify or disprove them with the help of an automated theorem prover. Both of
these questions are yet to be investigated.

Towards an ICORE language. Heading towards an implementation of ICOREs, the pseudocode
notation we have used here must be refined towards a concrete language design. Terseness must be
balanced against beneficial redundancy in several repects.

• A purist might say that the signature declarations are actually redundant, as they can be inferred
from the rewrite rules, as well as from the algebras.
• A programming language designer would argue that a certain degree of redundancy is necessary,

to safeguard against user errors and allow the compiler to give helpful error messages.
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• A software engineer would point to the need to work with evolving programs, e.g., to have a
signature where not all operators are used in a particular rewrite system, but are already included
for a planned refinement.

All in all, ICOREs pose an interesting ensemble of research challenges in programming methodology
and software support for combinatorial optimization.
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We also appreciate the work of the anonymous reviewers, who took the burden to work through this
lengthy manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Bellman, R.E. Dynamic Programming; Princeton University Press: Princeton, NJ, UK, 1957.
2. Gusfield, D. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational

Biology; Cambridge University Press: Cambridge, UK, 1997.
3. Needleman, S.B.; Wunsch, C.D. A general method applicable to the search for similarities in the

amino acid sequence of two proteins. J. Mol. Biol. 1970, 48, 443–453.
4. Smith, T.F.; Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol.

1981, 147, 195–197.
5. Sankoff, D. Simultaneous solution of the RNA folding, alignment and protosequence problems.

SIAM J. Appl. Math. 1985, 45, 810–825.
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