Electric Arc Metallothermic Smelting of FeCr Using FeAlSiCa as a Reductant
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Smelting Process
3.2. Investigation of Smelting Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FeCr | Ferrochrome |
LC | Low carbon |
EAF | Electric arc furnace |
SEM | Scanning electron microscope |
References
- Shabanov, E.Z.; Saulebek, Z.K.; Akhmetov, A.S.; Mukhtarkhanova, G.K. Smelting of High-Carbon Ferrochromium from Pre-Reduced Chromite Raw Materials. CIS Iron Steel Rev. 2024, 27, 15–19. [Google Scholar] [CrossRef]
- Baisanov, A.; Vorobkalo, N.; Shabanov, Y.; Zobnin, N.; Baisanova, A.; Sharieva, S.; Akuov, A.; Samuratov, Y.; Ibrakhimova, Z.; Zhumagaliev, T. Optimization of the Properties of Microsilica-Based Composite Briquettes Depending on Their Granulometry. J. Compos. Sci. 2024, 8, 439. [Google Scholar] [CrossRef]
- Agarwal, S.; Pal, J.; Ghosh, D. Development of Chromite Sinter from Ultra-Fine Chromite Ore by Direct Sintering. ISIJ Int. 2014, 54, 559–566. [Google Scholar] [CrossRef]
- Weitz, H.; Garbers-Craig, A.M. Evaluation of the Furnace Method for the Production of Low Carbon Ferrochrome. Miner. Process. Extr. Metall. Rev. 2016, 37, 168–178. [Google Scholar] [CrossRef]
- Lian, X.; Gao, H.; Shen, L.; Yu, Y.; Wang, Y.; Peng, Z. Life Cycle Assessment of Primary Aluminum Production. Processes 2025, 13, 419. [Google Scholar] [CrossRef]
- Haque, N.; Norgate, T. Estimation of Greenhouse Gas Emissions from Ferroalloy Production Using Life Cycle Assessment with Particular Reference to Australia. J. Clean. Prod. 2013, 39, 220–230. [Google Scholar] [CrossRef]
- Sævarsdottir, G.; Kvande, H.; Magnusson, T. Greenhouse Gas Emissions from Silicon Production -Development of Carbon Footprint with Changing Energy Systems. In Proceedings of the INFACON XVI, Trondheim, Norway, 27–29 September 2021. [Google Scholar] [CrossRef]
- Wei, W.; Samuelsson, P.B.; Jönsson, P.G.; Gyllenram, R.; Glaser, B. Energy Consumption and Greenhouse Gas Emissions of High-Carbon Ferrochrome Production. JOM 2023, 75, 1206–1220. [Google Scholar] [CrossRef]
- Sommerfeld, M.; Weiss, J.; Friedrich, B. CO2-Minimized Ferrochrome Production Utilizing Silicon Wafer Cutting Slurry as an Alternative Reductant. J. Sustain. Metall. 2023, 9, 806–815. [Google Scholar] [CrossRef]
- Jung, W.-G.; Back, G.-S.; Johra, F.T.; Kim, J.-H.; Chang, Y.-C.; Yoo, S.-J. Preliminary Reduction of Chromium Ore Using Si Sludge Generated in Silicon Wafer Manufacturing Process. J. Min. Metall. B Metall. 2018, 54, 29–37. [Google Scholar] [CrossRef]
- Jung, W.; Hossain, S.T.; Johra, F.T.; Kim, J.; Chang, Y. Reduction of Chromium Ore by Recycled Silicon Cutting Sludge Waste with Carbon Addition. J. Iron Steel Res. Int. 2019, 26, 806–817. [Google Scholar] [CrossRef]
- Gilvarg, S.I.; Odinokov, S.F.; Bannykh, A.G.; Kiselev, V.M. Method for Aluminothermic Production of Low-Carbon Ferrochrome. Patent RU2291217C2, 10 January 2007. [Google Scholar]
- Zhautykov, F.B. Research and Development of a Two-Stage Steelmaking Process for Smelting, Tapping, and Secondary Metallurgy in a Ladle Furnace Unit for Producing Carbonaceous Semi-Finished Steel. Ph.D. Dissertation, Karaganda Industrial University, Temirtau, Kazakhstan, 2021; p. 145. [Google Scholar]
- Akuov, A.; Samuratov, Y.; Kelamanov, B.; Zhumagaliyev, Y.; Taizhigitova, M. Development of an Alternative Technology for the Production of Refined Ferrochrome. Metalurgija 2020, 59, 529–532. [Google Scholar]
- Akhmetov, A.; Zulhan, Z.; Sadyk, Z.; Burumbayev, A.; Zhakan, A.; Kabylkanov, S.; Toleukadyr, R.; Saulebek, Z.; Ayaganova, Z.; Makhambetov, Y. Carbon-Free Smelting of Ferrochrome Using FeAlSiCa Alloy. Processes 2025, 13, 1745. [Google Scholar] [CrossRef]
- Makhambetov, Y.; Kutzhanov, M.; Toleukadyr, R.; Myrzagaliyev, A.; Sadyk, Z.; Saulebek, Z.; Akhmetov, A. Utilization of Chromite Spinel Powder in the Metallothermic Smelting of Low-Carbon Ferrochrome. Processes 2025, 13, 2288. [Google Scholar] [CrossRef]
- Kirschen, M.; Badr, K.; Pfeifer, H. Influence of Direct Reduced Iron on the Energy Balance of the Electric Arc Furnace in Steel Industry. Energy 2011, 36, 6146–6155. [Google Scholar] [CrossRef]
- GOST 15848.0–90 (ISO 6629–81); Chromium Ores and Concentrates. General Requirements for Methods of Chemical Analysis. Izdatelstvo Standartov: Moscow, Russia, 1991.
- GOST 11861–91 (ISO 5449–8); Ferrosilicochromium. Specification and Conditions of Delivery. Izdatelstvo Standartov: Moscow, Russia, 2003.
- GOST 4757-91 (ISO 5448-81); Ferrochromium. Specification and Conditions of Delivery. Izdatelstvo Standartov: Moscow, Russia, 2003.
- FSharma, L.; Chhibber, R. Design & Development of SAW Fluxes Using CaO–SiO2–CaF2 and CaO–SiO2–Al2O3 Flux Systems. Ceram. Int. 2020, 46, 1419–1432. [Google Scholar] [CrossRef]
- Shoko, N.R.; Chirasha, J. Technological Change Yields Beneficial Process Improvement for Low Carbon Ferrochrome at Zimbabwe Alloys. In Proceedings of the Tenth International Ferroalloys Congress (INFACON X), Cape Town, South Africa, 1–4 February 2004; pp. 94–102. [Google Scholar]
- Akuov, A.; Tolymbekov, M.; Kasenov, B.; Yesenzhulov, A. Thermodynamic Analysis of Chrome Reduction with Aluminum and Silicon. In Proceedings of the Twelfth International Ferroalloys Congress (INFACON XII), Helsinki, Finland, 6–9 June 2010; pp. 239–244. [Google Scholar]
- Horckmans, L.; Möckel, R.; Nielsen, P.; Kukurugya, F.; Vanhoof, C.; Morillon, A.; Algermissen, D. Multi-Analytical Characterization of Slags to Determine the Chromium Concentration for a Possible Re-Extraction. Minerals 2019, 9, 646. [Google Scholar] [CrossRef]
- Holappa, L.; Xiao, Y. Slags in ferroalloys production—Review of present knowledge. J. South. Afr. Inst. Min. Metall. 2004, 104, 429–437. [Google Scholar]
- Harman, C.N. A process for the recovery of chromium and iron oxide in high carbon ferro chrome slag to obtain chromium and iron in the form of saleable metal. In Proceedings of the INFACON XIII, Almaty, Kazakhstan, 9–13 June 2013; Volume 1, pp. 103–108. [Google Scholar]
- Xiao, Y.; Wei, K.; Wang, L.; Liu, S.; He, X.; Chou, K. Influence of Slag Chemistry on the Dissolution of FeCr2O4 in CaO–SiO2–Al2O3–MgO Slag with Graphite Crucible. ISIJ Int. 2023, 63, 613–621. [Google Scholar] [CrossRef]
- Jalkanen, H.; Gasik, M. Theory of Ferroalloys Processing. In Handbook of Ferroalloys; Elsevier: Amsterdam, The Netherlands, 2013; pp. 29–82. ISBN 9780080977539. [Google Scholar]
- Nakamoto, M.; Forsbacka, L.; Holappa, L. Assessment of Viscosity of Slags in Ferrochromium Process. In Proceedings of the Eleventh International Ferroalloys Congress (INFACON XI), New Delhi, India, 18–21 February 2007; pp. 159–164. [Google Scholar]
- Salina, V.A.; Zhuchkov, V.I.; Zayakin, O.V. Thermodynamic Simulation of Silicothermic Reduction of Chromium. Steel Transl. 2020, 50, 84–89. [Google Scholar] [CrossRef]
Cr2O3 | Al2O3 | SiO2 | MgO | CaO | Fe2O3 | S | P | CL 1 |
---|---|---|---|---|---|---|---|---|
52.91 | 7.80 | 4.66 | 17.5 | 0.59 | 12.90 | 0.023 | 0.004 | 3.61 |
Fe | Al | Si | Ca | C | S | P | Ti | V |
---|---|---|---|---|---|---|---|---|
8.12 | 13.44 | 66.15 | 10.04 | 0.69 | 0.018 | 0.040 | 1.09 | 0.41 |
Fe | Si | Cr | Al | Ca | C | S | P |
---|---|---|---|---|---|---|---|
9.10 | 48.07 | 38.74 | 4.04 | 0.018 | 2.00 | 0.057 | 0.024 |
Reductant | Smelting Run, No. | Fe | Cr | Si | C | P | S |
---|---|---|---|---|---|---|---|
20% excess FeAlSiCa | 1 | 22.0 | 55.1 | 18.6 | 4.25 | 0.104 | 0.014 |
2 | 19.8 | 60.5 | 15.2 | 4.44 | 0.107 | 0.015 | |
3 | 22.4 | 53.8 | 21.5 | 2.14 | 0.110 | 0.013 | |
stoichiometric amount of FeAlSiCa | 4 | 20.5 | 74.3 | 1.6 | 3.07 | 0.064 | 0.018 |
5 | 23.9 | 70.7 | 1.5 | 3.80 | 0.068 | 0.018 | |
20% excess FeSiCr | 6 | 17.4 | 72.0 | 2.0 | 8.61 | 0.076 | 0.020 |
7 | 23.6 | 67.2 | 1.7 | 7.38 | 0.087 | 0.014 | |
8 | 21.1 | 68.6 | 0.3 | 9.93 | 0.085 | 0.014 | |
9 | 17.5 | 70.7 | 0.6 | 10.98 | 0.101 | 0.017 |
Reductant | Smelting Run, No. | Cr2O3 | Fe2O3 | CaO | SiO2 | Al2O3 | MgO | P | Basicity |
---|---|---|---|---|---|---|---|---|---|
FeAlSiCa | 1 | 3.50 | 0.77 | 33.44 | 31.15 | 16.50 | 14.64 | - | 1.0 |
2 | 3.80 | 1.02 | 32.84 | 28.26 | 17.65 | 16.42 | 0.008 | 1.0 | |
3 | 3.24 | 0.76 | 29.08 | 31.89 | 20.54 | 14.49 | - | 0.8 | |
4 | 6.03 | 1.08 | 26.39 | 33.18 | 18.31 | 14.97 | 0.043 | 0.8 | |
5 | 5.29 | 2.27 | 27.94 | 32.25 | 16.18 | 16.07 | - | 0.9 | |
FeSiCr | 6 | 16.58 | 5.15 | 11.95 | 27.80 | 16.48 | 22.04 | 0.007 | 0.7 |
7 | 8.59 | 2.60 | 28.36 | 31.30 | 14.69 | 14.46 | 0.002 | 0.9 | |
8 | 8.09 | 2.62 | 29.95 | 30.30 | 15.15 | 13.89 | 0.003 | 0.9 | |
9 | 14.87 | 5.29 | 23.46 | 22.71 | 14.03 | 19.64 | 0.003 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhambetov, Y.; Sadyk, Z.; Zhakan, A.; Burumbayev, A.; Kabylkanov, S.; Myrzagaliyev, A.; Aubakirov, D.; Lu, N.; Akhmetov, A. Electric Arc Metallothermic Smelting of FeCr Using FeAlSiCa as a Reductant. Materials 2025, 18, 4221. https://doi.org/10.3390/ma18184221
Makhambetov Y, Sadyk Z, Zhakan A, Burumbayev A, Kabylkanov S, Myrzagaliyev A, Aubakirov D, Lu N, Akhmetov A. Electric Arc Metallothermic Smelting of FeCr Using FeAlSiCa as a Reductant. Materials. 2025; 18(18):4221. https://doi.org/10.3390/ma18184221
Chicago/Turabian StyleMakhambetov, Yerbolat, Zhadiger Sadyk, Armat Zhakan, Azamat Burumbayev, Sultan Kabylkanov, Aibar Myrzagaliyev, Dastan Aubakirov, Natalya Lu, and Amankeldy Akhmetov. 2025. "Electric Arc Metallothermic Smelting of FeCr Using FeAlSiCa as a Reductant" Materials 18, no. 18: 4221. https://doi.org/10.3390/ma18184221
APA StyleMakhambetov, Y., Sadyk, Z., Zhakan, A., Burumbayev, A., Kabylkanov, S., Myrzagaliyev, A., Aubakirov, D., Lu, N., & Akhmetov, A. (2025). Electric Arc Metallothermic Smelting of FeCr Using FeAlSiCa as a Reductant. Materials, 18(18), 4221. https://doi.org/10.3390/ma18184221