The Effects of Unit Cell Arrangement and Hybrid Design on the Compressive Performances of Additive Manufactured Corrax Maraging Stainless Steel Lattices
Abstract
1. Introduction
2. Material and Methods
3. Results
3.1. Microstructure of Struts and Relative Density
3.2. Uniaxial Compressive Performance
3.3. Strain Distribution and Fracture Behavior
3.4. Fracture Location and Surface
3.5. FEA Simulation
4. Discussion
4.1. Effect of Lattice Arrangement Design on Compression Fracture Behavior
4.2. Advantages of Hybrid Lattice Design
5. Conclusions
- Specimen H, composed entirely of hybrid unit cells integrating cubic and FCCZ features, exhibited the highest first maximum compressive strength (418 ± 5.78 MPa) and specific energy absorption (SEA) (128.5 ± 6.83 MJ·m−3), outperforming specimens C and A. The enhanced performance of specimen H is attributed to the combined mechanical advantages of cubic and FCCZ geometries, which facilitated uniform stress distribution, delaying the onset of deformation and layer-by-layer progressive collapse.
- The unit cell arrangement was found to critically influence the compressive behavior. Alternating or hybrid arrangements reduced stress concentrations on weaker struts and improved energy absorption compared to columnar arrangements, confirming the importance of lattice topology design in structural optimization. DIC and FEA analyses provided detailed insights into deformation propagation and fracture locations, validating the effectiveness of the hybrid design strategy.
- Hybrid and alternated lattice designs are effective strategies to enhance mechanical performance in additively manufactured metallic lattices. The findings of this study offer practical guidance for the design of lightweight, high-strength, and energy-absorbing components in tooling and structural applications.
- Future research may explore graded hybrid lattices, the optimization of unit cell geometry for specific loading conditions, and the integration of multi-material additive manufacturing for multifunctional performance enhancement.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soni, N.; Renna, G.; Leo, P. Advancements in Metal Processing Additive Technologies: Selective Laser Melting (SLM). Metals 2024, 14, 1081. [Google Scholar] [CrossRef]
- Hussain, A.; Kim, D. Fabrication of metal alloy structures with overhang features in laser-based powder bed fusion: A critical review of challenges and latest developments. J. Manuf. Process. 2025, 135, 112–130. [Google Scholar] [CrossRef]
- Sanjari, M.; Mahmoudiniya, M.; Pirgazi, H.; Tamimi, S.; Ghoncheh, M.H.; Shahriairi, A.; Hadadzadeh, A.; Amirkhiz, B.S.; Purdy, M.; Araujo, E.G.D.; et al. Microstructire, texture, and anistropic mechanical behavior of selective laser melted maraging stainless steel. Mater. Charact. 2022, 192, 112185. [Google Scholar] [CrossRef]
- Bakhtiarian, M.; Omidvar, H.; Mashhuriazar, A.; Sajuri, Z.; Gur, C.H. The effects of SLM process parameters on the relative density and hardness of austenitic stainless steel 316L. J. Mater. Res. Technol. 2024, 29, 1616–1629. [Google Scholar] [CrossRef]
- Wu, M.W.; Ku, S.W.; Yen, H.W.; Ku, M.H.; Chang, S.H.; Ni, K.; Shih, Z.S.; Tsai, C.; Hsu, T.W.C.; Li, L.; et al. The synergic effect of heat treatment and building direction on the microstructure and anisotropic mechanical properties of laser powder bed fusion Corrax maraging stainless steel. Mater. Sci. Eng. A 2023, 887, 145744. [Google Scholar] [CrossRef]
- Zhou, C.; Yan, X.; Wang, H.; Huang, Y.; Xue, J.; Li, J.; Li, X.; Han, W. Advancements in hydrogen embrittlement of selective laser melting austenitic stainless steel: Mechanisms, microstructures, and future directions. J. Mater. Sci. Technol. 2025, 230, 219–235. [Google Scholar] [CrossRef]
- Garcia-Cabezon, C.; Castro-Sastre, M.A.; Fernandez-Abia, A.I.; Rodriguez-Mendez, M.L.; Martin-Pedrosa, F. Microstructure-hardness-corrosion performance of 17-4 precipitation hardening stainless steels processed by selective laser melting in comparison with commercial alloy. Met. Mater. Int. 2022, 28, 2652–2667. [Google Scholar] [CrossRef]
- Wu, M.W.; Ni, K.; Yen, H.W.; Chen, J.K.; Wang, P.; Tseng, Y.J.; Tsai, M.K.; Wang, S.H.; Lai, P.H.; Ku, M.H. Revealing the intensified preferred orientation and factors dominating the anisotropic mechanical properties of laser powder bed fusion Ti-6Al-4V alloy after heat treatment. J. Alloys Compd. 2023, 949, 169494. [Google Scholar] [CrossRef]
- Tian, Y.; Ren, H.; He, J.; Zha, X.; Lin, K.; Zhou, M.; Xiong, Y. Surface roughness improvement of Ti-6Al-4V alloy overhang structures via process optimization for laser-powder bed fusion. J. Manuf. Process. 2024, 110, 434–446. [Google Scholar] [CrossRef]
- He, Y.; Zhang, F.; Dai, Y.; Zhao, K.; Ye, Z.; Yu, Z.; Xia, C.; Tan, H. Enhanced low cycle fatigue properties of selective laser melting Ti–6Al–4V with fine-tuned composition and optimized microstructure. J. Mater. Sci. Technol. 2024, 180, 129–140. [Google Scholar] [CrossRef]
- Alam, M.P.; Melaibari, A.A.; Imam, M. Enhancing surface quality, ductility, and corrosion resistance of SLM fabricated Ti6Al4V alloy through friction stir processing. Mater. Today Commun. 2025, 48, 113323. [Google Scholar] [CrossRef]
- Chang, K.C.; Zhao, J.R.; Hung, F.Y. Effects of the microstructure and texture characteristics on mechanical properties of the Al–Ni–Cu–Fe alloy manufactured by laser powder bed fusion. J. Mater. Res. Technol. 2023, 27, 3411–3423. [Google Scholar] [CrossRef]
- Yu, S.J.; Wang, P.; Li, H.C.; Setchi, R.; Wu, M.W.; Liu, Z.Y.; Chen, Z.W.; Waqar, S.; Zhang, L.C. Heterogeneous microstructure and mechanical behaviour of Al-8.3Fe-1.3V-1.8Si alloy produced by laser powder bed fusion. Virtual Phys. Prototyp. 2023, 18, e2155197. [Google Scholar] [CrossRef]
- Ku, M.H.; Chuang, Y.T.; Yu, S.; Setchi, R.; Peng, J.; Wang, X.; Wang, P.; Wu, W.M. Superior compressive performance of selective laser melted Al-8.3Fe-1.3V-1.8Si alloy lattice. Mater. Res. Bull. 2025, 190, 113527. [Google Scholar] [CrossRef]
- Yang, X.G.; Li, B.; Wang, M.L.; Guo, S.Q.; Miao, G.L.; Shi, D.Q.; Fan, Y.S. Correlation between microstructures and mechanical properties of a SLM Ni-based superalloy after different post processes. J. Mater. Res. Technol. 2024, 32, 955–966. [Google Scholar] [CrossRef]
- Chen, B.; Zhuo, L.; Xie, Y.; Huang, S.; Wang, T.; Yan, T.; Gong, X.; Wang, T.; Yan, T.; Gong, X.; et al. Comparative study on microstructure, mechanical and high temperature oxidation resistant behaviors of SLM IN718 superalloy before and after heat treatment. J. Mater. Res. Technol. 2024, 31, 1535–1546. [Google Scholar] [CrossRef]
- Agyapong, J.; Mateos, D.; Czekanski, A.; Boakye-Yiadom, S. Investigation of effects of process parameters on microstructure and fracture toughness of SLM CoCrFeMnNi. J. Alloys Compd. 2024, 987, 173998. [Google Scholar] [CrossRef]
- Mao, J.; Zhu, W.; Ye, N.; Wu, Z.; Tang, J.; Zhuo, H.; Bagliuk, G.A. Effects of raw powder characteristics on microstructure and mechanical properties of W-20Cu composites manufactured by SLM. Int. J. Refract. Met. Hard Mater. 2025, 128, 107001. [Google Scholar] [CrossRef]
- Li, P.; Ma, Y.E.; Sun, W.; Qian, X.; Zhang, W. Fracture and failure behavior of additive manufactured Ti-6Al-4V lattice structure under compressive load. Eng. Fract. Mech. 2021, 244, 107537. [Google Scholar] [CrossRef]
- Gandhi, R.; Salmi, M.; Roy, B.; Paglari, L.; Concli, F. Mechanical performance, fatigue behaviour, and biointegration of additively manufactured architected lattices. Virtual Phys. Prototyp. 2025, 20, e2530733. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, L.; Yan, X.; Wang, Z.; Li, X.; Fang, G. Regulated multi-scale mechanical performance of functionally graded lattice materials based on multiple bioinspired patterns. Mater. Des. 2023, 226, 111564. [Google Scholar] [CrossRef]
- Zhu, G.; Xu, F.; Wang, X.; Zhang, X.; Li, J. Mechanical performance of graded lattice structures with periodic density variations fabricated by selective laser melting. Mater. Des. 2025, 254, 114100. [Google Scholar] [CrossRef]
- Kanwar, S.; Al-Ketan, O.; Vijayavenkataraman, V. A novel method to design biomimetic, 3D printable stochastic scaffolds with controlled porosity for bone tissue engineering. Mater. Des. 2022, 220, 110857. [Google Scholar] [CrossRef]
- Maskery, I.; Aboulkhair, N.T.; Aremu, A.O.; Tuck, C.J.; Ashcroft, I.A.; Wildman, R.D. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting. Mater. Sci. Eng. A 2016, 670, 264–274. [Google Scholar]
- Zhang, J.; Liu, Y.; Babamiri, B.B.; Zhou, Y.; Dargusch, M.; Hazeli, K.; Zhang, M.X. Enhancing specific energy absorption of additively manufactured titanium lattice structures. Addit. Manuf. 2022, 55, 102887. [Google Scholar] [CrossRef]
- Bai, L.; Xu, Y.; Chen, X.; Xin, L.; Zhang, J.; Li, K.; Sun, Y. Improved mechanical properties and energy absorption of Ti-6Al-4V laser powder bed fusion lattice structures using curving lattice struts. Mater. Des. 2021, 211, 110140. [Google Scholar] [CrossRef]
- Zou, T.; Ou, Y. Nest hybridization of BCC and TPMS lattices A design for high efficiency energy absorption in additive manufacturing. Eng. Struct. 2025, 339, 120600. [Google Scholar] [CrossRef]
- Zhao, M.; Li, X.; Yan, X.; Zhou, N.; Pang, B.; Peng, B.; Zeng, Z. Machine learning accelerated design of lattice metamaterials for customizable energy absorption. Thin-Walled Struct. 2025, 208, 112845. [Google Scholar] [CrossRef]
- Li, D.; Chen, B.; Yue, D.; Sun, T.; Zhang, X. Hierarchical design and coupling deformation of lattice structures with variable unit cells manufactured by laser powder bed fusion. Thin-Walled Struct. 2024, 198, 111667. [Google Scholar] [CrossRef]
- Wu, M.W.; Lin, Q.E.; Ni, K.; Wang, P.; Ku, M.H.; Chang, S.H.; Chiu, J.L.; Hsin, T.E.; Li, C.L.; Wang, C.K. Novel functionally-graded material design of additive manufactured Corrax maraging stainless steel lattice. Mater. Des. 2024, 241, 112940. [Google Scholar] [CrossRef]
- Rahimi, S.; Asghari, M. Design and evaluation of two proposed hybrid FCC-BCC lattice structure for enhanced mechanical performance. Heliyon 2025, 11, e40911. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, N.; Tian, X. A novel hybrid lattice structure for improving compression mechanical properties. Mech. Adv. Mater. Struct. 2024, 31, 5805–5822. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, X.; Feng, G.; Li, S.; Song, W.; Jiang, Z. Compressive performance and energy absorption of additively manufactured metallic hybrid lattice structures. Int. J. Mech. Sci. 2022, 219, 107093. [Google Scholar] [CrossRef]
- Gharehbaghi, H.; Farrokhabadi, A.; Noroozi, Z. Introducing a new hybrid surface strut-based lattice structure with enhanced energy absorption capacity. Mech. Adv. Mater. Struct. 2024, 31, 2955–2964. [Google Scholar] [CrossRef]
- Chang, C.; Yan, X.; Deng, Z.; Lu, B.; Bolot, R.; Gardan, J.; Deng, S.; Chemkhi, M.; Liu, M.; Liao, H. Heat treatment induced microstructural evolution, oxidation behavior and tribological properties of Fe-12Cr-9Ni-2Al steel (CX steel) prepared using selective laser melting. Surf. Coat. Technol. 2022, 429, 127982. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Niu, L.; Liu, J.; Wang, J.; Liu, Y.; Shi, Z. Effect of process parameters and heat treatment on the properties of stainless steel CX fabricated by selective laser melting. J. Alloys Compd. 2021, 877, 160062. [Google Scholar] [CrossRef]
- Wu, M.W.; Chen, J.K.; Tsai, M.K.; Wang, P.; Cheng, T.L.; Lin, B.H.; Chiang, P.H.; Dhinakar, A. Uniaxial compression properties and compression fatigue performance of selective laser melted Ti-6Al-4V cellular structure. Met. Mater. Int. 2022, 28, 132–144. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.; Cai, G.; Jin, H. Additive Manufacturing and Influencing Factors of Lattice Structures: A Review. Materials 2025, 18, 1397. [Google Scholar] [CrossRef]
- ISO 13314:2011; Mechanical Testing of Metals-Ductility Testing Compression Test for Porous and Cellular Metals. International Organization for Standardization: Geneva, Switzerland, 2011.
- Chu, T.C.; Ranson, W.F.; Sutton, M.A. Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 1985, 25, 232–244. [Google Scholar] [CrossRef]
- Brenne, F.; Niendorf, T. Load distribution and damage evolution in bending and stretch dominated Ti-6Al-4V cellular structures processed by selective laser melting. Int. J. Fatigue 2019, 121, 219–228. [Google Scholar] [CrossRef]
- Popławski, A.; Bogusz, P.; Grudnik, M. Digital Image Correlation and Numerical Analysis of Mechanical Behavior in Photopolymer Resin Lattice Structures. Materials 2025, 18, 384. [Google Scholar] [CrossRef]
- Huang, Z.; Antion, C.; Toussaint, F. Identification for elastoplastic constitutive parameters of 316L stainless steel lattice structures using finite element model updating and integrated digital image correlation. Mech. Mater. 2025, 202, 105232. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, J.; Zhao, Y.; Qin, Z. Mechanical behavior and energy absorption capability of trigonometric function curved rod cell-based lattice structures under compressive loading. Sci. Rep. 2025, 15, 21386. [Google Scholar] [CrossRef]
- Teng, F.; Sun, Y.; Guo, S.; Gao, B.; Yu, G. Topological and Mechanical Properties of Different Lattice Structures Based on Additive Manufacturing. Micromachines 2022, 13, 1017. [Google Scholar] [CrossRef]
- Choy, S.Y.; Sun, C.N.; Leong, K.F.; Wei, J. Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: Design, orientation and density. Addit. Manuf. 2017, 16, 213–224. [Google Scholar] [CrossRef]
- Li, N.; Pang, S.; Chen, S.; Liu, Y.; Aiyiti, W.; Chen, Z. Design and application of hybrid lattice metamaterial structures with high energy absorption and compressive resistance. J. Mater. Res. Technol. 2024, 33, 7100–7112. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Yan, S.; Zhao, Y.; Zhang, Y. Enhancing the mechanical performance of additively manufactured lattice structure via locally reinforcing struts: Coupled influence of structure and microstructure. Mater. Sci. Eng. A 2025, 927, 147989. [Google Scholar] [CrossRef]
- Lin, Q.E.; Wu, C.D.; Zhang, Y.W.; Li, C.L.; Ku, M.H.; Chang, S.H.; Wu, M.W. Enhancement of the compressive performances of additive manufactured Corrax maraging stainless steel lattice by heat treatment. J. Mater. Res. Technol. 2024, 33, 1640–1653. [Google Scholar] [CrossRef]
- Park, K.M.; Roh, Y.S.; Lee, B.C. Effects of the unit-cell size and arrangement on the compressive behaviors of lattice structures in powder bed fusion additive manufacturing. Results Mater. 2024, 22, 100587. [Google Scholar] [CrossRef]
- Emir, E.; Bahçe, E. Compressive behavior of functional graded hybrid lattice structure. Int. J. Adv. Manuf. Technol. 2025, 138, 1605–1620. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Ni | Mo | Al | Fe |
---|---|---|---|---|---|---|---|
0.033 | 0.3 | 0.3 | 12.0 | 9.2 | 1.4 | 1.6 | Bal. |
Laser Power (W) | Scanning Speed (mm/s) | Layer Thickness (μm) | Hatch Spacing (μm) | Layer Rotation (°) |
---|---|---|---|---|
260 | 1070 | 100 | 30 | 67 |
Lattice Type | Relative Density | Surface Area (mm2) |
---|---|---|
C | 0.35 ± 0.00153 | 26,063.68 |
A | 0.35 ± 0.00557 | 25,850.9 |
H | 0.38 ± 0.00058 | 29,622.58 |
Lattice Structure | Relative Density | First Maximum Compressive Strength (MPa) | Energy Absorption (MJ/m3) | Specific Strength (kN.m/kg) | SEA (kJ/kg) |
---|---|---|---|---|---|
C | 0.35 | 392 ± 2.41 | 97.05 ± 7.16 | 147 ± 0.59 | 36.3 ± 2.53 |
A | 0.35 | 387 ± 6.92 | 108.1 ± 6.40 | 146 ± 3.67 | 40.9 ± 3.02 |
H | 0.38 | 418 ± 5.78 | 128.5 ± 6.83 | 144 ± 1.83 | 44.2 ± 1.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ku, M.-H.; Chen, S.-W.; Wu, C.-D.; Liu, Y.-T.; Lin, Q.-E.; Li, C.-L.; Wu, M.-W. The Effects of Unit Cell Arrangement and Hybrid Design on the Compressive Performances of Additive Manufactured Corrax Maraging Stainless Steel Lattices. Materials 2025, 18, 4443. https://doi.org/10.3390/ma18194443
Ku M-H, Chen S-W, Wu C-D, Liu Y-T, Lin Q-E, Li C-L, Wu M-W. The Effects of Unit Cell Arrangement and Hybrid Design on the Compressive Performances of Additive Manufactured Corrax Maraging Stainless Steel Lattices. Materials. 2025; 18(19):4443. https://doi.org/10.3390/ma18194443
Chicago/Turabian StyleKu, Ming-Hsiang, Shou-Wun Chen, Cheng-Da Wu, Yan-Ting Liu, Quiao-En Lin, Chien-Lun Li, and Ming-Wei Wu. 2025. "The Effects of Unit Cell Arrangement and Hybrid Design on the Compressive Performances of Additive Manufactured Corrax Maraging Stainless Steel Lattices" Materials 18, no. 19: 4443. https://doi.org/10.3390/ma18194443
APA StyleKu, M.-H., Chen, S.-W., Wu, C.-D., Liu, Y.-T., Lin, Q.-E., Li, C.-L., & Wu, M.-W. (2025). The Effects of Unit Cell Arrangement and Hybrid Design on the Compressive Performances of Additive Manufactured Corrax Maraging Stainless Steel Lattices. Materials, 18(19), 4443. https://doi.org/10.3390/ma18194443