Molecular Dynamics Simulation on Orientation-Dependent Mechanical Behaviors of ZnO Single Crystals Under Nanoindentation
Abstract
1. Introduction
2. Methods
2.1. Simulation Details
2.2. Potential Functions
2.3. Analysis Methodology
3. Results and Discussion
3.1. Load–Indentation Depth Curves
3.2. Atomic Displacement and Shear Strain
3.3. Dislocations
4. Conclusions
- The elastic deformation stages of the loading curves for the three oriented ZnO single crystals were consistent with the Herz elastic contact model. The Young moduli of c-plane, m-plane and a-plane ZnO were calculated to be 122.5 GPa, 158.3 GPa and 170.5 GPa, indicating that the a-plane ZnO has the greatest resistance to elastic deformation. The incipient plastic behaviors in the three oriented ZnO single crystals are induced by the dislocation nucleation.
- The atomic displacements in the c-plane ZnO were mainly along the [], [], [] and [] directions, those in the m-plane ZnO were mainly along the [] and [] directions, while those in the a-plane ZnO were mainly along the [], [] and [] directions. This anisotropic distribution of the atomic displacement vector is due to the different slip systems activated in the three oriented ZnO single crystals. The primary activated slip systems predicted by the maximum Schmid factors were in good agreement with the atomic displacement vectors in our MD simulation. The a-plane ZnO exhibited both the deepest and widest high-shear-strain region, coupled with the largest atom numbers under high shear strain, indicating that a-plane ZnO is the most susceptible to severe plastic deformation.
- During the loading process, a U-shaped prismatic half-loop was formed in the c-plane ZnO, and slipped away from the indenter towards the direction. Meanwhile, a prismatic loop was formed in both the m-plane and a-plane ZnO, and emitted along the [] and [] directions into the substrates, respectively. The formation of the prismatic loops in m-plane and a-plane ZnO are based on the “lasso”-like mechanism. The dominant dislocation type is perfect dislocation for the three oriented ZnO single crystals, which is attributed to the fact that <> are the atomic close-packed directions in hexagonal lattices, requiring the lowest nanoindentation stress for slip initiation. Accordingly, the slip of perfect dislocations along the activated slip directions dominated plastic flow, governing the orientation-dependent plastic deformation behaviors.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bhadwal, N.; Ben Mrad, R.; Behdinan, K. Review of zinc oxide piezoelectric nanogenerators: Piezoelectric properties, composite structures and power output. Sensors 2023, 23, 3859. [Google Scholar] [CrossRef]
- Wu, X.; Lee, J.; Varshney, V.; Wohlwend, J.L.; Roy, A.K.; Luo, T. Thermal conductivity of wurtzite zinc-oxide from first-principles lattice dynamics—A comparative study with gallium nitride. Sci. Rep. 2016, 6, 22504. [Google Scholar] [CrossRef]
- Verma, L.M.; Kumar, A.; Bashir, A.U.; Gangwar, U.; Ingole, P.P.; Sharma, S. Phase controlled green synthesis of wurtzite (P63mc) ZnO nanoparticles: Interplay of green ligands with precursor anions, anisotropy and photocatalysis. Nanoscale Adv. 2024, 6, 155–169. [Google Scholar] [CrossRef]
- Masuki, R.; Nomoto, T.; Arita, R.; Tadano, T. Full optimization of quasiharmonic free energy with an anharmonic lattice model: Application to thermal expansion and pyroelectricity of wurtzite GaN and ZnO. Phys. Rev. B 2023, 107, 134119. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Huang, J.; Huang, L.; Chen, L.; Ni, Y.; Zheng, Q. An environmentally friendly and highly transparent ZnO/cellulose nanocomposite membrane for UV sensing and shielding. Cellulose 2022, 29, 4439–4453. [Google Scholar] [CrossRef]
- Le, A.T.; Ahmadipour, M.; Pung, S.Y. A review on ZnO-based piezoelectric nanogenerators: Synthesis, characterization techniques, performance enhancement and applications. J. Alloys Compd. 2020, 844, 156172. [Google Scholar] [CrossRef]
- Lee, S.H.; Jeon, D.; Lee, S.-N. Synaptic Plasticity and Memory Retention in ZnO–CNT Nanocomposite Optoelectronic Synaptic Devices. Materials 2025, 18, 2293. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Tang, Y.; Soomro, A.M.; Shen, P.; Lu, S.; Cai, Y.; Wang, H.; Yang, Q.; Chen, H.; Shi, Y.; et al. Vertically aligned ZnO nanoarray directly orientated on Cu paper by h-BN monolayer for flexible and transparent piezoelectric nanogenerator. Nano Energy 2023, 109, 108265. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Wu, H.; Yang, J.; Wang, Y.; Zhang, J.; Bao, Q.; Wang, M.; Ma, Z.; Tress, W.; et al. A transparent electrode based on solution-processed ZnO for organic optoelectronic devices. Nat. Commun. 2022, 13, 4387. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, R.; Jalil, A.; Ilyas, S.Z.; Ahmed, S.; Hassan, A. Optoelectronic and solar cell applications of ZnO nanostructures. Results Surf. Interfaces 2021, 2, 100003. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Bradby, J.E.; Williams, J.S.; Jagadish, C.; Swain, M.V. Mechanical deformation of single-crystal ZnO. Appl. Phys. Lett. 2002, 80, 956–958. [Google Scholar] [CrossRef]
- Yamanoi, K.; Empizo, M.J.F.; Mori, K.; Iwano, K.; Minami, Y.; Arita, R.; Iwasa, Y.; Fukuda, K.; Kato, K.; Takano, K.; et al. ZnO crystal as a potential damage-recoverable window material for fusion reactors. Opt. Mater. 2016, 62, 646–650. [Google Scholar] [CrossRef]
- Grashchenko, A.S.; Kukushkin, S.A.; Osipov, A.V. Nanoindentation of Nano-SiC/Si Hybrid Crystals and AlN, AlGaN, GaN, Ga2O3 Thin Films on Nano-SiC/Si. Mech. Solids 2024, 59, 605–634. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, L.; Ma, X.; Zhang, H.; Guo, S.; Ren, H.; Yin, W.; He, X. Fracture Mechanisms and Crack Propagation in Monolayer Ti3C2T x under Nanoindentation: The Influence of Surface Terminations and Vacancy Defects. ACS Appl. Mater. Interfaces 2024, 16, 48113–48125. [Google Scholar] [CrossRef]
- Coleman, V.A.; Bradby, J.E.; Jagadish, C.; Phillips, M.R. A comparison of the mechanical properties and the impact of contact induced damage in a- and c-axis ZnO single crystals. MRS Online Proc. Libr. 2006, 957, 0957-K17. [Google Scholar] [CrossRef]
- Zhu, X.; Li, J.; Zhang, L.; Lang, F.; Hou, X.; Zhao, X.; Zhang, W.; Zhao, C.; Yang, Z. Effect of Strain Rate on Nano-Scale Mechanical Behavior of A-Plane ZnO Single Crystal by Nanoindentation. Micromachines 2023, 14, 404. [Google Scholar] [CrossRef]
- Jian, S.R. Mechanical responses of single-crystal ZnO. J. Alloys Compd. 2010, 494, 214–218. [Google Scholar] [CrossRef]
- Sung, T.H.; Huang, J.C.; Chen, H.C. Mechanical response of polar/non-polar ZnO under low dimensional stress. Appl. Phys. Lett. 2013, 102, 241901. [Google Scholar] [CrossRef]
- Basu, S.; Barsoum, M.W. Deformation micromechanisms of ZnO single crystals as determined from spherical nanoindentation stress-strain curves. J. Mater. Res. 2007, 22, 2470–2477. [Google Scholar] [CrossRef]
- Kim, Y.J.; Choi, I.C.; Lee, J.A.; Seok, M.Y.; Jang, J.I. Strain-dependent transition of time-dependent deformation mechanism in single-crystal ZnO evaluated by spherical nanoindentation. Philos. Mag. 2015, 95, 1896–1906. [Google Scholar] [CrossRef]
- Lin, P.H.; Du, X.H.; Chen, Y.H.; Chen, H.C.; Huang, J.C. Nano-scaled diffusional or dislocation creep analysis of single-crystal ZnO. AIP Adv. 2016, 6, 095125. [Google Scholar] [CrossRef]
- Li, Y.; Fang, X.; Tochigi, E.; Oshima, Y.; Hoshino, S.; Tanaka, T.; Oguri, H.; Ogata, S.; Ikuhara, Y.; Matsunaga, K.; et al. Shedding new light on the dislocation-mediated plasticity in wurtzite ZnO single crystals by photoindentation. J. Mater. Sci. Technol. 2023, 156, 206–216. [Google Scholar] [CrossRef]
- Juday, R.; M Silva, E.; Y Huang, J.; G Caldas, P.; Prioli, R.; Ponce, F.A. Strain-related optical properties of ZnO crystals due to nanoindentation on various surface orientations. J. Appl. Phys. 2013, 113, 183511. [Google Scholar] [CrossRef]
- Li, R.; Li, Z.; Kang, S.; Long, C.; Liu, H.; Zhao, P.; Li, D. Molecular dynamics study on the edge effect of single crystal Ni with two indenters nanoindentation. Vacuum 2025, 232, 113900. [Google Scholar] [CrossRef]
- Wu, P.; Liu, R.; Li, W.; Zhang, W.; Wei, J.; Zhou, Q.; Wei, T.; Kardani, A.; Lin, Z.; Xiao, Y.; et al. Interface optimization by introducing Ti for strengthening graphene network/copper composites: New insight from MD simulations. Carbon 2025, 236, 120109. [Google Scholar] [CrossRef]
- Li, R.; Wu, G.; Liang, K.; Wang, S.; Xue, L.; Sun, Y.; Dong, F.; Li, H.; Liu, S. Indenter radius effect on mechanical response of a-(11-20), c-(0001), and m-(-1100) plane GaN single crystals in nanoindentation: A molecular dynamics study. Mater. Sci. Semicond. Process. 2022, 145, 106648. [Google Scholar] [CrossRef]
- Tang, P.; Feng, J.; Wan, Z.; Huang, X.; Yang, S.; Lu, L.; Zhong, X. Influence of grain orientation on hardness anisotropy and dislocation behavior of AlN ceramic in nanoindentation. Ceram. Int. 2021, 47, 20298–20309. [Google Scholar] [CrossRef]
- Xue, L.; Feng, G.; Wu, G.; Dong, F.; Liang, K.; Li, R.; Wang, S.; Liu, S. Study of deformation mechanism of structural anisotropy in 4H–SiC film by nanoindentation. Mater. Sci. Semicond. Process. 2022, 146, 106671. [Google Scholar] [CrossRef]
- Chen, M.Y.; Hong, Z.H.; Fang, T.H.; Kang, S.H. Molecular dynamics simulation of nanoscale mechanical behaviour of ZnO under nanoscratching and nanoindentation. Mol. Phys. 2014, 112, 3152–3164. [Google Scholar] [CrossRef]
- Hong, Z.H.; Fang, T.H.; Hwang, S.F. Interface and nanoscale mechanical behavior of zinc oxide during nanoindentation by molecular dynamics simulation. Nanosci. Nanotechnol. Lett. 2012, 4, 13–19. [Google Scholar] [CrossRef]
- Gao, Y.; Fan, Q.; Wang, L.; Sun, S.; Yu, X. Molecular dynamics simulation of oxidation growth of ZnO nanopillars. Comput. Mater. Sci. 2023, 219, 112008. [Google Scholar] [CrossRef]
- Sato, Y.; Shinzato, S.; Ohmura, T.; Hatano, T.; Ogata, S. Unique universal scaling in nanoindentation pop-ins. Nat. Commun. 2020, 11, 4177. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, W.; Zhang, L.; Lim, S. Amorphization and dislocation evolution mechanisms of single crystalline 6H-SiC. Acta Mater. 2020, 182, 60–67. [Google Scholar] [CrossRef]
- Chowdhury, R.; Adhikari, S.; Scarpa, F. Elasticity and piezoelectricity of zinc oxide nanostructure. Phys. E Low-Dimens. Syst. Nanostruct. 2010, 42, 2036–2040. [Google Scholar] [CrossRef]
- Hong, Z.H.; Fang, T.H.; Hwang, S.F. Phase transformation of stress-induced zinc oxide nanobelts using molecular dynamics. Comput. Mater. Sci. 2011, 50, 1944–1950. [Google Scholar] [CrossRef]
- Agrawal, R.; Peng, B.; Gdoutos, E.E.; Espinosa, H.D. Elasticity size effects in ZnO nanowires-a combined experimental-computational approach. Nano Lett. 2008, 8, 3668–3674. [Google Scholar] [CrossRef]
- Hua, D.; Ye, W.; Jia, Q.; Zhou, Q.; Xia, Q.; Shi, J.; Deng, Y.; Wang, H. Molecular dynamics simulation of nanoindentation on amorphous/amorphous nanolaminates. Appl. Surf. Sci. 2020, 511, 145545. [Google Scholar] [CrossRef]
- Liu, C.; Xu, C.; Liu, H. Plastic deformation mechanisms of ZnS and ZnTe under nanoindentation: Molecular dynamics simulations. J. Mol. Model. 2025, 31, 102. [Google Scholar] [CrossRef]
- Guo, J.; Chen, J.; Wang, Y. Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation: A molecular dynamics study. Ceram. Int. 2020, 46, 12686–12694. [Google Scholar] [CrossRef]
- Morimura, A.; Nishino, H.; Kajihara, M.; Nakao, Y.; Yonezu, A. Molecular dynamics and experimental studies of the dependence of strain rate on the indentation deformation of polycarbonate. J. Polym. Res. 2023, 30, 254. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Xu, Q.; Zaborowska, A.; Mulewska, K.; Huo, W.; Karimi, K.; Domínguez-Gutiérrez, F.J.; Kurpaska, Ł.; Alava, M.J.; Papanikolaou, S. Atomistic insights into nanoindentation-induced deformation of α-Al2O3 single crystals. Vacuum 2024, 219, 112733. [Google Scholar] [CrossRef]
- Sung, T.H.; Huang, J.C.; Hsu, J.H.; Jian, S.R.; Nieh, T.G. Yielding and plastic slip in ZnO. Appl. Phys. Lett. 2012, 100, 211903. [Google Scholar] [CrossRef]
- Pant, P.; Budai, J.D.; Narayan, J. Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation. Acta Mater. 2010, 58, 1097–1103. [Google Scholar] [CrossRef]
- Caldas, P.G.; Silva, E.M.; Prioli, R.; Huang, J.Y.; Juday, R.; Fischer, A.M.; Ponce, F.A. Plasticity and optical properties of GaN under highly localized nanoindentation stress fields. J. Appl. Phys. 2017, 121, 125105. [Google Scholar] [CrossRef]
- Bradby, J.E.; Kucheyev, S.O.; Williams, J.S.; Jagadish, C.; Swain, M.V.; Munroe, P.; Phillips, M.R. Contact-induced defect propagation in ZnO. Appl. Phys. Lett. 2002, 80, 4537–4539. [Google Scholar] [CrossRef]
- Roy, S.; Mordehai, D. Annihilation of edge dislocation loops via climb during nanoindentation. Acta Mater. 2017, 127, 351–358. [Google Scholar] [CrossRef]
- Remington, T.P.; Ruestes, C.J.; Bringa, E.M.; Remington, B.A.; Lu, C.H.; Kad, B.; Meyers, M.A. Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation. Acta Mater. 2014, 78, 378–393. [Google Scholar] [CrossRef]
- Alhafez, I.A.; Ruestes, C.J.; Gao, Y.; Urbassek, H.M. Nanoindentation of hcp metals: A comparative simulation study of the evolution of dislocation networks. Nanotechnology 2015, 27, 045706. [Google Scholar] [CrossRef]
- Shinde, A.B.; Owhal, A.; Sharma, A.; Ranjan, P.; Roy, T.; Balasubramaniam, R. Comparative analysis of mechanical properties for mono and poly-crystalline copper under nanoindentation–Insights from molecular dynamics simulations. Mater. Chem. Phys. 2022, 277, 125559. [Google Scholar] [CrossRef]
- Nan, X.L.; Wang, H.Y.; Zhang, L.; Li, J.B.; Jiang, Q.C. Calculation of Schmid factors in magnesium: Analysis of deformation behaviors. Scr. Mater. 2012, 67, 443–446. [Google Scholar] [CrossRef]
- Cui, Y.; Li, H.; Xiang, H.; Peng, X. Plastic deformation in zinc-blende AlN under nanoindentation: A molecular dynamics simulation. Appl. Surf. Sci. 2019, 466, 757–764. [Google Scholar] [CrossRef]
c-plane (0001) ZnO model | 152.7 Å, 367,104 atoms |
m- ZnO model | 157.6 Å, 336,000 atoms |
a- ZnO model | 162.5 Å, 360,000 atoms |
The radius of indenter | 30 Å |
Nanoindentation speed | 30 m/s |
Maximum nanoindentation depth | 30 Å |
Ambient temperature | 300 K |
Time step | 1 fs |
Parameter | ε (MeV) | σ (Å) |
---|---|---|
Zn-C | 0.0047 | 3.3 |
O-C | 0.0045 | 3.13 |
Indentation Planes | Atom Number | Max Depth (Å) | Max Width (Å) |
---|---|---|---|
c-plane | 21,953 | 57.43 ± 0.5 | 128.84 ± 0.8 |
m-plane | 25,314 | 110.61 ± 0.6 | 122.82 ± 0.8 |
a-plane | 27,425 | 133.79 ± 0.8 | 157.59 ± 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Li, J.; Yang, S.; Zhang, W.; Li, X.; Tang, H.; Lang, F.; Lin, L.; Hou, X.; Zhao, X.; et al. Molecular Dynamics Simulation on Orientation-Dependent Mechanical Behaviors of ZnO Single Crystals Under Nanoindentation. Materials 2025, 18, 3905. https://doi.org/10.3390/ma18163905
Zhu X, Li J, Yang S, Zhang W, Li X, Tang H, Lang F, Lin L, Hou X, Zhao X, et al. Molecular Dynamics Simulation on Orientation-Dependent Mechanical Behaviors of ZnO Single Crystals Under Nanoindentation. Materials. 2025; 18(16):3905. https://doi.org/10.3390/ma18163905
Chicago/Turabian StyleZhu, Xiaolin, Jijun Li, Shiting Yang, Weiguang Zhang, Xiuxia Li, Hui Tang, Fengchao Lang, Lin Lin, Xiaohu Hou, Xueping Zhao, and et al. 2025. "Molecular Dynamics Simulation on Orientation-Dependent Mechanical Behaviors of ZnO Single Crystals Under Nanoindentation" Materials 18, no. 16: 3905. https://doi.org/10.3390/ma18163905
APA StyleZhu, X., Li, J., Yang, S., Zhang, W., Li, X., Tang, H., Lang, F., Lin, L., Hou, X., Zhao, X., & Chen, J. (2025). Molecular Dynamics Simulation on Orientation-Dependent Mechanical Behaviors of ZnO Single Crystals Under Nanoindentation. Materials, 18(16), 3905. https://doi.org/10.3390/ma18163905