Synthesis, Structural Characterization, Hirshfeld Surface Analysis, and Evaluation of Nonlinear Optical Properties of Novel Cocrystal of Acridine with 2,4-Dihydroxybenzaldehyde
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Bis(acridine)–2,4-dihydroxybenzaldehyde Cocrystal
2.2. Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC)
2.3. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.4. X-ray Measurements and Refinements
2.5. Hirshfeld Surface, 2D Fingerprint Plots, and Energy Framework
2.6. Theoretical Calculations
3. Results and Discussion
3.1. Thermal Analysis
3.2. ATR-FTIR Analysis
3.3. Crystal Structure and Intermolecular Interactions
3.4. Theoretical Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, P.; Zhen, Y.; Dong, H.; Hu, W. Crystal engineering of organic optoelectronic materials. Chem 2019, 5, 2814–2853. [Google Scholar]
- Aitipamula, S.; Banerjee, R.; Bansal, A.K.; Biradha, K.; Cheney, M.L.; Choudhury, A.R.; Desiraju, G.R.; Dikundwar, A.G.; Dubey, R.; Duggirala, N.; et al. Polymorphs, salts, and cocrystals: What’s in a name? Cryst. Growth. Des. 2012, 12, 2147–2152. [Google Scholar]
- Huang, Y.; Wang, Z.; Chen, Z.; Zhang, Q. Organic cocrystals: Beyond electrical conductivities and field-effect transistors (FETs). Angew. Chem. Int. Ed. 2019, 58, 9696–9711. [Google Scholar]
- Chen, T.; Sun, Z.; Zhao, S.; Ji, C.; Luo, J. An organic–inorganic hybrid co-crystal complex as a high-performance solid-state nonlinear optical switch. J. Mater. Chem. C 2016, 4, 266–271. [Google Scholar]
- D’silva, E.D.; Podagatlapalli, G.K.; Rao, S.V.; Rao, D.N.; Dharmaprakash, S.M. New, high efficiency nonlinear optical chalcone co-crystal and structure–property relationship. Cryst. Growth Des. 2011, 11, 5362–5369. [Google Scholar]
- Koshima, H.; Miyamoto, H.; Yagi, I.; Uosaki, K. Preparation of cocrystals of 2-amino-3-nitropyridine with benzenesulfonic acids for second-order nonlinear optical materials. Cryst. Growth Des. 2004, 4, 807–811. [Google Scholar]
- Rao, S.M.; Batra, A.K.; Lal, R.B.; Evans, R.A.; Loo, B.H.; Metzger, R.M.; Lee, W.J. Mixed methyl-(2,4-dinitrophenyl)-aminopropanoate: 2-methyl-4-nitroaniline crystal—A new nonlinear optical material. J. Appl. Phys. 1991, 70, 6674–6678. [Google Scholar]
- Zhu, W.; Zhu, L.; Sun, L.; Zhen, Y.; Dong, H.; Wei, Z.; Hu, W. Uncovering the intramolecular emission and tuning the nonlinear optical properties of organic materials by cocrystallization. Angew. Chem. Int. Ed. 2016, 55, 14023–14027. [Google Scholar]
- Sun, L.; Zhu, W.; Yang, F.; Li, B.; Ren, X.; Zhang, X.; Hu, W. Molecular cocrystals: Design, charge-transfer and optoelectronic functionality. Phys. Chem. Chem. Phys. 2018, 20, 6009–6023. [Google Scholar]
- Zhang, J.; Tan, J.; Ma, Z.; Xu, W.; Zhao, G.; Geng, H.; Di, C.A.; Hu, W.; Shuai, Z.; Singh, K.; et al. Fullerene/sulfur-bridged annulene cocrystals: Two-dimensional segregated heterojunctions with ambipolar transport properties and photoresponsivity. J. Am. Chem. Soc. 2013, 135, 558–561. [Google Scholar]
- Horiuchi, S.; Ishii, F.; Kumai, R.; Okimoto, Y.; Tachibana, H.; Nagaosa, N.; Tokura, Y. Ferroelectricity near room temperature in co-crystals of nonpolar organic molecules. Nat. Mater. 2005, 4, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Tayi, A.S.; Shveyd, A.K.; Sue, A.C.H.; Szarko, J.M.; Rolczynski, B.S.; Cao, D.; Kennedy, T.J.; Sarjeant, A.A.; Stern, C.L.; Paxton, W.F.; et al. Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes. Nature 2012, 488, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, A.; Cao, D.; Frazer, L.; Tayi, A.S.; Blackburn, A.K.; Sue, A.C.H.; Ketterson, J.B.; Stoddart, J.F.; Stupp, S.I. Ferroelectric polarization and second harmonic generation in supramolecular cocrystals with two axes of charge-transfer. J. Am. Chem. Soc. 2017, 139, 9186–9191. [Google Scholar] [CrossRef]
- Morimoto, M.; Irie, M. A diarylethene cocrystal that converts light into mechanical work. J. Am. Chem. Soc. 2010, 132, 14172–14178. [Google Scholar] [CrossRef]
- Li, S.; Yan, D. Tuning light-driven motion and bending in macroscale-flexible molecular crystals based on a cocrystal approach. ACS Appl. Mater. Interfaces 2018, 10, 22703–22710. [Google Scholar] [CrossRef]
- Bolton, O.; Lee, K.; Kim, H.J.; Lin, K.Y.; Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem. 2011, 3, 205–210. [Google Scholar] [CrossRef]
- Dalton, L.R.; Günter, P.; Jazbinsek, M.; Kwon, O.P.; Sullivan, P.A. Organic Electro-Optics and Photonics: Molecules, Polymers, and Crystals; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Babu, G.A.; Sreedhar, S.; Rao, S.V.; Ramasamy, P. Synthesis, growth, structural, thermal, linear and nonlinear optical properties of a new organic crystal: Dimethylammonium picrate. J. Cryst. Growth. 2010, 312, 1957–1962. [Google Scholar] [CrossRef]
- Coe, B.J.; Fielden, J.; Foxon, S.P.; Helliwell, M.; Asselberghs, I.; Clays, K.; De Mey, K.; Brunschwig, B.S. Syntheses and properties of two-dimensional, dicationic nonlinear optical chromophores based on pyrazinyl cores. J. Org. Chem. 2010, 75, 8550–8563. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Z.; Wang, D.; Cao, H. Molecular Structures and Second-Order Nonlinear Optical Properties of Ionic Organic Crystal Materials. Crystals 2016, 6, 158. [Google Scholar] [CrossRef]
- Rajkumar, M.; Chandramohan, A. Synthesis, growth and characterization of o-phenylinediaminium benzilate: An SHG material with high laser damage threshold for NLO applications. Opt. Mater. 2017, 64, 436–444. [Google Scholar] [CrossRef]
- Debrus, S.; Ratajczak, H.; Venturini, J.; Pincon, N.; Baran, J.; Barycki, J.; Glowiak, T.; Pietraszko, A. Novel nonlinear optical crystals of noncentrosymmetric structure based on hydrogen bonds interactions between organic and inorganic molecules. Synth. Met. 2002, 127, 99–104. [Google Scholar]
- Rajkumar, M. A non-centrosymmetric cocrystal assembled by O–H…N and C–H…π supramolecular synthons. J. Mol. Struct. 2021, 1245, 131105. [Google Scholar]
- Mirocki, A.; Lopresti, M.; Palin, L.; Conterosito, E.; Sikorski, A.; Milanesio, M. Exploring the molecular landscape of multicomponent crystals formed by naproxen drug and acridines. CrystEngComm 2022, 24, 6839–6853. [Google Scholar]
- Mei, X.; Wolf, C. Formation of new polymorphs of acridine using dicarboxylic acids as crystallization templates in solution. Cryst. Growth Des. 2003, 4, 1099–1103. [Google Scholar]
- Sarma, B.; Reddy, L.S.; Nangia, A. The role of π-stacking in the composition of phloroglucinol and phenazine cocrystals. Cryst. Growth Des. 2008, 8, 4546–4552. [Google Scholar]
- Lakshmanaperumal, C.K.; Arulchakkaravarthi, A.; Balamurugan, N.; Santhanaraghavan, P.; Ramasamy, P. Synthesis, crystal growth and characterisation of novel NLO material: 4-Hydroxy benzaldehyde-N-methyl-4-stilbazolium tosylate. J. Cryst. Growth 2004, 265, 260–265. [Google Scholar] [CrossRef]
- Kuleshova, L.N.; Antipin, M.Y.; Khrustalev, V.N.; Gusev, D.V.; Grintselev-Knyazev, G.V.; Bobrikova, E.S. Polymorphism and design of noncentrosymmetric crystals of 4-hydroxybenzaldehyde-4-nitrophenylhydrazone and N′-(2-phenyl-1 H-indole-3-aldehyde)-4-nitrophenylhydrazone. Crystallogr. Rep. 2003, 48, 594–601. [Google Scholar] [CrossRef]
- Bon, V.V. The first square-planar copper (II) 1: 2 complex with differently coordinated 2-hydroxybenzaldehyde 4-allylthiosemicarbazone ligands. Cryst. Struct. Commun. 2010, 66, m300–m302. [Google Scholar]
- Sudharsana, N.; Krishnakumar, V.; Nagalakshmi, R. Bis (3-methoxy-4-hydroxybenzaldehyde-2, 4, 6-trinitrophenol) organic cocrystal: Synthesis and physico-chemical properties. Eur. Phys. J. Plus 2016, 131, 348. [Google Scholar]
- Braga, D.; Grepioni, F.; Lucia Maini, L.; Mazzeo, P.P.; Rubini, K. Solvent-free preparation of co-crystals of phenazine and acridine with vanillin. Thermochim. Acta 2010, 507, 1–8. [Google Scholar]
- Nowak, P.; Sikorski, A. Structural diversity of cocrystals formed from acridine and two isomers of hydroxybenzaldehyde: 3-hydroxybenzaldehyde and 4-hydroxybenzaldehyde. RSC Adv. 2023, 13, 20105–20112. [Google Scholar] [CrossRef] [PubMed]
- CrysAlis CCD and CrysAlis RED; Version 1.171.36.24; Oxford Diffraction Ltd.: Yarnton, UK, 2012.
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Spek, A.L. Structure validation in chemical crystallography. Acta Cryst. 2009, D65, 148–155. [Google Scholar] [CrossRef]
- Johnson, C.K. ORTEP II, Report ORNL-5138; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1976. [Google Scholar]
- Motherwell, S.; Clegg, S. PLUTO-78, Program for Drawing and Molecular Structure; University of Cambridge: Cambridge, UK, 1978. [Google Scholar]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0—New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54 Pt 3, 1006–1011. [Google Scholar]
- Jayatilaka, D.; Grimwood, D.J. Tonto: A Fortran Based Object-Oriented System for Quantum Chemistry and Crystallography. In Computational Science—ICCS 2003, Proceedings of the International Conference, Melbourne, Australia and St. Petersburg, Russia, 2–4 June 2003; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; pp. 142–151. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09; Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dennington, R.; Keith, T.; Millam, J. GaussView; Version 5; Semichem, Inc.: Shawnee, KS, USA, 2009. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar]
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef]
- Bellamy, L.J.F.C. The Infra-Red Spectra of Complex Molecules; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Gilli, G.; Gilli, P. Towards an unified hydrogen-bond theory. J. Mol. Struct. 2000, 552, 1–15. [Google Scholar] [CrossRef]
- Mirocki, A.; Lopresti, M.; Palin, L.; Conterosito, E.; Sikorska, E.; Sikorski, A.; Milanesio, M. Crystallization from solution versus mechanochemistry to obtain double-drug multicomponent crystals of ethacridine with salicylic/acetylsalicylic acids. Sci. Rep. 2024, 14, 1834. [Google Scholar] [CrossRef]
- Martínez-Felipe, A.; Cook, A.G.; Wallage, M.J.; Imrie, C.T. Hydrogen bonding and liquid crystallinity of low molar mass and polymeric mesogens containing benzoic acids: A variable temperature Fourier transform infrared spectroscopic study. Phase Transit. 2014, 87, 1191–1210. [Google Scholar] [CrossRef]
- Kowalska, K.; Trzybiński, D.; Sikorski, A. Influence of the halogen substituent on the formation of halogen and hydrogen bonding in co-crystals formed from acridine and benzoic acids. CrystEngComm 2015, 17, 7199–7212. [Google Scholar]
- Gumus, I.; Solmaz, U.; Binzet, G.; Keskin, E.; Arslan, B.; Arslan, H. Supramolecular self-assembly of new thiourea derivatives directed by intermolecular hydrogen bonds and weak interactions: Crystal structures and Hirshfeld surface analysis. Res. Chem. Intermed. 2019, 45, 169–198. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. ChemComm 2007, 37, 3814–3816. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar]
- Sipe, J.E.; Moss, D.J.; van Driel, H.M. Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. Phys. Rev. B Condens. Matter Mater. Phys. 1987, 35, 1129–1141. [Google Scholar] [CrossRef]
- Dadap, J.I.; Shan, J.; Heinz, T.F.J. Theory of optical second-harmonic generation from a sphere of centrosymmetric material: Small-particle limit. Opt. Soc. Am. B 2004, 21, 1328–1347. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. 2002, 108, 134–142. [Google Scholar] [CrossRef]
- Gadre, S.R.; Suresh, C.H.; Mohan, N. Electrostatic potential topology for probing molecular structure, bonding and reactivity. Molecules 2021, 26, 3289. [Google Scholar] [CrossRef]
- Aihara, J.I. Reduced HOMO−LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 1999, 103, 7487–7495. [Google Scholar] [CrossRef]
- Ruiz-Morales, Y. HOMO−LUMO gap as an index of molecular size and structure for polycyclic aromatic hydrocarbons (PAHs) and asphaltenes: A theoretical study. I. J. Phys. Chem. A 2002, 106, 11283–11308. [Google Scholar]
- Miar, M.; Shiroudi, A.; Pourshamsian, K.; Oliaey, A.R.; Hatamjafari, F. Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo [d] thiazole-2 (3 H)-imine and its para-substituted derivatives: Solvent and substituent effects. J. Chem. Res. 2021, 45, 147–158. [Google Scholar]
- Rajamoni, J.; Dupureur, C.; Natarajan, K.; Nepal, B. Self-assembled supramolecular frameworks via intermolecular interactions in acridine and dihydroxybenzene cocrystals: A study of structure–property relationship. Struct. Chem. 2025, 1–23. [Google Scholar] [CrossRef]
- Khalid, M.; Hussain, R.; Hussain, A.; Ali, B.; Jaleel, F.; Imran, M.; Assiri, M.A.; Usman Khan, M.; Ahmed, S.; Abid, S.; et al. Electron donor and acceptor influence on the nonlinear optical response of diacetylene-functionalized organic materials (DFOMs): Density functional theory calculations. Molecules 2019, 24, 2096. [Google Scholar] [CrossRef]
- Khan, M.U.; Ibrahim, M.; Khalid, M.; Braga, A.A.C.; Ahmed, S.; Sultan, A. Prediction of second-order nonlinear optical properties of D–π–A compounds containing novel fluorene derivatives: A promising route to giant hyperpolarizabilities. J. Clust. Sci. 2019, 30, 415–430. [Google Scholar]
- Chen, S.Y.; Maksimchuk, A.; Umstadter, D. Experimental observation of relativistic nonlinear Thomson scattering. Nature 1998, 396, 653–655. [Google Scholar]
- Boyd, R.W.; Gaeta, A.L.; Giese, E. Nonlinear optics. In Springer Handbook of Atomic, Molecular, and Optical Physics; Springer International Publishing: Cham, Germany, 2008; pp. 1097–1110. [Google Scholar]
- Avcı, D.; Bahçeli, S.; Tamer, Ö.; Atalay, Y. Comparative study of DFT/B3LYP, B3PW91, and HSEH1PBE methods applied to molecular structures and spectroscopic and electronic properties of flufenpyr and amipizone. Can. J. Chem. 2015, 93, 1147–1156. [Google Scholar]
- Pandey, M.; Muthu, S.; Gowda, N.N. Quantum mechanical and spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV-Vis) studies, NBO, NLO, HOMO, LUMO and Fukui function analysis of 5-Methoxy-1H-benzo [d] imidazole-2 (3H)-thione by DFT studies. J. Mol. Struct. 2017, 1130, 511–521. [Google Scholar]
- Ravindra, H.J.; Chandrashekaran, K.; Harrison, W.T.A.; Dharmaprakash, S.M. Structure and NLO property relationship in a novel chalcone co-crystal. Appl. Phys. B 2009, 94, 503–511. [Google Scholar]
- Manonmani, M.; Balakrishnan, C.; Ahamed, S.R.; Vinitha, G.; Meenakshisundaram, S.P.; Sockalingam, R.M. Cocrystallization of Paracetamol-Picric acid: Hirshfeld surface analysis, supramolecular architecture and third-order nonlinear optical properties. J. Mol. Struct. 2019, 1190, 1–10. [Google Scholar]
- Thanigaimani, K.; Khalib, N.C.; Temel, E.; Arshad, S.; Razak, I.A. New supramolecular cocrystal of 2-amino-5-chloropyridine with 3-methylbenzoic acids: Syntheses, structural characterization, Hirshfeld surfaces and quantum chemical investigations. J. Mol. Struct. 2015, 1099, 246–256. [Google Scholar]
- Karuppasamy, J.; Zochedh, A.; Al-Asbahi, B.A.; Kumar, Y.A.; Shunmuganarayanan, A.; Sultan, A.B. Combined experimental and quantum computational studies on 5-Fluorouracil salicylic acid cocrystal: Assessment on anti-breast cancer potential through docking simulation. J. Mol. Struct. 2024, 1311, 138406. [Google Scholar] [CrossRef]
- Zochedh, A.; Priya, M.; Shunmuganarayanan, A.; Sultan, A.B.; Kathiresan, T. Antitumor and antimicrobial effect of syringic acid urea cocrystal: Structural and spectroscopic characterization, DFT calculation and biological evaluation. J. Mol. Struct. 2023, 1282, 135113. [Google Scholar]
- Rajendran, T.; Zochedh, A.; Chandran, K.; Al-Asbahi, B.A.; Kumar, Y.A.; Shunmuganarayanan, A.; Sultan, A.B. Sustainable Synthesis, DFT, Docking and In Vitro Evaluation of 6-Mercaptopurine Syringic Acid Cocrystal: A Potent Drug for Breast Cancer Therapy. Int. J. Quantum Chem. 2025, 125, e70020. [Google Scholar]
- Zerrouki, K.; Bouchene, R.; Tüzün, B.; Retailleau, P. Novel supramolecular co-crystal of 8-hydroxyquinoline with acetone-(2,4-dinitrophenyl) hydrazone: One pot synthesis, structural characterization, Hirshfeld surface and energy framework analysis, computational investigation and molecular docking study. J. Mol. Struct. 2024, 1300, 137290. [Google Scholar]
- Vijayalakshmi, S.; Kalyanaraman, S.; Ravindran, T.R. Experimental and theoretical debate on efficient second harmonic generation in Bis (Cinnamic acid): Hexamine cocrystal. Chem. Phys. Lett. 2014, 594, 74–79. [Google Scholar]
- Faizan, M.; Rodrigues, V.H.N.; Ahmad, S. Cocrystallization of 2, 3-dimethylquinoxaline with 3,5-dinitrobenzoic acid: Crystal structure, Hirshfeld surface, spectroscopic features and DFT studies. J. Mol. Struct. 2019, 1198, 126894. [Google Scholar]
- Dhawan, P.; Grover, K.; Saini, A.; Goel, S.; Jha, R.; Yadav, H. Diisopropylammonium hydrogen squarate: Synthesis and comprehensive analysis of non-linear optical co-crystal using X-ray, Hirshfeld, mechanical, optical and DFT methods. J. Mol. Struct. 2024, 1318, 139197. [Google Scholar]
- Muhammad, S.; Shehzad, R.A.; Iqbal, J.; Al-Sehemi, A.G.; Saravanabhavan, M.; Khalid, M. Benchmark study of the linear and nonlinear optical polarizabilities in proto-type NLO molecule of para-nitroaniline. J. Theor. Comput. Chem. 2019, 18, 1950030. [Google Scholar] [CrossRef]
- Karakas, A.; Ceylan, Y.; Karakaya, M.; Taser, M.; Terlemez, B.B.; Eren, N.; Kouari, Y.E.; Lougdali, M.; Arof, A.K.; Sahraoui, B. Theoretical diagnostics of second and third-order hyperpolarizabilities of several acid derivatives. Open Chem. 2019, 17, 151–156. [Google Scholar]
- Potla, K.M.; Poojith, N.; Osório, F.A.; Valverde, C.; Chinnam, S.; Suchetan, P.A.; Vankayalapati, S. An analysis of spectroscopic, computational and biological activity studies of L-shaped sulfamoylbenzoic acid derivatives: A third order nonlinear optical material. J. Mol. Struct. 2020, 1210, 128070. [Google Scholar]
- Brintha, C.J.; Joema, S.E.; Suma, V.K. Crystal growth, spectroscopic and theoretical investigation of nonlinear optical 2-bromo-4-nitroaniline single crystals for NLO and optoelectronic applications. J. Mol. Struct. 2022, 1250, 131725. [Google Scholar]
- Rodrigues, R.F.; Almeida, L.R.; Santos, F.G.D.; Carvalho, P.S., Jr.; Souza, W.C.D.; Moreira, K.S.; Aquino, G.L.D.; Valverde, C.; Napolitano, H.B.; Baseia, B. Solid state characterization and theoretical study of non-linear optical properties of a Fluoro-N-Acylhydrazide derivative. PLoS ONE 2017, 12, e0175859. [Google Scholar]
Compound | Bis(ACR)–2,4DHBA |
---|---|
Chemical formula | C33H24N2O3 |
FW/g·mol−1 | 496.55 |
Crystal system | monoclinic |
Space group | P21 |
a/Å | 7.8366(4) |
b/Å | 17.9803(8) |
c/Å | 8.9765(4) |
α/° | 90 |
β/° | 96.347(5) |
γ/° | 90 |
V/Å3 | 1257.09(11) |
Z | 2 |
T/K | 291(2) |
λCu/Å | 1.54184 |
ρcalc/g·cm–3 | 1.312 |
F(000) | 520 |
µ/mm−1 | 0.675 |
θ range/° | 4.92–67.10 |
Completeness of θ/% | 97.3 |
Reflections collected | 7275 |
Reflections unique | 3290 [Rint = 0.0631] |
Data/restraints/parameters | 1725/3/351 |
Goodness of fit on F2 | 1.043 |
Final R1 value (I > 2σ(I)) | 0.0631 |
Final wR2 value (I > 2σ(I)) | 0.1206 |
Final R1 value (all data) | 0.1312 |
Final wR2 value (all data) | 0.1610 |
Largest diff. peak and hole/e·Å–3 | 0.159 and −0.208 |
CCDC number | 2,428,711 |
Organic NLO Cocrystals | (×10−30 esu) |
---|---|
chalcone cocrystal [68] | 17.30 |
paracetamol–picric acid cocrystal [69] | 4.86 |
2-amino-5-chloropyridine–3-methylbenzoic acid cocrystal [70] | 4.16 |
5-fluorouracil–salicylic acid cocrystal [71] | 2.17 |
syringic acid–urea cocrystal [72] | 0.55 |
6-mercaptopurine–syringic acid cocrystal [73] | 12.88 |
8-hydroxyquinoline–acetone-(2,4-dinitrophenyl)hydrazone cocrystal [74] | 12.47 |
bis(cinnamic acid)–hexamine cocrystal [75] | 5.33 |
2,3-dimethylquinoxaline–3,5-dinitrobenzoic acid cocrystal [76] | 1.27 |
diisopropylammonium hydrogen squarate cocrystal [77] | 4.16 |
bis(acridine)–2,4-dihydroxybenzaldehyde cocrystal [this work] | 5.63 |
Organic NLO Materials | (γ) (×10−36 esu) |
---|---|
p-nitroaniline [78] | 17.50 |
ferulic acid [79] | 16.01 |
2-(benzylamino)−4-chloro-5-sulfamoylbenzoic acid [80] | 33.10 |
2–bromo-4-nitroaniline [81] | 67.96 |
(E)-4-(3-fluorobenzyloxy)-N’-benzylidenebenzohydrazide [82] | 65.63 |
bis(acridine)-2,4-dihydroxybenzaldehyde cocrystal [this work] | 62.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, P.; Sikorski, A. Synthesis, Structural Characterization, Hirshfeld Surface Analysis, and Evaluation of Nonlinear Optical Properties of Novel Cocrystal of Acridine with 2,4-Dihydroxybenzaldehyde. Materials 2025, 18, 1492. https://doi.org/10.3390/ma18071492
Nowak P, Sikorski A. Synthesis, Structural Characterization, Hirshfeld Surface Analysis, and Evaluation of Nonlinear Optical Properties of Novel Cocrystal of Acridine with 2,4-Dihydroxybenzaldehyde. Materials. 2025; 18(7):1492. https://doi.org/10.3390/ma18071492
Chicago/Turabian StyleNowak, Patryk, and Artur Sikorski. 2025. "Synthesis, Structural Characterization, Hirshfeld Surface Analysis, and Evaluation of Nonlinear Optical Properties of Novel Cocrystal of Acridine with 2,4-Dihydroxybenzaldehyde" Materials 18, no. 7: 1492. https://doi.org/10.3390/ma18071492
APA StyleNowak, P., & Sikorski, A. (2025). Synthesis, Structural Characterization, Hirshfeld Surface Analysis, and Evaluation of Nonlinear Optical Properties of Novel Cocrystal of Acridine with 2,4-Dihydroxybenzaldehyde. Materials, 18(7), 1492. https://doi.org/10.3390/ma18071492