Development of Anti-Icing and Skid-Resistant Road Surfaces Using Methyl Methacrylate (MMA) Resin-Based Composites
Abstract
1. Introduction
2. Experimental Procedure
2.1. Materials and Reagents
2.2. Preparation of MMA Based Resin and Mix Proportion
2.3. Experimental Methods and Methodology
2.3.1. Mechanical Strength Test
2.3.2. Anti-Icing Test
3. Results and Discussion
3.1. Elongation at Break and Bonding Strength
3.2. Mechanical Strength
3.3. Anti-Icing Test Results
4. Conclusions
5. Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Chernyy, S.; Järn, M.; Shimizu, K.; Swerin, A.; Pedersen, S.U.; Daasbjerg, K.; Makkonen, L.; Claesson, P.; Iruthayaraj, J. Superhydrophilic Polyelectrolyte Brush Layers with Imparted Anti-Icing Properties: Effect of Counter Ions. ACS Appl. Mater. Interfaces 2014, 6, 6487–6496. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Shi, X.; Xie, N.; McVey, E.; Kessel, A. Accelerated Laboratory Test Suggests the Importance of Film Integrity of Sealers on the Protection of Concrete from Deicer Scaling. J. Mater. Civ. Eng. 2016, 28, 04016065. [Google Scholar] [CrossRef]
- Gallaher, B.L. Evaluation of Thin Bonded Overlays as a Protective System for Highway Bridge Decks; University of Colorado at Boulder: Boulder, CO, USA, 2013. [Google Scholar]
- Kim, B.-C.; Kim, H.-J.; Choi, B.-H.; Lee, H.-S. An Experimental Study of the Scratch Properties of Poly(Methyl Methacrylate) as a Function of the Concentration of Added Slip Agent. Tribol. Int. 2011, 44, 2035–2041. [Google Scholar] [CrossRef]
- Li, J.; Zhao, P.; Luo, X. Numerical Simulation of the Surface Microwave Heating Efficiency of Cement-Based Metamaterial Absorbers in Specific Bands. Case Stud. Constr. Mater. 2024, 20, e02803. [Google Scholar] [CrossRef]
- Li, P.; Yuan, J.; Lan, L.; Dan, Y.; Jiang, L.; Huang, Y. Durable and Organic-Solvent-Free Anti-Icing Coating Fabricated from Polyacrylate Grafted with PDMS. Polymer 2025, 317, 127857. [Google Scholar] [CrossRef]
- Lin, S.L.; Cai, H.H. Preparation of New Anti-Slip Flooring Coatings: Hydrophobic MMA Floor Coatings. Adv. Mater. Res. 2013, 721, 73–76. [Google Scholar] [CrossRef]
- Lingru, Z.; Zhaoyu, C.; Ling, H.; Juan, J.; Tao, M.; Junyan, L. PDMS and POSS-Dangling Zwitterionic Polyurethane Coatings with Enhanced Anti-Icing Performance. Prog. Org. Coat. 2022, 170, 106972. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Wu, Y.; Guo, T.; Xie, J.; Tao, J.; Dong, L.; Ran, Q. Robust All-Waterborne Superhydrophobic Coating with Photothermal Deicing and Passive Anti-Icing Properties. ACS Appl. Mater. Interfaces 2023, 15, 44305–44313. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Shang, Q.; He, R.; Yao, W.; Guo, H. Visible Characteristics and Durability Assessment of Methyl Methacrylate-Based Luminescent Road Marking Using Unencapsulated SrAl2O4: Eu2+, Dy3+ under Coupling Service Conditions. Constr. Build. Mater. 2024, 438, 137071. [Google Scholar] [CrossRef]
- Peng, C.; Hu, X.; You, Z.; Xu, F.; Jiang, G.; Ouyang, H.; Guo, C.; Ma, H.; Lu, L.; Dai, J. Investigation of Anti-Icing, Anti-Skid, and Water Impermeability Performances of an Acrylic Superhydrophobic Coating on Asphalt Pavement. Constr. Build. Mater. 2020, 264, 120702. [Google Scholar] [CrossRef]
- Rahim, A.; Jansen, D.; Abo-Shadi, N.; Simek, J. Overview of High-Molecular-Weight Methacrylate for Sealing Cracks in Concrete Bridge Decks. Transp. Res. Rec. 2010, 2202, 77–81. [Google Scholar] [CrossRef]
- Raju, A.; Samanta, D.; Rajendrakumar, K. A Review of Recent Advances in the Development of Superhydrophobicity over Various Substrate Surfaces Using Polymers. ChemistrySelect 2023, 8, e202204262. [Google Scholar] [CrossRef]
- Wang, T.; Oeser, M.; Liu, P. Micromechanics Model of Electrical Conductivity Considering Aggregate Fillers. In Advances in Functional Pavements; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-00-338737-4. [Google Scholar]
- Wang, T.; Yang, J.; Berger, J.; Boz, N.; Tekampe, S.; Oeser, M.; Liu, P. Mechanical and Piezoresistive Performance of Polymethyl Methacrylate Modified with Carbon Nanotubes for Sensitive Road Surface. Mater. Today Commun. 2024, 41, 110255. [Google Scholar] [CrossRef]
- Woodward, D.; Friel, S. Predicting the Wear of High Friction Surfacing Aggregate. Coatings 2017, 7, 71. [Google Scholar] [CrossRef]
- Wu, Y.; Dong, L.; Ran, Q. Facile One-Step Spraying Preparation of Fluorine-Free Transparent Superhydrophobic Composite Coatings with Tunable Adhesion for Self-Cleaning and Anti-Icing Applications. Appl. Surf. Sci. 2024, 649, 159193. [Google Scholar] [CrossRef]
- Xia, H.; Lu, C.; Yang, H.; Song, L.; Geng, J.; Zihang, C.; Niu, Y.; Sun, Y. Preparation and Performance of Durable Waterproof Adhesive Layer for Steel Bridge Deck Based on Self-Stratification Effect. Constr. Build. Mater. 2023, 366, 130133. [Google Scholar] [CrossRef]
- Zhang, M.; Hao, P.; Li, Y. Interfacial Adhesive Property in “Asphalt Mixture-PMA Copolymer-Steel Plate” System: Experimental and Molecular Dynamics Simulation. Constr. Build. Mater. 2021, 281, 122529. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Zhu, K.; Tang, Z.; Zhang, H. Deterioration Mechanism on Micro-Structure of Unsaturated Polyester Resin Modified Concrete for Bridge Deck Pavement under Salty Freeze-Thaw Cycles. Constr. Build. Mater. 2023, 368, 130366. [Google Scholar] [CrossRef]
- Zhong, Y. Mechanical Properties Test of Nano Modified Coating Material for Color Antiskid Pavement. IOP Conf. Ser. Earth Environ. Sci. 2018, 186, 012060. [Google Scholar] [CrossRef]
- ASTM D6723-01; Standard Test Method for Determining the Fracture Properties of Asphalt Binder in Direct Tension (DT). ASTM: West Conshohocken, PA, USA, 2001. Available online: https://www.astm.org/d6723-01.html (accessed on 19 December 2024).
- ASTM D4867/D4867M-09(2014); Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures. ASTM: West Conshohocken, PA, USA, 2014. Available online: https://www.astm.org/d4867_d4867m-09r14.html (accessed on 19 December 2024).
- AASHTO T 361-16 (2020); Standard Method of Test for Determining Asphalt Binder Bond Strength by Means of the Binder Bond Strength (BBS) Test. AASHTO: Washington, DC, USA, 2020. Available online: https://store.accuristech.com/standards/aashto-t-361-16?product_id=1924305 (accessed on 19 December 2024).
- Wang, X.; Kuang, D.; Chen, H.; Xue, H. Capsulated Phase-Change Materials Containing Paraffin Core/Polymethyl Methacrylate Shell: Thermoregulation Modifier for Asphalt Binder. Constr. Build. Mater. 2023, 369, 130574. [Google Scholar] [CrossRef]
- Cho, H.-J.; Lee, J.-W.; Jang, Y.-I. Study on Characteristics of MMA Resin for Manufactured of Permeability Cold-Recycled Asphalt. Int. Inf. Inst. (Tokyo) Inf. 2017, 20, 6943–6950. [Google Scholar]
- Ragab, A.A.; Farag, R.K.; Kandil, U.F.; El-Shafie, M.; Saleh, A.M.M.; El-Kafrawy, A.F. Thermo-Mechanical Properties Improvement of Asphalt Binder by Using Methylmethacrylate/Ethylene Glycol Dimethacrylate. Egypt. J. Pet. 2016, 25, 397–407. [Google Scholar] [CrossRef]
- Li, J.; Duan, S.; Muhammad, Y.; Yang, J.; Meng, F.; Zhu, Z.; Liu, Y. Microwave Assisted Fabrication of Polymethyl Methacrylate-Graphene Composite Nanoparticles Applied for the Preparation of SBS Modified Asphalt with Enhanced High Temperature Performance. Polym. Test. 2020, 85, 106388. [Google Scholar] [CrossRef]
- Phuthotham, M.; Techawinyutham, L.; Dangtungee, R. Effect of Natural Rubber Compound (NRC)/Methyl Methacrylate (MMA) Coating on Abrasion and Hardness, Adhesive and Shear Properties for Pavement Surface. Key Eng. Mater. 2020, 856, 224–229. [Google Scholar] [CrossRef]
- Çaktı, K.; Erden, İ.; Gündüz, S.; Hassanpour-Kasanagh, S.; Büyük, B.; Alkan, C. Investigation of the Effectiveness of Microencapsulated Phase Change Materials for Bitumen Rheology. Int. J. Energy Res. 2022, 46, 23879–23892. [Google Scholar] [CrossRef]
- Duan, S.; Hu, J.; Cui, J.; Chen, Y.; Ma, T.; Wu, X. Acrylate Composite Polyurethane Binder for Steel Bridge Deck Pavements: Process Optimization by Response Surface Methodology and Microanalysis. J. Appl. Polym. Sci. 2024, 141, e55228. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, M.; Liu, Z.; Yin, J. Introduction of a Chemical Grouting Method for the Crack Repairing of Asphalt Pavements. Environ. Sustain. Transp. Infrastruct. 2015, 77–86. [Google Scholar] [CrossRef]
All Units in (g) | |||||||
---|---|---|---|---|---|---|---|
Id | Methyl Methacrylate | Butyl Acrylate | 2-Hydroxyethyl Methacrylate | 2-Hydroxy-4-(octyloxy) Phenyl Methanone | Paraffin Wax | 1-Dodecyl Mercaptan | Dimethyl-p-Toluidine |
S1 | 31 | - | - | 0.8 | 2 | 4 | 0.2 |
S2 | 31 | 34 | - | 0.8 | 2 | 4 | 0.2 |
S3 | 31 | - | 34 | 0.8 | 2 | 4 | 0.2 |
S4 | 31 | 17 | 17 | 0.8 | 2 | 4 | 0.2 |
S5 | 31 | 16 | 18 | 0.8 | 2 | 4 | 0.2 |
Content | Heat of Solution (KJ/g) | Freezing Point (°C) |
---|---|---|
Mix 1 | 0.445 | −11.9 |
Mix 2 | 0.355 | −12 |
Mix 3 | 0.165 | −10.7 |
Mix 4 | 0.069 | −10.8 |
Mix 5 | 0.258 | −11.4 |
Mix 6 | 0.315 | −12.1 |
Mix 7 | 0.429 | −12.9 |
Content | Ratios (%) | |||
---|---|---|---|---|
Magnesium Chloride Hexahydrate | Potassium Acetate | Potassium Carbonate | Polyethylene Glycol | |
Mix 1 | 50 | - | 50 | - |
Mix 2 | 50 | - | - | 50 |
Mix 3 | - | 50 | 50 | - |
Mix 4 | - | 50 | - | 25 |
Mix 5 | 20 | 30 | 25 | 25 |
Mix 6 | 30 | 20 | 25 | 25 |
Mix 7 | 40 | 10 | 25 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eom, S.-H.; Jeon, H.-S.; Ryue, T.-G.; Lee, H.-J.; Kim, H.-G.; Abebe, T.N. Development of Anti-Icing and Skid-Resistant Road Surfaces Using Methyl Methacrylate (MMA) Resin-Based Composites. Materials 2025, 18, 501. https://doi.org/10.3390/ma18030501
Eom S-H, Jeon H-S, Ryue T-G, Lee H-J, Kim H-G, Abebe TN. Development of Anti-Icing and Skid-Resistant Road Surfaces Using Methyl Methacrylate (MMA) Resin-Based Composites. Materials. 2025; 18(3):501. https://doi.org/10.3390/ma18030501
Chicago/Turabian StyleEom, Sung-Hyun, Hyo-Seong Jeon, Tae-Gyue Ryue, Hun-Jae Lee, Hong-Gi Kim, and Tadesse Natoli Abebe. 2025. "Development of Anti-Icing and Skid-Resistant Road Surfaces Using Methyl Methacrylate (MMA) Resin-Based Composites" Materials 18, no. 3: 501. https://doi.org/10.3390/ma18030501
APA StyleEom, S.-H., Jeon, H.-S., Ryue, T.-G., Lee, H.-J., Kim, H.-G., & Abebe, T. N. (2025). Development of Anti-Icing and Skid-Resistant Road Surfaces Using Methyl Methacrylate (MMA) Resin-Based Composites. Materials, 18(3), 501. https://doi.org/10.3390/ma18030501