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Abstract: Manufacturing companies face a significant challenge when developing their master produc-
tion schedule, navigating unforeseen disruptions during daily operations. Moreover, fluctuations in
demand pose a substantial risk to scheduling and are the main cause of instability and uncertainty in
the system. To address these challenges, employing flexible systems to mitigate uncertainty without
incurring additional costs and generate sustainable responses in industrial applications is crucial. This
paper proposes a product-driven system to complement the master production plan generated by a
mathematical model. This system incorporates intelligent agents that make production decisions with a
function capable of reducing uncertainty without significantly increasing production costs. The agents
modify or determine the forecasted production quantities for each cycle or period. In the case study
conducted, a master production plan was established for 12 products over a one-year time horizon.
The proposed solution achieved an 11.42% reduction in uncertainty, albeit with a 2.39% cost increase.

Keywords: product-driven; nervousness; schedule; planning; intelligent product; agent-based model;
holonic manufacturing system

1. Introduction

Conventional manufacturing management is constantly evolving due to the incorpo-
ration of new technologies. These technologies make it possible to reduce the problems
caused by fluctuations in market demand and operational disturbances. As a result, con-
ventional production planning and control models have been transformed into new flexible
models that react dynamically during the production period. These models react dy-
namically to changes in scheduling, including disturbances arising from various factors
such as operating machinery, production expansion, processes, products, and production
volumes [1–4].

When developing their master production plan, which serves as the basis for strategic
decision making, manufacturing companies often consider flexibility in their production
systems. This plan outlines the production quantities of each product based on market
demands and requirements. Manufacturing companies typically develop the master pro-
duction plan using optimization models that may not consider the operational details,
leading to potential feasibility issues and production challenges. To mitigate these issues,
companies often modify their operations, which can destabilize the system and lead to
production plan nervousness [5].

Production plan nervousness can make achieving stable production systems challeng-
ing, resulting in a need for constant supervision and distrust in planning [6]. Incorporating
demand fluctuations, the leading cause of production plan nervousness, into a model is
complex [7]. Nevertheless, advancements in technology, including artificial intelligence
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tools and new manufacturing systems, have made it possible to mitigate the effects of
nervousness [8].

The literature has given limited attention to the impact of production plan nervousness
on production stability. Conversely, instability is also a cause of nervousness because as
nervousness increases, production plan instability increases [9,10]. Hence, it is reasonable
to consider both concepts as interdependent [11,12]. The most common approach to reduce
nervousness and instability is automatic reprogramming, allowing the system to respond
to exceptional conditions [13]. However, conventional routines are inflexible in practice,
making it impossible to reprogram jobs.

Experimental studies and quantitative modeling have recently addressed nervousness
in production systems [14]. However, the literature lacks clarity on the most effective
approach to mitigate nervousness. Some studies have suggested frequent rescheduling for
better responsiveness to demand fluctuations, while others have recommended avoiding
frequent schedule changes [11]. In addition, considering the cost of production has shown
that improved stability does not necessarily significantly increase the total cost [15]. To
better understand the performance of a specific model, computational simulations of the
proposed approach are necessary for more clarity.

Product-driven production systems (PDSs) are models that naturally allow for the
inclusion of the nervousness phenomenon. A PDS regards the products as intelligent
and artificial entities that execute and coordinate the control process. Thus, in a PDS,
products function as controllers of resources and adapt to disturbances in an interoperable
system [16–18]. Therefore, products enable the dynamic reconfiguration of resources to
provide agility in the face of production changes generated by nervousness. The imple-
mentation of a PDS is achieved through the concept of a holonic system (HMS) using a
multiagent system (MAS). A holonic system (HMS) is used within a multiagent system
(MAS) to implement a PDS. A MAS is a development approach based on the distribution,
autonomy, and cooperation of virtual entities known as agents [19]. In an HMS, machines,
robots, or workers are modeled as holons consisting of physical and virtual components
capable of autonomous self-organization and blending the physical and virtual worlds [16].
However, there is no clarity on the effect of including these issues on the computational
performance of a PDS.

Measuring and analyzing the concept of nervousness can be complex because, unlike
other objective measures such as productivity or efficiency, nervousness lacks a direct
quantitative measure. Additionally, nervousness can vary widely depending on the pro-
duction environment, with factors such as market dynamics, task complexity, and labor
relations (human resources) influencing it. These contextual differences make comparing
and generalizing nervousness levels across production situations difficult.

This paper presents a PDS that considers the nervousness management of a production
planning system. The PDS considers intelligent products as functional units and makes
autonomous production decisions to manage nervousness in an environment under real-
istic conditions. A decrease in system nervousness occurs due to decentralized decision
making based on information from intelligent products. We evaluated the computational
performance of the proposed PDS by applying it to a production planning scenario that
involves 12 products over a one-year planning horizon. This proposal generates flexible
production planning that can reduce the nervousness of the system, produce more stable
plans, and mitigate production cost increases.

The proposed PDS offers efficient solutions for practical production planning problems
in sustainable manufacturing environments, spanning various manufacturing industries,
especially those producing different products with fluctuating demand. By employing
intelligent agents to make production decisions and adjust production quantities, the
system has the potential to assist companies in creating a more flexible and adaptable
master production schedule.

This study contributes to production planning research by integrating moving horizon
planning with dynamic planning, resulting in improved stability and reduced instability
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in the production process. Thus, the primary objective of this study is to evaluate the
cost and nervousness of the system using synthetic data. By analyzing these factors,
the aim is to understand the integrated approach’s effectiveness and performance. In
addition, this study contributes to developing an effective PDS that addresses nervousness
in production planning. The PDS incorporates intelligent products as functional units,
enabling decentralized decision making and autonomous adjustments in production to
mitigate nervousness under realistic conditions. Including intelligent agents empowers
companies to create a flexible and adaptable master production schedule that ensures stable
production plans and reduced costs.

This paper is organized as follows: Section 2 reviews the literature and explains
the essential terms, such as master production plan, nervousness, PDSs, and intelligent
products. Section 3 outlines the proposed PDS and is followed by Section 4, which presents
the results. Section 5 discusses the results and Section 6 concludes the paper.

2. Related Work

Production planning involves determining a product’s quantity, timing, and produc-
tion stage location, often represented by a mathematical model that optimizes decision
making to minimize costs or maximize profits. The model determines the production
quantity for each period within a finite horizon while meeting future demand and not
exceeding the system’s capacity. Lot sizing is a commonly used modeling technique for
production planning [20].

Several studies in the literature have addressed time-based production planning using
moving horizon planning for different production processes [21–24]. However, although
it is a widely used approach in the industry, the impact of combining moving horizon
planning with artificial intelligence tools on the stability of the production process still
lacks clarity in the literature [25]. A real-world data study was conducted in the automotive
industry, considering multiple impact assessment tests to meet plant requirements [23].

In modern industry, it is crucial for production planning to respond effectively to
dynamic market conditions and mitigate the adverse effects of production instability, com-
monly referred to as nervousness. The objectives of production planning include reducing
lead times, enhancing process agility, improving product quality, and reducing manu-
facturing costs [26]. However, achieving these objectives requires a series of operational
reconfigurations that result in permanent modifications to the established schedule, leading
to instability and increased production nervousness [27].

Several studies have presented methodologies and tools for measuring, detecting, and
eliminating production instability [28]. The concepts of instability and nervousness have
been studied interchangeably in some cases [11,12], while other works have considered
instability as a consequence of system nervousness [9,10]. Tunc et al. [29] provided a higher
level of specificity by identifying two types of nervousness that occur due to the quantities
involved or the configurations made.

Several studies have considered the mitigation of nervousness based on the quantity
of production, inventory, or safety stock [12,30,31]. Other proposals for nervousness
mitigation have focused on the planning horizon and the amount of production or storage.
In the former, planning horizon freezing has been used [7,23,32,33]. Additionally, the
rolling horizon method [34–37] and increases in the forecast horizon [38,39] have been
studied. Other authors have considered the dynamic lot-sizing model [40,41] and control
rules [42].

The concept of an intelligent product is a fundamental component in the design of
a PDS, and it has been defined in various ways in the existing literature [43–47]. We
have adopted Wong et al.’s [43] definition of an intelligent product in our proposal. Their
definition stipulates that an intelligent product must possess five essential characteristics: a
unique identity, the ability to communicate effectively with its environment, the capability
to retain or store data, the ability to participate in decision making relevant to its destiny,
and a communication language to express its characteristics. Thus, including intelligent
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products in the PDS facilitates the synchronization of material and information flows in a
specific direction.

The characteristics of intelligent products provide the basis for the product-controlled
production approach. They are entities that take the initiative during the execution of
the production plan by reacting appropriately to disturbances that might occur [15]. This
approach facilitates the design, distribution, and operation phases of production. The
consequence is improved product quality and performance resulting from self-learning,
self-diagnosis, self-adaptation, and self-optimization [48].

A PDS is a distributed control system to support operational decision making, the
design of which is facilitated by including the holonic paradigm, which specifies that each
product is represented by physical and virtual components [49]. The virtual component
is interpreted as an agent, making a PDS a multiagent system. Agent-based models have
autonomous roles, originating actions without direct human intervention. Herrera et al. [50]
conducted a simulation to coordinate different decision levels in a production system with
intelligent product characteristics. They observed that coordination among active batches
was more effective at distributed levels than traditional approaches. In another study,
Campos et al. [8] proposed a solution to a dynamic scheduling problem by dividing the
process into three stages and assigning specific roles to different agents. However, their
approach did not directly include a master scheduling model.

Integrating a PDS with a holonic system and its implementation through a multiagent
system could generate computational times that do not allow for real-time production con-
trol. Decentralized decision making in these systems could provide feasible solutions that
minimize nervousness for a given period but with higher production costs. Additionally,
the industry has adopted static production modeling as a practical solution, which could be
initially integrated into a PDS and subsequently adjusted with individual decisions made
by intelligent products. However, the production planning literature has given limited
attention to these topics, and the computational performance of a PDS with such features is
not yet clear.

Despite the significance of integrating a DPS with a holonic system and its imple-
mentation through a multi-agent system, there is a need for more research that addresses
this approach. This lack of information hinders a comprehensive understanding of the
computational performance associated with a DPS and its distinctive characteristics. Hence,
the conducted study generates novel insights in this field, maximizing the potential of these
systems and achieving more efficient and adaptable production planning.

3. Proposed PDS

The proposed PDS implements a master plan for a production system that operates
with production cycles and periods, considering the presence of nervousness. The master
production plan is obtained by solving an optimization problem and determining the
optimal quantity for each product in each cycle and period. Each product is represented
by a virtual agent that translates the information into valuable data for decision making,
resulting in a highly distributed architecture. Furthermore, each agent incorporates an
intelligence function that assesses individual and collective performance. Nervousness is
the variance between the planned quantity for each product in a given cycle and period. The
optimization model is presented in Section 3.1, the nervousness evaluation in Section 3.2,
and the PDS architecture in Section 3.3.

3.1. The Optimization Problem

The mathematical model that produces the master production plan considers mini-
mizing the production cost subject to the quantity to be produced at a given time. This
formulation extends the formulation presented in the literature for lot-sizing problems
by including production costs, inventory, setup, and backorder costs [20,51]. Our specific
model uses the following variables, all of which depend on the period ‘t’ and product
‘i’: production quantity (x it), inventory level (sit), backlog quantity (rit), and setup (yit).
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Additionally, we provide the model with the following initial parameters: demand (dit),
production cost (pit), inventory holding cost (hit), backorder cost (bit), setup cost (qit), and
system capacity (Ct). We define all these parameters for specific periods ‘t’ and product ‘i’.
Let the following decision variables be defined as follows:

xit = Quantity o f product i in period t.
sit = Quantity o f inventory product i in period t.
rit = Backlog o f product i in period t.
yit = Setup o f product i in period t (yit = 1
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t′

∑
t=k

(pitxit + hitsit + bitrit + qityit) (1)

subject to:
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[
k, . . . , t′

]
(2)

n

∑
i

xit ≤ Ct, t ∈
[
k, . . . , t′

]
(3)

s0
i0 = s0

ini, r0
i0 = r0

ini, i ∈ [1, . . . , n] (4)

si(t−1) − ri(t−1) + xit = dit + sit − rit, i ∈ [1, . . . , n], t ∈
[
k, . . . , t′

]
(5)

Equations (1)–(5) enable us to compute the production schedule that minimizes costs
for each cycle. Specifically, Equation (1) addresses the total cost of the current planning
(considering individual costs and production quantities). Meanwhile, Equations (2)–(5)
provide us with information related to production and its development, starting from
the establishment of the initial parameters (s0

ini and r0
ini) up to the production dynamics

(capacity evolution in each period and production balance per cycle and period).
In greater detail, we have the following: the objective function of model f k in Equation (1)

corresponds to the minimization of the production cost in the intervals of time horizon sliding
[k,. . ., t′]. In this way, k and t′ = k + n − 1 are the first and last periods of the mobile planning
horizon of length n in each cycle k. Constraint (2) relates production and the corresponding
setup, where setup = 1 when there is production and 0 otherwise. Constraint (3) restricts
production according to the capacity. Constraints (4) and (5) set the initial inventory conditions,
backorders, and the balance between the two. The problem covers each cycle k concerning
schedules of precedent cycles. In this problem, the objective function (1) minimizes the value
between the production quantity of product i in period t in cycle k (Qk

it) related to the cycle
k− 1.

3.2. Measurement of System Nervousness

Nervousness measures the difference in the quantity of product i to be produced
in period t during production cycle k compared to the previous cycle and period. The
calculation is based on two parameters (the magnitude of change and the frequency of
changes), so significant changes or a high frequency of changes in production imply high
values of nervousness. Two metrics express the nervousness per cycle and period. Let Cki
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be the number of schedule changes of product i in cycle k and Cti be the number of schedule
changes of product i in period t. Furthermore, let Qk

it be the production quantity for product
i in period t in cycle k. Then, in Equation (6), Ncki is the nervousness in cycle k for product i,
and in Equation (7), Npti is the nervousness in period t for product i. Equation (8) presents
the measure of nervousness N.

Ncki = Cki ∗
{
∑n−1

t=0 |Q
k
i(t+1)−Qk

it|
}

, ∀k, ∀i (6)

Npti = Cti ∗
{
∑n

t=0 |Q
(k+1)
it −Qk

it|
}

, ∀t, ∀i (7)

N = Ncki + Npti (8)

Thus, Qk
it represents the quantity of production for product i in period t in cycle k. For

the example in Table 1, in period 5, nervousness is measured between Q2
i2, Q2

i3, Q2
i4, and

Q2
i5 for Ncki and Q2

i5, Q3
i5,Q

4
i5, and Q5

i5 or Npti.

Table 1. Example of production scheduling with a rolling horizon.

k/t 1 2 3 4 5 6 7 8

1 Q1
i1 Q1

i2 Q1
i3 Q1

i4

2 Q2
i2 Q2

i3 Q2
i4 Q2

i5

3 Q3
i3 Q3

i4 Q3
i5 Q3

i6

4 Q4
i4 Q4

i5 Q4
i6 Q4

i7

5 Q5
i5 Q5

i6 Q5
i7 Q5

i8

The parameter Φk quantifies the ratio between cost and nervousness for each cycle k.
In cycle k, c(k) represents the cost and N(k) represents the nervousness. This parameter
identifies the magnitude of the change in each cycle by calculating the area under the curve
of cost and nervousness. In addition, let c = [c1, . . . , ck] and N= [N1, . . . , Nk] be two vectors
to update Φk; thus, Φk, k = 1, 2, . . . , 60 is given by Equation (9).

Φk =

∣∣∣∣∣ ∑k
k=1 c(k)

∑k
k=1 N(k)

∣∣∣∣∣, ∀k ∈ {k = 1, . . . , k = 60} (9)

The following numerical example for k = 10 illustrates the updating of Equation (9).
Considers values for c and N as follows:

c = [12.1, 12.44, 12.85, 13.34, 13.97, 14.6, 15.39, 16.3, 17.12, 18.05],
N = [1.79, −3.47, −8.63, −14.07, −19.13, −24.43, −29.74, −34.54, −38.87, −43.37].
Such values indicate that a program costing 12.1 monetary units has a nervousness of

1.79 for k = 0. Thus, the calculations of Φ are exemplified below for the vectors c and N.

Φ = [

∣∣∣∣12.1
1.79

∣∣∣∣ = 6.76,
∣∣∣∣ 24.54
−1.68

∣∣∣∣ = 14.61,
∣∣∣∣ 37.39
−10.3

∣∣∣∣ = 3.63, . . . ,
∣∣∣∣ 128.1
−171.1

∣∣∣∣ = 0.75,
∣∣∣∣ 146.2
−214.5

∣∣∣∣ = 0.68]

3.3. PDS Architecture

The system architecture contains physical and virtual layers, each with three levels
(configuration, interactions, and results), as shown in Figure 1. An agent represents each
product in the virtual layer, transforming the information into valuable data for decision
making. The configuration of the virtual layer represents the results generated by the
optimization model as data for communication and decision making by each agent. Thus,
the physical layer of the system interacts with other physical entities, and its virtual layer
interacts with the environment for production control and management. Decision making
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and communication among agents are distributed on the same hierarchical scale. The
intelligence function of the agents considers decision rules for obtaining a global objective
considering all of the system’s entities. Such decision rules are known and applied by
all of the agents of the system through internal and inter-agent communication. This
information is processed and stored in the physical part of the components. At the results
level, the model outputs correspond to the production planning, virtually and physically
representing the planning.
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The virtual layer in Figure 1 contemplates an intelligence function that evaluates
individual and collective performance, looking for system stability with a sustained cost
increase. To this end, the intelligence function measures the nervousness of each agent
using Equation (8). Each agent complies with the characteristics of an intelligent product
defined by Wong et al. [43], i.e., they have a unique identifier and can communicate with
the surrounding agents of the same product type.

Agent communication occurs within the system’s virtual layer, where each product cor-
responds to an individual agent (Figure 1). This communication converts information into
data. Each agent collects and processes data on its current state, production requirements,
and resource needs. Interaction between agents occurs through a question-and-answer
system. In addition, communication between agents eventually involves transferring
data through the system optimization model, including results derived from production
planning, capacity, and constraint information and recommendations to support decision
making.

Figure 2 depicts the communication process among agents representing various prod-
uct types within the system. These agents engage in virtual interactions, inquiring about
the required production quantity for each period and cycle. Furthermore, when the daily
production capacity is exceeded, agents reach out to agents representing other product
types. Such interactions constitute internal communication among agents of the same type
and external communication between agents of different types. For instance, an agent
positioned in the production plan’s second cycle and second period would query the pro-
duction quantities for future periods pertaining to the product it represents. Additionally,
this agent would refer to the quantities produced in previous cycles to ensure production
stability. This continuous communication facilitates the coordination of production activi-
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ties and enables informed decision making that aligns with each product’s specific needs
and capacities.
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Figure 3 shows the sequence of actions of the proposed architecture. First, the algo-
rithm solves the mathematical model and generates the optimal production. Then, the
agents evaluate the nervousness and the planning cost to determine the required produc-
tion that minimizes the increase in production cost. The objective function of the lot-sizing
model (Equation (1)) is the basis of such calculation. Finally, agents communicate with
other agents of the same product type in the corresponding cycle and period to evaluate the
production quantity. Simultaneously, agents communicate with agents of another product
family to avoid exceeding the system’s production capacity and to satisfy each product’s
demand (see Figure 4). Then, the possibilities of decreasing nervousness are evaluated
by modifying the production quantities and calculating the costs associated with such
modifications. When a production quantity modification occurs that improves the value of
nervousness, the agents store the production values. This communication architecture and
these agent interactions respond to a perturbation of the system because of the permanent
evaluation of quantities.

The production plan considers 12 products and a production horizon of 52 periods.
The planning horizon is n = 8 with an interval between periods of ∆t = 1. The demand for
each product obeys a normal distribution dk

it ∼ η(µ, ρ) = η(120, 12), ∀i, ∀t, ∀k to simulate
different variations. The first stage outputs a master production plan for each product
in the active period and a demand projection for subsequent periods. The complete
simulation is set up with parameters that resemble a real industrial case, allowing a realistic
evaluation of the model’s performance. Version 6.2 of the NetLogo simulation platform
simulates the scenario providing a suitable environment for testing and monitoring model
performance [52].

Figure 5 shows a class diagram to provide a reference model. The system contains a
main class called “System”, which has two attributes: “PhysicalLayer” and “VirtualLayer”.
The physical layer (“PhysicalLayer”) has a list of physical entities (“PhysicalEntity”) and
a results attribute (“Results”). In addition, the virtual layer (“VirtualLayer”) has a list
of agents (“Agent”) and a configuration (“Configuration”). Each physical entity and
agent has its specific attributes and methods. The physical entities interact through the
“Interaction” class, which registers the source and target physical entity. Agents make
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decisions and communicate with each other using the “Information” class to share valuable
data. The “Results” class stores the production planning (“ProductionPlanning”), which
has information about the period and production quantities for each product (“Product”)
in the form of “ProductionQuantity” objects. In addition, the “CommunicationData” class
manages the necessary communication data in the virtual layer.
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4. Results

The PDS presents an initial phase of significant variation in cost and nervousness until
it reaches a steady state. This phenomenon emerges from a simulation with three control
variables: per period, per cycle, and per period cycle. In period control, intelligent products
monitor production quantities during each period and modify the production plan to
reduce nervousness. In cycle control, intelligent products control production quantities
over the planning horizon. In period–cycle control, intelligent products look for period and
cycle stability by considering consecutive periods of the planning horizon. In each type of
control, Equations (6)–(8) update the nervousness.

Table 2 shows the results of analyzing the percentage increase in production costs
up to 10%. Our model, with a 1% cost increase, reduces nervousness by 1.78%, 42.41%,
and 14.31% in terms of cycle control, period control, and cycle–period control, respectively.
This reduction in nervousness is consistent across the studied percentage increases, with
period control being the most effective until a 6% cost increase. For cost increases exceed-
ing 7%, cycle–period control becomes more effective, resulting in a 98.61% reduction in
accumulative nervousness.

Table 2. Analysis of percentage increase in the cost of the master production plan.

Increase in Production Plan Cost

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

%
R

ed
uc

ti
on

in
ne

rv
ou

sn
es

s Cycle control 1.78 7.43 10.12 12.83 14.72 16.85 18.99 21.86 23.86 25.93

Period control 42.41 51.71 56.98 61.89 63.8 67.08 68.63 69.72 71.7 72.97

Cycle and
period control 14.31 24.59 34.44 43.25 55.92 64.18 88.74 95.3 98.5 98.61

However, it is necessary to analyze the three types of control, evaluating the number of
cycles required to reduce nervousness expressed in Table 2. Figure 6 shows the results of the
cost and nervousness variations for each control type. The decrease in nervousness occurs
with the consequent increase in cost concerning the initial values. For example, considering
control by period (Figure 6a), there is an increase in cost of 11.21% and a reduction in
nervousness of 14.72% in the eighth cycle. In control by cycle (Figure 6b), an increase in
cost of 2.39% and a reduction in nervousness of 18.27% are observed. Figure 6c shows the
behavior of the PDS according to the period–cycle control. A more significant decrease in
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nervousness is observed than with the two types of controls. In the same programming
cycle, an increase in cost of 11.27% and a reduction in nervousness of 34.44% are observed.
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are observed. 
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5. Discussion

The PDS results indicate an uneven relationship between decreased nervousness and
increased costs. The more significant the decrease in nervousness, the smaller the increase
in the cost of the production plan. This system-generated dynamic is consistent with the
plan modification that minimizes the cost. In other words, any change in the production
plan calculated through the mathematical model generates an increase in cost. However,
the benefit of such a modification implies more stable plans. As the production cycles
proceed, both cost and nervousness reach an equilibrium because modifying production
quantities is no longer possible. Figure 7a–c show that the main results of decreasing
nervousness and increasing cost occur before production cycle 10. In Figure 7, we observe
the results for different values of Φk, which compare the initial cost increase with the
benefits of nervousness reduction. The behavior is similar in the three types of control
applied, obtaining a more noticeable change when using the cycle–period control, which
optimizes in a balanced way between cycle and product.
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In all types of control, cost increases with decreasing nervousness are observed in the
first cycles of the simulation. However, after this initialization stage, a period of stability is
reached during which there are no substantial differences in the magnitude of the changes
associated with costs and nervousness. The computational results suggest that using a
PDS is promising in reducing nervousness without substantial increases in production
costs. Thus, a PDS can improve the master production plan by minimizing nervousness
and adapting to changing environments.

The proposed system reduced uncertainty by 11.42% for the case study conducted.
This is a promising result since uncertainty can be detrimental to production planning.
However, a 2.39% increase in production costs was observed. In this case, the increase
in production costs could be considered relatively low, especially considering the benefit
of more accurate and stable planning. It is essential to consider that cost-effectiveness
analysis may vary according to each production system’s context and specific priorities.
Some companies may accept a slight cost increase if it implies stability in production and
a significant reduction in uncertainty. Other companies may prioritize cost minimization
and be less willing to accept additional increases. Thus, the precise assessment of cost-
effectiveness depends on each company’s specific objectives and priorities.

6. Conclusions

This work proposes a production planning system that addresses nervousness man-
agement in production systems. The system utilizes intelligent products and starts from
an initial production plan for the planning period generated through a mathematical cost
minimization model. The numerical evaluation of the proposed system using a 12-product
production system and a one-year planning period shows that it effectively reduces ner-
vousness without significantly increasing production costs. For example, using cycle
control, a modest increase in cost of 2.39% results in a significant reduction in nervousness
of up to 11.42%.

The developed system includes a mathematical model, a metric for measuring un-
certainty, and a definition of intelligent products. It is worth noting that there are several
options and variants in the literature for each component, allowing for customization based
on the specific needs of different industries. Future research could further explore these
combinations of possibilities to develop production planning control systems tailored to
industry-specific requirements.
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It is relevant to emphasize that the proposed system generates flexible solutions with-
out requiring multiple executions of a mathematical model, thus avoiding the resolution
of computationally slow problems. This approach enables improved decision making in
the modern industry by leveraging real-time process data that feed algorithms optimizing
resource utilization. In turn, this fosters the development of a more sustainable indus-
try, contributing to the innovation of new perspectives for uncertainty management in
production planning.

Integrating new technologies into conventional manufacturing management is revolu-
tionizing the industry, primarily to address challenges arising from demand fluctuations
and operational disruptions. Product-driven production systems emerge as a promising
solution by incorporating intelligent products capable of autonomous decision making and
adaptation to disruptions. This approach enables more flexible planning, reduces nervous-
ness, and mitigates increases in production costs. By implementing these approaches based
on artificial intelligence and holonic systems, efficient solutions for production planning
can be achieved across various industries. This integration enhances adaptability and
optimizes resource allocation in sustainable manufacturing environments.

Overall, the findings of this study demonstrate the potential of using a production
planning system to manage uncertainty in production planning, resulting in enhanced
system performance in terms of reducing uncertainty and optimizing production costs. This
work contributes to the existing literature on production planning and lays the groundwork
for future research in this field.

As a future research direction, we propose exploring novel forms of embedded in-
telligence to improve response times and outcomes. These new forms would align with
heuristics or machine learning techniques. In addition, it is possible to consider dynamism
in the agent decision making, including functionalities that allow selecting the best decision
at each moment according to different optimization criteria. Further study would deter-
mine the level of dynamism that does not exceed a certain threshold of computational time.
Furthermore, expanding our study and considering real-world industrial cases is recom-
mended. This would provide a more comprehensive understanding of the applicability
and effectiveness of the proposed approach in diverse production environments.
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