Composite Materials Based on Biochar Obtained from Tomato Wastes and Fe3O4/MnO2 Used for Paracetamol Adsorption
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.1.1. Preparation of Bch-HCl
2.1.2. Bch-HCl/MnO2 Synthesis
2.1.3. Bch-HCl/Fe3O4/MnO2 Synthesis
2.2. Materials Characterization
2.3. Adsorption Experiments
2.4. Composites Reusability
3. Results and Discussion
3.1. Materials Characterization
3.1.1. Morphological Characterization
3.1.2. Surface Area and Porosity Analysis
3.1.3. FTIR Analysis
3.1.4. XRD Analysis
3.2. Adsorption Process Optimization
3.2.1. Effect of pH and Point of Zero Charge
3.2.2. Effect of the Adsorbent Dose
3.2.3. Effect of Contact Time
3.2.4. Effect of Temperature
3.2.5. Effect of the Initial Drug Concentration
3.3. Adsorption Isotherm Studies
3.4. Kinetic Studies
3.5. Thermodynamic Parameters
3.6. Reusability of the Prepared Composites
3.7. Performance Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nkosi, N.E.; Thabede, P.M.; Shooto, N.D. One pot synthesis of Fe3O4-chili carbon composite removing methylene blue, paracetamol and nickel ions from an aqueous solution. Case Stud. Chem. Environ. Eng. 2024, 10, 100800. [Google Scholar] [CrossRef]
- Bongaarts, J. Human population growth and the demographic transition. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2985–2990. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ding, J.; Jiang, H.; Wang, Z.; Zheng, L.; Song, X.; Zou, H. Pharmaceuticals and personal care products across different water bodies in Taihu Lake Basin, China: Occurrence, source, and flux. Int. J. Environ. Res. Publ. Health 2022, 19, 11135. [Google Scholar] [CrossRef] [PubMed]
- Mastrángelo, M.M.; Valdés, M.E.; Eissa, B.; Ossana, N.A.; Barceló, D.; Sabater, S.; Rodríguez-Mozaz, S.; Giorgi, A.D.N. Occurrence and accumulation of pharmaceutical products in water and biota of urban lowland rivers. Sci. Total Environ. 2022, 828, 154303. [Google Scholar] [CrossRef]
- Sósarczyk, K.; Jakóbczyk-Karpierz, S.; Rózkowski, J.; Witkowski, A.J. Occurrence of pharmaceuticals and personal care products in the water environment of Poland: A review. Water 2021, 13, 2283. [Google Scholar] [CrossRef]
- Munzhelele, E.P.; Mudzielwana, R.; Ayinde, W.B.; Gitari, W.M. Pharmaceutical contaminants in wastewater and receiving water bodies of South Africa: A review of sources, pathways, occurrence, effects, and geographical distribution. Water 2024, 16, 796. [Google Scholar] [CrossRef]
- Kamenická, B.; Weidlich, T.; Švancara, I. Voltammetric determination of flufenamic acid and adsorption studies with biochar in the absence/presence of cetyltrimethylammonium bromide. Talanta 2024, 266, 125073. [Google Scholar] [CrossRef]
- Gallego-Ramírez, C.; Chica, E.; Rubio-Clemente, A. Combination of biochar and advanced oxidation processes for the sustainable elimination of pharmaceuticals in water. Sustainability 2024, 16, 10761. [Google Scholar] [CrossRef]
- Montes-Grajales, D.; Fennix-Agudelo, M.; Miranda-Castro, W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci. Total Environ. 2017, 595, 601–614. [Google Scholar] [CrossRef]
- Masud, M.A.A.; Samaraweera, H.; Mondol, M.M.H.; Septian, A.; Kumar, R.; Terry, L.G. Iron biochar synergy in aquatic systems through surface functionalities electron transfer and reactive species dynamic. npj Clean Water 2025, 8, 46. [Google Scholar] [CrossRef]
- Taoufik, N.; Boumya, W.; Janani, F.Z.; Elhalil, A.; Mahjoubi, F.Z.; Barka, N. Removal of emerging pharmaceutical pollutants: A systematic mapping study review. J. Environ. Chem. Eng. 2020, 8, 104251. [Google Scholar] [CrossRef]
- Freo, U.; Ruocco, C.; Valerio, A.; Scagnol, I.; Nisoli, E. Paracetamol: A review of guideline recommendations. J. Clin. Med. 2021, 10, 3420. [Google Scholar] [CrossRef]
- Igwegbe, C.A.; Aniagor, C.O.; Oba, S.N.; Yap, P.-S.; Iwuchukwu, F.U.; Liu, T.; de Souza, E.C.; Ighalo, J.O. Environmental protection by the adsorptive elimination of acetaminophen from water: A comprehensive review. J. Ind. Eng. Chem. 2021, 104, 117–135. [Google Scholar] [CrossRef]
- Wu, J.-L.; Liu, Z.-H.; Ma, Q.-G.; Dai, L.; Dang, Z. Occurrence, removal and risk evaluation of ibuprofen and acetaminophen in municipal wastewater treatment plants: A critical review. Sci. Total Environ. 2023, 891, 164600. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, L.; Chen, J. Paracetamol in the environment and its degradation by microorganisms. Appl. Microbiol. Biotechnol. 2012, 96, 875–884. [Google Scholar] [CrossRef]
- Pi, N.; Ng, J.Z.; Kelly, B.C. Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and Eichhornia crassipes. Sci. Total Environ. 2017, 601–602, 812–820. [Google Scholar] [CrossRef]
- Montaseri, H.; Forbes, P.B.C. Analytical techniques for the determination of acetaminophen: A review. TrAC Trends Anal. Chem. 2018, 108, 122–134. [Google Scholar]
- Afolabi, I.C.; Popoola, S.I.; Bello, O.S. Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network. Chemom. Intell. Lab. Syst. 2020, 203, 104053. [Google Scholar] [CrossRef]
- Żur, J.; Wojcieszyńska, D.; Hupert-Kocurek, K.; Marchlewicz, A.; Guzik, U. Paracetamol—Toxicity and microbial utilization. Pseudomonas moorei KB4 as a case study for exploring degradation pathway. Chemosphere 2018, 206, 192–202. [Google Scholar]
- Nunes, B. Ecotoxicological effects of the drug paracetamol: A critical review of past ecotoxicity assessments and future perspectives. Handb. Environ. Chem. 2020, 96, 131–145. [Google Scholar]
- Coimbra, R.N.; Escapa, C.; Otero, M. Removal of pharmaceuticals from water: Conventional and alternative treatments. Water 2021, 13, 487. [Google Scholar] [CrossRef]
- Wong, S.; Lim, Y.; Ngadi, N.; Mat, R.; Hassan, O.; Inuwa, I.M.; Mohamed, N.B.; Low, J.H. Removal of acetaminophen by activated carbon synthesized from spent tea leaves: Equilibrium, kinetics and thermodynamics studies. Powder Technol. 2018, 338, 878–886. [Google Scholar] [CrossRef]
- Chakraborty, P.; Show, S.; Banerjee, S.; Halder, G. Mechanistic insight into sorptive elimination of ibuprofen employing bi-directional activated biochar from sugarcane bagasse: Performance evaluation and cost estimation. J. Environ. Chem. Eng. 2018, 6, 5287–5300. [Google Scholar] [CrossRef]
- Varkolu, M.; Gundekari, S.; Omvesh Palla, V.C.S.; Kumar, P.; Bhattacharjee, S.; Vinodkumar, T. Recent advances in biochar production, characterization, and environmental applications. Catalysts 2025, 15, 243. [Google Scholar] [CrossRef]
- Gabhi, R.; Tan, K.; Feng, T.; Kirk, D.W.; Giorcelli, M.; Tagliaferro, A.; Jia, C.Q. Intrinsic electrical conductivity of monolithic biochar. Biomass Bioenergy 2024, 181, 107051. [Google Scholar] [CrossRef]
- Lan, W.; Zhao, X.; Wang, Y.; Jin, X.; Ji, J.; Cheng, Z.; Yang, G.; Li, H.; Chen, G. Research progress of biochar modification technology and its application in environmental remediation. Biomass Bioenergy 2024, 184, 107178. [Google Scholar] [CrossRef]
- Weidner, E.; Karbassiyazdi, E.; Altaee, A.; Jesionowski, T.; Ciesielczyk, F. Hybrid metal oxide/biochar materials for wastewater treatment technology: A review. ACS Omega 2022, 7, 27062–27078. [Google Scholar] [CrossRef]
- Liu, X.-M.; Zhang, R.; Zhan, L.; Long, D.-H.; Qiao, W.-M.; Yang, J.-H.; Ling, L.-C. Impedance of carbon aerogel/activated carbon composites as electrodes of electrochemical capacitors in aprotic electrolyte. New Carbon Mater. 2007, 22, 153–158. [Google Scholar] [CrossRef]
- Randviir, E.P. A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry. Electrochim. Acta 2018, 286, 179–186. [Google Scholar] [CrossRef]
- Essandoh, M.; Kunwar, B.; Pittman, C.U.; Mohan, D.; Mlsna, T. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem. Eng. J. 2015, 265, 219–227. [Google Scholar] [CrossRef]
- Cimirro, N.F.G.M.; Lima, E.C.; Cunha, M.R.; Thue, P.S.; Grimm, A.; dos Reis, G.S.; Rabiee, N.; Saeb, M.R.; Keivanimehr, F.; Habibzadeh, S. Removal of diphenols using pine biochar. Kinetics, equilibrium, thermodynamics, and mechanism of uptake. J. Mol. Liq. 2022, 364, 119979. [Google Scholar] [CrossRef]
- Ourique, M.F.; Sousa, P.V.; Oliveira, A.F.; Lopes, R.P. Comparative study of the direct black removal by Fe, Cu, and Fe/Cu nanoparticles. Environ. Sci. Pollut. Res. 2018, 25, 28928–28941. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Song, H.; Xie, H.; Huang, W.; Tan, J.; Wu, J. Transformation of acetaminophen using manganese dioxide-mediated oxidative processes: Reaction rates and pathways. J. Hazard. Mat. 2013, 250–251, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Debnath, B.; Saha, I.; Mukherjee, T.; Mitra, S.; Das, A.; Das, A. Chapter 12—Sorbents from waste materials: A circular economic approach. In Sorbents Materials for Controlling Environmental Pollution; Núñez-Delgado, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 285–322. [Google Scholar]
- Kasprzyk, M.; Czerwionka, K.; Gajewska, M. Waste materials assessment for phosphorus adsorption toward sustainable application in circular economy. Resour. Conserv. Recycl. 2021, 168, 105335–105343. [Google Scholar] [CrossRef]
- Lung, I.; Soran, M.L.; Stegarescu, A.; Opriș, O.; Gutoiu, S.; Leostean, C.; Lazar, M.D.; Kacso, I.; Silipas, T.D.; Porav, A.S. Evaluation of CNT-COOH/MnO2/Fe3O4 nanocomposite for ibuprofen and paracetamol removal from aqueous solutions. J. Hazard. Mater. 2021, 403, 123528. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Wu, R.; Liu, Y.; Lin, X.; Kan, H.; Zheng, Y. Preparation of acid- and alkali-modified biochar for removal of methylene blue pigment. ACS Omega 2020, 5, 30906–30922. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, Y.; Meng, X.; Li, Y.; Zhao, J. Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmosphere. Cryst. Eng. Comm. 2013, 15, 8166–8172. [Google Scholar] [CrossRef]
- Kumar, B.M.P.; Karikkat, S.; Krishna, R.H.; Udayashankara, T.H.; Shivaprasad, K.H.; Nagabhushana, B.M. Synthesis, characterization of nano MnO2 and its adsorption characteristics over an azo dye. J. Mater. Sci. 2014, 2, 27–31. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Ngulube, T.; Gumbo, J.R.; Masindi, V.; Maity, A. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. J. Environ. Manag. 2017, 191, 35–57. [Google Scholar] [CrossRef]
- Elbagerma, M.A.; Azimi, G.; Edwards, H.G.M.; Alajtal, A.I.; Scowen, I.J. In situ monitoring of pH titration by Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 75, 1403–1410. [Google Scholar] [CrossRef]
- Tran, H.N.; Tomul, F.; Ha, N.T.H.; Nguyen, D.T.; Lima, E.C.; Le, G.T.; Chang, C.T.; Masindi, V.; Woo, S. Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism. J. Hazard. Mater. 2020, 394, 122255. [Google Scholar] [CrossRef]
- Padmavathy, K.S.; Madhu, G.; Haseena, P.V. A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr (VI)) from wastewater by magnetite nanoparticles. Procedia Technol. 2016, 24, 585–594. [Google Scholar] [CrossRef]
- Chemingui, H.; Riahi, R.; Salem, W.B.; Dbouba, H.; Bensacia, N.; Hannechi, A. Modified Ceratonia siliqua as low-cost biosorbent for paracetamol removal: Equilibrium study and optimization via Box-Behnken design. Biomass Convers. Biorefinery 2025, 15, 17887–17904. [Google Scholar] [CrossRef]
- Ismail, Z.Z.; AbdelKareem, H.N. Sustainable approach for recycling waste lamb and chicken bones for fluoride removal from water followed by reusing fluoride-bearing waste in concrete. Waste Manag. 2015, 45, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Zhang, Q.; Wang, B.; Liu, J.; Wen, P.; Gui, Z.; Hu, Y. The integrated utilization of typical clays in removal of organic dyes and polymer nanocomposites. J. Clean. Prod. 2014, 81, 281–289. [Google Scholar] [CrossRef]
- Chaari, I.; Fakhfakh, E.; Chakroun, S.; Bouzid, J.; Boujelben, N.; Feki, M.; Rocha, F.; Jamoussi, F. Lead removal from aqueous solutions by a Tunisian smectitic clay. J. Hazard. Mater. 2008, 156, 545–551. [Google Scholar] [CrossRef]
- Hashemzadeh, F.; Ariannezhad, M.; Derakhshandeh, S.H. Sustainable removal of tetracycline and paracetamol from water using magnetic activated carbon derived from pine fruit waste. Sci. Rep. 2024, 14, 16346. [Google Scholar] [CrossRef]
- Akacha, I.; Merzougui, A.; Bouzid, K.; Benaoune, S. Cypress cones solid waste derived biochar for efficient uptake of paracetamol from synthetic wastewater: Characterization, kinetic, isotherm, and thermodynamic studies. Biomass Conv. Bioref. 2025. [Google Scholar] [CrossRef]
- Akpomie, K.G.; Conradie, J. Efficient adsorptive removal of paracetamol and thiazolyl blue from polluted water onto biosynthesized copper oxide nanoparticles. Sci. Rep. 2023, 13, 859. [Google Scholar] [CrossRef]
- Alakayleh, Z. Sulfuric acid-activated carbon from guava leaves for paracetamol adsorption. Results Eng. 2025, 25, 103685. [Google Scholar] [CrossRef]
- Mabalane, K.; Thabede, P.M.; Shooto, N.D. Removal of ibuprofen and paracetamol from water using a blend activated carbon from paper waste and avocado seeds. Green Anal. Chem. 2024, 10, 100135. [Google Scholar] [CrossRef]
- Skwarczynska-Wojsa, A.; Puszkarewicz, A. Removal of acetaminophen from aqueous solutions in an adsorption process. Materials 2024, 17, 431. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; Bari, S.; Rehman, M.S.U.; Ashfaq, M.; Guoliang, Y.; Mustafa, G. Adsorption characteristics of paracetamol removal onto activated carbon prepared from Cannabis sativum Hemp. Alex. Eng. J. 2022, 61, 7203–7212. [Google Scholar] [CrossRef]
- Yang, L.; Hu, J.; He, L.; Tang, J.; Zhou, Y.; Li, J.; Ding, K. One-pot synthesis of multifunctional magnetic N-doped graphene composite for SERS detection, adsorption separation and photocatalytic degradation of Rhodamine 6G. Chem. Eng. J. 2017, 327, 694–704. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Hosseini-Bandegharaei, A.; Chao, H.P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Ugbe, F.A.; Ikudayisi, V.A. The kinetics of eosin yellow removal from aqueous solution using pineapple peels. Edorium J. Waste Manag. 2017, 2, 5–11. [Google Scholar]
- Azri, N.; Chebbi, R.; Ouakouak, A.; Hecini, L.; Isinkaralar, K.; Fadel, A.; Bokov, D.O.; Prakash, C.; Hosseini-Bandegharaei, A. Single and binary adsorption of paracetamol and diclofenac onto biochar produced from pepper stem: Which adsorption properties change in the binary system? Colloids Surf. A Physicochem. Eng. Asp. 2024, 694, 134136. [Google Scholar] [CrossRef]
- Pimentel-Almeida, W.; Itokazu, A.G.; Bazani, H.A.G.; Maraschin, M.; Rodrigues, O.H.C.; Corrêa, R.G.; Lopes, S.; Almerindo, G.I.; Moresco, R. Beach-cast Sargassum cymosum macroalgae: Biochar production and apply to adsorption of acetaminophen in batch and fixed-bed adsorption processes. Environ. Technol. 2023, 44, 974–987. [Google Scholar] [CrossRef]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 2019, 273, 425–434. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Jain, A.K. A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J. Colloid Interface Sci. 2005, 281, 49–55. [Google Scholar] [CrossRef]
- Borousan, F.; Yousefi, F.; Ghaedi, M. Removal of malachite green dye using IRMOF-3−MWCNT-OH−Pd NPs as a novel adsorbent: Kinetic, isotherm, and thermodynamic studies. J. Chem. Eng. Data 2019, 64, 4801–4814. [Google Scholar] [CrossRef]
- González-Hourcade, M.; dos Reis, G.S.; Grimm, A.; Lima, E.C.; Larsson, S.H.; Gentili, F.G. Microalgae biomass as a sustainable precursor to produce nitrogen-doped biochar for efficient removal of emerging pollutants from aqueous media. J. Clean. Prod. 2022, 348, 131280. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Pittman, C.U., Jr.; Mohan, D. Ciprofloxacin and acetaminophen sorption onto banana peel biochars: Environmental and process parameter influences. Environ. Res. 2021, 201, 111218. [Google Scholar] [CrossRef] [PubMed]
- Urruchua, F.C.; Fernández, M.A.; de Sousa, M.E.; Jaworski, M.; Mendoza Zelis, P.; Zelaya-Soulé, M.E.; Song, S.; Montes, M.L. Fe oxide modification of yerba mate waste-derived biochar and activated biochar via three methodologies: Effects of material surface properties on the Fe oxides grown and implications for paracetamol and atenolol sorption. J. Clean. Prod. 2024, 480, 144087. [Google Scholar] [CrossRef]
- Allwar, A.; Herawati, M.; Wardana, F.S.; Khoirunnisa, A.; Anugrah, Z.M. Composite of Ag2O-CuO/biochar as an adsorbent for removal of amoxicillin and paracetamol from aqueous solution. Int. J. Environ. Sci. Technol. 2023, 20, 13411–13422. [Google Scholar] [CrossRef]
- Mukoko, T.; Mupa, M.; Guyo, U.; Dziike, F. Preparation of rice hull activated carbon for the removal of selected pharmaceutical waste compounds in hospital effluent. J. Environ. Anal. Toxicol. 2015, S7, 008. [Google Scholar] [CrossRef]
- N’diaye, A.D.; Bollahi, M.A.; Kankou, M.S.A. Sorption of paracetamol onto groundnut shell from aqueous solution. J. Mater. Environ. Sci. 2019, 10, 553–562. [Google Scholar]
- Sivarasan, G.; Manikandan, V.; Periyasamy, S.; AlSalhi, M.S.; Devanesan, S.; Kumar, P.S.M.; Liu, X.; Lo, H.M. Iron-engineered mesoporous biocarbon composite and its adsorption, activation, and regeneration approach for removal of paracetamol in water. Environ. Res. 2023, 227, 115723. [Google Scholar] [CrossRef]
- Sanjeev, N.O.; Vallabha, M.S.; Valsan, A.E. Adsorptive removal of pharmaceutically active compounds from multicomponent system using Azadirachta indica induced zinc oxide nanoparticles: Analysis of competitive and cooperative adsorption. Water Sci. Technol. 2023, 87, 284–303. [Google Scholar] [CrossRef]
- Rajamehala, M.; Pandian, A.M.; Rajasimman, M.; Gopalakrishnan, B. Synthesis of metal-based functional nanocomposite material and its application for the elimination of paracetamol from synthetic wastewater. Chemosphere 2022, 308, 136530. [Google Scholar] [CrossRef] [PubMed]
Sample | SBET (m2 g−1) | Dm (nm) | Vp (cm3 g−1) |
---|---|---|---|
Bch-HCl/MnO2 | 22.6 | 35.6 | 0.16 |
Bch-HCl/Fe3O4/MnO2 | 26.7 | 34.5 | 0.17 |
Bch-HCl/MnO2 (cm−1) | Bch-HCl/Fe3O4/MnO2 (cm−1) | Assignments |
---|---|---|
1710 | 1706 | stretching vibration of -C=O and amidic N-H |
1627 | 1627 | high intensity band of stretching H-O-H, aromatic -C=C- groups |
1458 | 1461 | bending vibration of -O-H bonds stretching vibration of -C-OH |
1399 | 1399 | |
1310 sh | 1310 | |
1266 | 1285 | |
1153 | 1153 | |
1115 | 1115 | |
1085 | 1085 | |
1040 | 1028 sh | stretching vibration of -C-O |
991 | 988 | |
724 | 724 | stretching vibration of Fe-O (from Fe2O3) |
543 | 542 | sharp, high-intensity band of stretching vibration of Fe-O [38] (from Fe3O4) and Mn-O (from MnO2) [39] |
466 | 466 | stretching vibration of Mn-O [39] |
20 °C | 25 °C | 30 °C | 35 °C | 40 °C | |
---|---|---|---|---|---|
Bch-HCl/MnO2 | |||||
Langmuir | |||||
qm [mg g−1] | 149.25 | 212.77 | 232.56 | 256.41 | 263.16 |
KL [L mg−1] | 0.71 | 0.60 | 0.59 | 0.61 | 0.61 |
R2 | 0.9903 | 0.9962 | 0.9927 | 0.9958 | 0.9950 |
Freundlich | |||||
KF [Lⁿ mg1−ⁿ g−1] | 81.17 | 86.64 | 90.01 | 98.15 | 99.93 |
n | 4.71 | 2.43 | 2.17 | 1.98 | 1.76 |
R2 | 0.9695 | 0.9995 | 0.9714 | 0.9865 | 0.9909 |
Temkin | |||||
KT [L mg−1] | 1.36 | 1.85 | 1.94 | 1.93 | 2.06 |
bT [J mol−1] | 31.68 | 30.25 | 29.27 | 26.51 | 26.33 |
R2 | 0.9513 | 0.9962 | 0.9851 | 0.9948 | 0.9964 |
Bch-HCl/Fe3O4/MnO2 | |||||
Langmuir | |||||
qm [mg g−1] | 192.31 | 222.22 | 238.10 | 285.71 | 294.10 |
KL [L mg−1] | 0.75 | 0.63 | 0.59 | 0.47 | 0.47 |
R2 | 0.9988 | 0.9884 | 0.9822 | 0.9700 | 0.9904 |
Freundlich | |||||
KF [L mg−1] | 89.35 | 90.41 | 92.32 | 94.04 | 95.57 |
n | 2.87 | 2.33 | 2.17 | 1.81 | 1.74 |
R2 | 0.9965 | 0.9969 | 0.9946 | 0.9900 | 0.9768 |
Temkin | |||||
KT [L mg−1] | 1.64 | 1.83 | 1.88 | 2.16 | 2.18 |
bT [J mol−1] | 28.42 | 28.48 | 28.15 | 27.96 | 27.94 |
R2 | 0.9996 | 0.9850 | 0.9793 | 0.9770 | 0.9927 |
Bch-HCl/MnO2 | Bch-HCl/Fe3O4/MnO2 | |
---|---|---|
Pseudo-first order | ||
qe calc [mg g−1] | 130.517 | 41.267 |
k1 [min−1] | 0.213 | 0.170 |
R2 | 0.7928 | 0.8778 |
Pseudo-second order | ||
qe calc [mg g−1] | 140.845 | 131.579 |
k2 [g mg−1 min−1] | 0.002 | 0.001 |
h [mg g−1 min−1] | 42.017 | 123.457 |
R2 | 0.9953 | 0.9997 |
Intraparticle diffusion | ||
Kd [mg g−1 min−0.5] | 12.399 | 5.936 |
C | 63.362 | 96.644 |
R2 | 0.9199 | 0.8048 |
Temperature [K] | Bch-HCl/MnO2 | Bch-HCl/Fe3O4/MnO2 | ||||
---|---|---|---|---|---|---|
ΔH° [J mol−1] | ΔS° [J mol−1 K−1] | ΔG° [kJ mol−1] | ΔH° [J mol−1] | ΔS° [J mol−1 K−1] | ΔG° [kJ mol−1] | |
293 298 303 308 313 | −0.015 | 86.782 | −25.427 −25.861 −26.295 −26.729 −27.163 | −0.004 | 38.402 | −11.252 −11.444 −11.636 −11.828 −11.020 |
Adsorbent | Adsorption Capacity (mg g−1) | Reference |
---|---|---|
Bch-HCl/MnO2 | 212.77 | Present study |
Bch-HCl/Fe3O4/MnO2 | 222.22 | Present study |
Biochar from cypress cones solid waste | 59.86 | [50] |
Biochar from pomelo peel wastes | 147 | [43] |
Biochar from pepper stem | 354.66 | [59] |
Biochar from Sargassum cymosum macroalgae | 12.34 | [60] |
Biochar from microalgae biomass | 74.92 | [64] |
N-dopped biochar | 105.60 | [64] |
Biochar from banana peel | 49.43 | [65] |
BC-Act-COP | 298 | [65] |
BC-Act-IP | 237 | [66] |
Ag2O-CuO/biochar | 55.25 | [67] |
Rice hull activated carbon | 169.49 | [68] |
Cannabis sativum Hemp activated carbon | 16.18 | [55] |
Sulfuric acid-activated carbon from guava leaves | 13.30 | [52] |
Pine fruit waste activated carbon | 41.7 | [49] |
Activated carbon from spent tea leaves | 59.20 | [22] |
Groundnut shell | 3.02 | [69] |
Fe3O4/C composite obtained from tamarind shell biomass | 8.10 | [51] |
CNT-COOH/MnO2/Fe3O4 composite | 80.64 | [36] |
CuO nanoparticles | 64.52 | [70] |
ZnO nanoparticles | 7.87 | [71] |
TiO2/Fe2O3/Chitosan | 175.43 | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stegarescu, A.; Lung, I.; Cârdan, A.; Bocșa, M.; Turza, A.; Lazar, M.D.; Dan, M.; Tripon, S.; Kacso, I.; Pintea, S.; et al. Composite Materials Based on Biochar Obtained from Tomato Wastes and Fe3O4/MnO2 Used for Paracetamol Adsorption. Materials 2025, 18, 3914. https://doi.org/10.3390/ma18163914
Stegarescu A, Lung I, Cârdan A, Bocșa M, Turza A, Lazar MD, Dan M, Tripon S, Kacso I, Pintea S, et al. Composite Materials Based on Biochar Obtained from Tomato Wastes and Fe3O4/MnO2 Used for Paracetamol Adsorption. Materials. 2025; 18(16):3914. https://doi.org/10.3390/ma18163914
Chicago/Turabian StyleStegarescu, Adina, Ildiko Lung, Alin Cârdan, Mariana Bocșa, Alexandru Turza, Mihaela Diana Lazar, Monica Dan, Septimiu Tripon, Irina Kacso, Stelian Pintea, and et al. 2025. "Composite Materials Based on Biochar Obtained from Tomato Wastes and Fe3O4/MnO2 Used for Paracetamol Adsorption" Materials 18, no. 16: 3914. https://doi.org/10.3390/ma18163914
APA StyleStegarescu, A., Lung, I., Cârdan, A., Bocșa, M., Turza, A., Lazar, M. D., Dan, M., Tripon, S., Kacso, I., Pintea, S., Opriș, O., & Soran, M.-L. (2025). Composite Materials Based on Biochar Obtained from Tomato Wastes and Fe3O4/MnO2 Used for Paracetamol Adsorption. Materials, 18(16), 3914. https://doi.org/10.3390/ma18163914