Integrated Seamless Non-Noble Plasmonic Ni-Upconversion Nanofilm for Stable and Enhanced Fluorescence Performance
Abstract
1. Introduction
2. Experimental
2.1. Preparation of NaYF4:Tm, Yb Film Materials
2.2. Preparation of Substrate Materials
2.3. Film Preparation and Post-Treatment Process
2.4. Structural and Optical Characterization
2.5. FDTD (Finite-Difference Time-Domain) Simulation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tan, T.H.; Scott, J.; Ng, Y.H.; Taylor, R.A.; Aguey-Zinsou, K.F.; Amal, R. Understanding plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported gold. ACS Catal. 2016, 6, 1870–1879. [Google Scholar] [CrossRef]
- Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Tu, L.; Li, Q.; Feng, Y.; Que, I.; Zhang, Y.; Liu, X.; Xue, B.; Cruz, L.J.; Chang, Y.; et al. Near infrared light sensitive ultraviolet-blue nanophotoswitch for imaging-guided “off-on” therapy. ACS Nano 2018, 12, 3217–3225. [Google Scholar] [CrossRef]
- Tang, M.; Zhu, X.; Zhang, Y.; Zhang, Z.; Zhang, Z.; Mei, Q.; Zhang, J.; Wu, M.; Liu, J.; Zhang, Y. Near-infrared excited orthogonal emissive upconversion nanoparticles for imaging-guided on-demand therapy. ACS Nano 2019, 13, 10405–10418. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Qiu, H.; Prasad, P.N.; Chen, X. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161–5214. [Google Scholar] [CrossRef]
- Ma, D.; Meng, L.; Chen, Y.; Hu, M.; Chen, Y.; Huang, C.; Shang, J.; Wang, R.; Guo, Y.; Yang, J. NaGdF4:Yb3+/Er3+@NaGdF4:Nd3+@sodium-gluconate: Multifunctional and biocompatible ultrasmall core-shell nanohybrids for UCL/MR/CT multimodal imaging. ACS Appl. Mater. Interfaces 2015, 7, 16257–16265. [Google Scholar] [CrossRef]
- Goldschmidt, J.C.; Fischer, S. Upconversion for photovoltaics—A review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 2015, 3, 510–535. [Google Scholar] [CrossRef]
- Schulze, T.F.; Schmidt, T.W. Photochemical upconversion: Present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 2015, 8, 103–125. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, X.; Liu, W.; Gao, Z.; Zhong, L.; Qin, Y.; Li, B.; Li, J. Semiconductor plasmon enhanced upconversion toward a flexible temperature sensor. ACS Appl. Mater. Interfaces 2023, 15, 4469–4476. [Google Scholar] [CrossRef]
- Li, X.; Guo, Z.; Zhao, T.; Lu, Y.; Zhou, L.; Zhao, D.; Zhang, F. Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence. Angew. Chem. Int. Ed. 2016, 55, 2464–2469. [Google Scholar] [CrossRef]
- Dong, H.; Sun, L.-D.; Feng, W.; Gu, Y.; Li, F.; Yan, C.-H. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence. ACS Nano 2017, 11, 3289–3297. [Google Scholar] [CrossRef]
- Mun, K.R.; Kyhm, J.; Lee, J.Y.; Shin, S.; Zhu, Y.; Kang, G.; Kim, D.; Deng, R.; Jang, H.S. Elemental-migration-assisted full-color-tunable upconversion nanoparticles for video-rate three-dimensional volumetric displays. Nano Lett. 2023, 23, 3014–3022. [Google Scholar] [CrossRef]
- Jia, H.; Zhao, J.; Huo, Z.; Feng, X.; Liu, W.; Guo, S.; Li, N.; Li, D.; Yang, Y.; He, W.; et al. Full-color upconversion luminescence nanoplatform for real three-dimensional volumetric color displays. Chem. Eng. J. 2024, 488, 150790. [Google Scholar] [CrossRef]
- Dong, H.; Sun, L.-D.; Yan, C.-H. Basic understanding of the lanthanide related upconversion emissions. Nanoscale 2013, 5, 5703. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiang, C.; Wang, Z.; Cohen, B.E.; Chan, E.M.; Chen, G. Triplet-induced singlet oxygen photobleaches near-infrared dye-sensitized upconversion nanosystems. Nano Lett. 2023, 23, 7001–7007. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Qin, W.; Ding, F. Comparison of ultraviolet upconversion luminescence between thin film and bulk of calcium fluoride co-doped with Yb3+/Tm3+ ions. J. Nanosci. Nanotechnol. 2010, 10, 2013–2016. [Google Scholar] [CrossRef]
- Congreve, D.N. Lead halide perovskites unlock thin film upconversion. Matter 2019, 1, 553–555. [Google Scholar] [CrossRef]
- Liu, X.; Ni, Y.; Zhu, C.; Fang, L.; Kou, J.; Lu, C.; Xu, Z. Controllable self-assembly of NaREF4 upconversion nanoparticles and their distinctive fluorescence properties. Nanotechnology 2016, 27, 295605. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, J.; Tao, M.; Wang, C.; Zeng, X.; Hu, Y.; Wang, S.; Zeng, M.; Zhou, W.; Gu, H.; et al. Controllable planar electrodeposition of NaYF4: Yb3+, Er3+ thin films with efficient upconverting fluorescence. J. Lumin. 2019, 214, 116580. [Google Scholar] [CrossRef]
- Jia, H.; Xu, C.; Wang, J.; Chen, P.; Liu, X.; Qiu, J. Synthesis of NaYF4:Yb-Tm thin film with strong NIR photon up-conversion photoluminescence using electro-deposition method. CrystEngComm 2014, 16, 4023–4028. [Google Scholar] [CrossRef]
- Tian, X.; Huang, S.; Wang, L.; Li, L.; Lou, Z.; Huang, S.; Zhou, Z. Mitigation of low methane content landfill gas through visible-near-infrared photocatalysis over Y2O3:Er3+/graphene/TiO2. Appl. Surf. Sci. 2018, 456, 854–860. [Google Scholar] [CrossRef]
- Gaponenko, N.V.; Staskov, N.I.; Sudnik, L.V.; Vityaz, P.A.; Luchanok, A.R.; Karnilava, Y.D.; Lashkovskaya, E.I.; Stepikhova, M.V.; Yablonskiy, A.N.; Zhivulko, V.D.; et al. Upconversion luminescence from sol-gel-derived erbium- and ytterbium-doped BaTiO3 film structures and the target form. Photonics 2023, 10, 359. [Google Scholar] [CrossRef]
- Jia, Z.; Zheng, K.; Zhang, D.; Zhao, D.; Qin, W. Upconversion emission from Yb3+ and Tm3+ codoped NaYF4 thin film prepared by thermal evaporation. J. Nanosci. Nanotechnol. 2011, 11, 9690–9692. [Google Scholar] [CrossRef] [PubMed]
- Molkenova, A.; Choi, H.E.; Park, J.M.; Lee, J.-H.; Kim, K.S. Plasmon modulated upconversion biosensors. Biosensors 2023, 13, 306. [Google Scholar] [CrossRef] [PubMed]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Fang, Y.; Cao, B.; Huang, J.; Liu, K.; Dong, B. Near-infrared-plasmonic energy upconversion in a nonmetallic heterostructure for efficient H2 evolution from ammonia borane. Adv. Sci. 2018, 5, 1800748. [Google Scholar] [CrossRef]
- Liu, S.; Wu, Z.; Zhu, Z.; Feng, K.; Zhou, Y.; Hu, X.; Huang, X.; Zhang, B.; Dong, X.; Ma, Y.; et al. Quantifying the distinct role of plasmon enhancement mechanisms in prototypical antenna-reactor photocatalysts. Nat. Commun. 2025, 16, 2245. [Google Scholar] [CrossRef]
- Qin, X.; Neto, A.N.C.; Longo, R.L.; Wu, Y.; Malta, O.L.; Liu, X. Surface plasmon-photon coupling in lanthanide-doped nanoparticles. J. Phys. Chem. Lett. 2021, 12, 1520–1541. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter. 2017, 29, 203002. [Google Scholar] [CrossRef]
- Xiong, Z.; Lei, H.; Yang, J.; Liu, Y.; Gao, Z.; Li, Y.; Hao, C.; Wang, J. Deep-ultraviolet plasmon resonance of Ni nanoparticles embedded in BaTiO3 matrix. J. Alloys Compd. 2022, 924, 166562. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Tian, L.; Luo, Y.; Gong, J.; Liu, R. Hexagonal phase β-NaYF4:Yb/Er films made by electrodepositing onto β-NaGdF4 underlayer at low temperature. J. Electrochem. Soc. 2019, 166, 168–172. [Google Scholar] [CrossRef]
- Dejneka, M.J.; Streltsov, A.; Pal, S.; Frutos, A.G.; Powell, C.L.; Yost, K.; Yuen, P.K.; Müller, U.; Lahiri, J. Rare earth-doped glass microbarcodes. Proc. Natl. Acad. Sci. USA 2003, 100, 389–393. [Google Scholar] [CrossRef]
- Chen, H.; Yang, B.; Sun, Y.; Zhang, M.; Sui, Y.; Zhang, Z.; Cao, W. Investigation on upconversion photoluminescence of Bi3TiNbO9:Er3+:Yb3+ thin films. J. Lumin. 2011, 131, 2574–2578. [Google Scholar] [CrossRef]
- Qu, M.-H.; Wang, R.-Z.; Chen, Y.; Zhang, Y.; Li, K.-Y.; Zhou, H.; Yan, H. Enhancing upconversion emission of Er, Yb co-doped highly transparent YF3 films by synergistic tuning nano-textured morphology and crystallinity. J. Lumin. 2014, 148, 181–185. [Google Scholar] [CrossRef]
- Li, N.; Wang, W.; Duan, P.; Wang, Y.; Sun, X.; Di, J.; Li, W.; Chu, B.; He, Q. Upconversion luminescence of Ho3+/Yb3+ co-doped CaNb2O6 thin films. Chem. Phys. Lett. 2016, 644, 152–156. [Google Scholar] [CrossRef]
- Haes, A.J.; Zou, S.; Schatz, G.C.; Van Duyne, R.P. Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 2004, 108, 6961–6968. [Google Scholar] [CrossRef]
- Akselrod, G.M.; Argyropoulos, C.; Hoang, T.B.; Ciracì, C.; Fang, C.; Huang, J.; Smith, D.R.; Mikkelsen, M.H. Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas. Nat. Photonics 2014, 8, 835–840. [Google Scholar] [CrossRef]
- Schietinger, S.; Aichele, T.; Wang, H.-Q.; Nann, T.; Benson, O. Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett. 2010, 10, 134–138. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, H.; Han, L.; Li, Y.; Ni, Y.; Lu, C. Integrated Seamless Non-Noble Plasmonic Ni-Upconversion Nanofilm for Stable and Enhanced Fluorescence Performance. Materials 2025, 18, 3995. https://doi.org/10.3390/ma18173995
Zeng H, Han L, Li Y, Ni Y, Lu C. Integrated Seamless Non-Noble Plasmonic Ni-Upconversion Nanofilm for Stable and Enhanced Fluorescence Performance. Materials. 2025; 18(17):3995. https://doi.org/10.3390/ma18173995
Chicago/Turabian StyleZeng, Hao, Longhui Han, Yang Li, Yaru Ni, and Chunhua Lu. 2025. "Integrated Seamless Non-Noble Plasmonic Ni-Upconversion Nanofilm for Stable and Enhanced Fluorescence Performance" Materials 18, no. 17: 3995. https://doi.org/10.3390/ma18173995
APA StyleZeng, H., Han, L., Li, Y., Ni, Y., & Lu, C. (2025). Integrated Seamless Non-Noble Plasmonic Ni-Upconversion Nanofilm for Stable and Enhanced Fluorescence Performance. Materials, 18(17), 3995. https://doi.org/10.3390/ma18173995