A Study on the Negative Friction Mechanisms in Piles Within Recycled Dredged Waste Fills
Abstract
1. Introduction
2. Materials and Methods
2.1. Improved Transfer Function Model of Pile–Ground Interface
2.1.1. Simplified Load Transfer Model of Pile–Ground Interface
2.1.2. Calculation Model of Negative Friction of Single Pile
2.2. Centrifugal Model Test
2.2.1. Test Equipment and Scheme
2.2.2. Measurement System
2.2.3. Procedure of Centrifugal Test
2.3. Numerical Simulation
2.3.1. Parameter Settings for the Numerical Simulation
2.3.2. Pile–Ground Numerical Calculation Model
3. Results and Discussion
3.1. Results and Analysis for the Centrifugal Model Test
3.1.1. Analysis of Settlement Development
3.1.2. Axial Force of Pile Changing with Depth
3.1.3. Variation Law of Neutral Point with Consolidation Time
3.2. Results of Numerical Simulation
4. Conclusions
- (1)
- The calculation results of the theoretical model show good agreement with the centrifugal test and numerical simulation data, with an average relative error of less than 6.5%. This confirms the engineering reliability of the improved calculation method. The comparison between experimental and theoretical results for the axial force of the pile reveals that the maximum deviation occurs in the initial consolidation stage (approximately 8.7% at 2.5 months), and the deviation can decrease to 2.4% as consolidation progresses to 50 months.
- (2)
- The geometric parameters of the pile significantly influence the distribution of negative friction. Under identical consolidation conditions, the increment in negative friction for a pile with a 1.05 m diameter is 7.3% higher than that for a pile with a 1.5 m diameter. This is primarily because the frictional resistance strength per unit area increases as the pile diameter decreases, making smaller-diameter pile foundations more susceptible to the adverse effects of pull-down load. In composite foundations composed primarily of dredged fills, the use of larger-diameter pile foundations is beneficial for reducing negative friction.
- (3)
- The development of negative friction exhibits three distinct aging stages: a rapid rise period (0–10 months, with a growth rate of 0.85 kN/day), a slow growth period (10–50 months, with a growth rate of 0.12 kN/day), and a stable dissipation period (after 50 months). During the consolidation process, the position of the neutral point moves downward from 0.84 L (at 2.5 months) to 0.51 L (at 50 months). The rate of neutral point migration is negatively correlated with the degree of ground consolidation. In practical engineering, the settlement of dredged fills can be accelerated through consolidation techniques, such as preloading, to facilitate the rapid transition of the negative friction resistance of pile foundations into a stable dissipation phase.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Liu, W.; Cui, Y. Quantitative analysis of the relationship between permeability and microstructure of solidified dredger fill. Bulg. Chem. Commun. 2016, 48, 79–86. [Google Scholar]
- Yuan, X.Q.; Wang, Q.; Lu, W.X.; Zhang, W.; Chen, H.E.; Zhang, Y. Indoor simulation test of step vacuum preloading for high-clay content dredger fill. Mar. Georesources Geotechnol. 2018, 36, 83–90. [Google Scholar] [CrossRef]
- Liang, F.Y.; Zhao, M.Y.; Qin, C.R.; Jia, Y.; Wang, Z.; Yue, G. Centrifugal test of a road embankment built after new dredger fill on thick marine clay. Mar. Geosources Geotechnol. 2020, 38, 114–121. [Google Scholar] [CrossRef]
- Wu, Y.J.; Xu, J.L.; Lu, Y.T.; Zhang, X.D.; Tran, Q.C.; Zhang, H.Q. Geotechnical properties of marine dredger fill with different particle size. Mar. Geosources Geotechnol. 2022, 41, 24–35. [Google Scholar] [CrossRef]
- Zhao, N.Y.; Wu, H.J.; Song, Y.; Xiang, S.; Abulkasim, H. Calculation of Negative Frictional Resistance of Foundation Pile in Deep Fill Foundation. Math. Probl. Eng. 2021, 2021, 6640777. [Google Scholar] [CrossRef]
- Lee, C.W.; Kim, Y.S.; Park, S.Y. Loss with Time of Dredged Sea Sand in Tidal Embankment Subject to Sea Level Variation. Mar. Georesources Geotechnol. 2016, 34, 97–105. [Google Scholar] [CrossRef]
- Ni, P.P.; Yi, Y.L.; Liu, S.Y. Bearing capacity optimization of T-shaped soil-cement column-improved soft ground under soft fill. Soils Found. 2021, 61, 416–428. [Google Scholar] [CrossRef]
- Chen, Q.N.; Xu, X.D.; Zeng, A.; Yan, Y.Y.; Feng, Y.; Long, K.; Qi, C.N. Study on the Macro-/Micrometric Characteristics and Mechanical Properties of Clayey Sandy Dredged Fill in the Guangdong Area. Materials 2024, 17, 6018. [Google Scholar] [CrossRef]
- Li, X.Y.; Ji, J.; He, J. An experimental study on dredged Qinhuai river sediment-based flowable fill treated by flocculation-cementation method. Mar. Georesources Geotechnol. 2025, 43, 55–69. [Google Scholar] [CrossRef]
- Lei, H.Y.; Toma, A.; Bo, Y.; Wang, L.; Wu, H.B. Reinforcement Effect of the Stepped-Alternating Vacuum Preloading Method on Dredged Fills. Int. J. Geomech. 2024, 24, 04023272. [Google Scholar] [CrossRef]
- Lei, H.Y.; Wang, L.; Jia, R.; Jiang, M.J.; Zhang, W.D.; Li, C.Y. Effects of chemical conditions on the engineering properties and microscopic characteristics of Tianjin dredged fill. Eng. Geol. 2020, 269, 105548. [Google Scholar] [CrossRef]
- Bao, S.F.; Guo, L.F.; Dong, Z.L.; Zhou, R.B.; Zhou, S.X.; Chen, J. Batch Settling and Low-Pressure Consolidation Behaviors of Dredged Mud Slurry: Steady-State Evaluation and Mechanism Study. Water 2024, 16, 7. [Google Scholar] [CrossRef]
- Liu, Y.H.; Yang, P.; Xue, S.B.; Pan, Y.F. Influence of dredger fill self-consolidation on development of negative skin friction of piles. Arab. J. Geosci. 2020, 13, 725. [Google Scholar] [CrossRef]
- Lie, H.Y.; Xu, Y.G.; Li, X.; Jiang, M.J.; Liu, L.Z. Effect of Polyacrylamide on Improvement of Dredger Fill with Vacuum Preloading Method. J. Mater. Civ. Eng. 2019, 31, 04019193. [Google Scholar] [CrossRef]
- Wang, S.; Lei, X.W.; Meng, Q.S.; Xu, J.; Wang, M.; Guo, W. Model tests of single pile vertical cyclic loading in calcareous sand. Mar. Geosources Geotechnol. 2021, 39, 670–681. [Google Scholar] [CrossRef]
- Chen, Y.H.; Geng, C.; Cheng, X.; Qi, C.G. Simple consolidation method for dredger fill treatment using plastic vertical drains with vacuum. Mar. Georesources Geotechnol. 2019, 37, 915–923. [Google Scholar]
- Wu, L.B.; Wang, J.X.; Zhou, J.; Yang, T.L.; Yan, X.X.; Zhao, Y.; Ye, Z.H.; Xu, N. Multi-scale geotechnical features of dredger fills and subsidence risk evaluation in reclaimed land using BN. Mar. Geosources Geotechnol. 2020, 38, 947–969. [Google Scholar] [CrossRef]
- Ma, T.Z.; Zhu, Y.P.; Yang, X.H. Calculation of Bearing Capacity and Deformation of Composite Pile Foundation with Long and Short Piles in Loess Areas. Adv. Civ. Eng. 2020, 2020, 8829779. [Google Scholar] [CrossRef]
- Shen, Y.P.; Li, P.; Jing, P.; Liu, Y.; Feng, R.L.; Liu, X. Experiment and Mechanism Analysis on the Solidification of Saline Dredger Fill with Composite Slag Solidifying Agent: A Case Study in Caofeidian, China. Appl. Sci. 2022, 12, 1849. [Google Scholar] [CrossRef]
- Li, Z.Y.; Chen, T.L.; Chai, Q.; Shen, D.; Wu, C. Performance Study of Casing Piles in Expansive Soil Foundations: Model Testing and Analysis. Sustainability 2024, 16, 132. [Google Scholar] [CrossRef]
- Chiou, J.S.; Wei, W.T. Numerical investigation of pile-head load effects on the negative skin friction development of a single pile in consolidating ground. ACTA Geotech. 2021, 16, 1867–1878. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, L.P.; Wang, M.Y.; Ding, X.M.; Wang, C.L. Experimental Study on the Negative Skin Friction of the Pile Group Induced by Rising and Lowering the Groundwater Level. Adv. Civ. Eng. 2021, 2021, 2574727. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Ye, S.H.; Zhu, Y.P.; Tao, H.; Chen, C.L. Scale model test study on negative skin friction of piles considering the collapsibility of loess. ACTA Geotech. 2022, 17, 601–611. [Google Scholar] [CrossRef]
- Shan, W.C.; Yuan, X.Q.; Chen, H.E.; Li, X.L.; Li, J.F. Permeability of High Clay Content Dredger Fill Treated by Step Vacuum Preloading: Pore Distribution Analysis. J. Mar. Sci. Eng. 2023, 11, 1714. [Google Scholar] [CrossRef]
- Park, H.J.; Ko, K.W.; Song, Y.H.; Song, M.-J.; Jin, S.; Ha, J.-G.; Kim, D.-S. Centrifuge modeling of disconnected piled raft using vertical pushover tests. ACTA Geotech. 2020, 15, 2637–2648. [Google Scholar] [CrossRef]
- Lei, H.Y.; Bo, Y.; Wang, L.; Zhang, W.D.; Warako, A.T.; Li, C.Y. A settlement prediction model for shallow dredger fill improved by vacuum preloading. Mar. Georesources Geotechnol. 2024, 42, 532–542. [Google Scholar] [CrossRef]
- Sun, L.Q.; Jia, T.Q.; Zhou, R.H.; Yan, S.W.; Guo, B.C. Numerical Solutions for Consolidation of Under-Consolidated Dredger Fill under Vacuum Preloading. J. Costal Res. 2015, 73, 277–282. [Google Scholar] [CrossRef]
- Ha, J.G.; Ko, K.W.; Jo, S.B.; Park, H.-J.; Kim, D.-S. Investigation of seismic performances of unconnected pile foundations using dynamic centrifuge tests. Bull. Earthq. Eng. 2019, 17, 2433–2458. [Google Scholar] [CrossRef]
- Yao, C.F.; Takemura, J.; Zhang, J.C. Centrifuge modeling of single pile-shallow foundation interaction in reverse fault. Soil Dyn. Earthq. Eng. 2021, 141, 106538. [Google Scholar] [CrossRef]
- Chai, Q.; Chen, T.L.; Li, Z.Y.; Shen, D.Y.; Wu, C.Z. Experimental Study on the Negative Skin Friction of Piles in Collapsible Loess. Sustainability 2023, 15, 8893. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Xin, L.L.; Ye, S.H.; Wu, J.; Ye, W.A.; Li, J.B. Study on negative friction of pile foundation in homogeneous layered soil in collapsible loess area. Sci. Rep. 2025, 15, 6540. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.B.; Wang, Z.Q.; Zhang, Y.P.; EINaggar, M.H.; Wu, T.; Wen, M.J. Semi-analytical solution for negative skin friction development on deep foundations in coastal reclamation areas. Int. J. Mech. Sci. 2023, 241, 107981. [Google Scholar] [CrossRef]
- Lan, T.G.; Xu, L.; Lu, S.F.; Ma, M.Y. Modeling negative skin friction development in a single pile in collapsible loess subjected to progressive wetting. ACTA Geotech. 2025, 20, 3309–3327. [Google Scholar] [CrossRef]
- Wong, K.S.; Teh, C.I. Negative skin friction on piles in layered deposits. J. Geotech. Eng. 1995, 121, 457–465. [Google Scholar] [CrossRef]
- Randolph, M.F.; Worth, C.P. Analysis of deformation of vertically loaded piles. J. Geotech. Eng. 1978, 104, 1465–1488. [Google Scholar] [CrossRef]
- Alonso, E.E.; Josa, A.; Ledesma, A. Negative skin friction on piles: A simplified analysis and prediction procedure. Geotechnique 1984, 34, 341–357. [Google Scholar] [CrossRef]
- Zhou, G.L. The analysis on negative friction of piles. Rock Soil Mech. 1991, 12, 35–42. [Google Scholar] [CrossRef]
Foundation | Dredger Fill | Clay | Silt | Sand |
---|---|---|---|---|
Thickness of the layer/m | 5~14 | 5.25 | 3.75 | 5.25 |
Water content/% | 32.2 | 43.3 | 30.4 | 26.6 |
Weight/(kN/m3) | 18.5 | 17.4 | 18.6 | 19 |
Specific gravity | 2.71 | 2.75 | 2.70 | 2.69 |
Void ratio | 1.22 | 0.86 | 0.76 | |
Liquid limit | 46.4 | |||
Plastic limit | 25.0 | |||
Plasticity index | 21.3 | |||
Liquidity index | 0.84 | |||
Cohesion/kPa | 11 | 14 | 7 | 4 |
Internal friction angle/° | 29 | 13 | 33 | 35 |
Compressibility coefficient | 0.24 | 0.80 | 0.14 | 0.09 |
Compression modulus/MPa | 8.58 | 2.94 | 14.51 | 21.59 |
Parameter | Dredger Fill | Clay | Silt | Sand | Concrete |
---|---|---|---|---|---|
Dry density/(kN/m3) | 13.99 | 11.98 | 15.01 | 24 | |
Saturation density/(kN/m3) | 18.5 | 17.4 | 18.6 | 19.0 | / |
Compression modulus/(MPa) | 8.58 | 2.94 | 14.51 | 21.59 | / |
Poisson ratio | 0.35 | 0.45 | 0.33 | 0.35 | 0.2 |
Cohesion/(kPa) | 11 | 14 | 7 | 4 | / |
Internal friction angle/(°) | 29 | 13 | 33 | 35 | / |
Shear modulus/(MPa) | 4.77 | 2.58 | 11.91 | 14.94 | 1.92 × 104 |
Bulk modulus/(MPa) | 2.86 | 0.27 | 4.57 | 4.98 | 1.44 × 104 |
Permeability coefficient/(m/s) | 2.31 × 10−11 | 2.05 × 10−12 | 3.72 × 10−10 | 5.45 × 10−9 | / |
Porosity | 0.68 | 0.55 | 0.46 | 0.43 | |
Biot’s coefficient | 1 | 1 | 1 | 1 | / |
Biot modulus/(Pa) | 2.94 × 109 | 3.64 × 109 | 4.35 × 109 | 4.65 × 109 | / |
Tangential stiffness of contact surface/(MPa/m) | 17.17 | 5.88 | 36.01 | 41.36 | / |
Normal stiffness of contact surface/(MPa/m) | 12.02 | 4.12 | 25.21 | 28.95 | / |
Modulus of elasticity (GPa) | / | / | / | / | 30 |
Consolidation Time/Month | Pile Diameter/m | Test Value of Negative Friction/kN | Theoretical Value of Negative Friction/kN | Measured Neutral Point/m | Theoretical Neutral Point/m |
---|---|---|---|---|---|
2.5 | 1.05 | 960.75 | 1134.08 | 13.5 | 13.98 |
1.2 | 1078.58 | 1267.22 | 13.5 | 13.84 | |
1.5 | 1324.44 | 1558.30 | 13.5 | 13.65 | |
20 | 1.05 | 591.72 | 699.55 | 8.25 | 9.56 |
1.2 | 662.73 | 739.49 | 8.25 | 9.31 | |
1.5 | 811.83 | 959.80 | 8.25 | 9.08 | |
50 | 1.05 | 232.43 | 264.48 | 8.25 | 8.68 |
1.2 | 260.33 | 304.53 | 8.25 | 8.53 | |
1.5 | 318.89 | 358.62 | 8.25 | 8.45 | |
75 | 1.05 | −11.77 | −28.6 | / | / |
1.2 | −20.59 | −33.59 | / | / | |
1.5 | −26.39 | −40.04 | / | / |
Number | Method | Foundation | Foundation Type | Author |
---|---|---|---|---|
1 | Centrifugal test/theoretical Calculation/numerical test | Dredged fills and natural silts | Composite soil | This study |
2 | Scale model test | Collapsible loess | Homogeneous soil | Zhao [23] |
3 | Numerical test | Soft clay | Homogeneous soil | Chiou [21] |
4 | Model test | Sand | Homogeneous soil | Zhang [22] |
5 | Model test | Collapsible loess | Homogeneous soil | Chai [30] |
6 | Theoretical calculation | Soft clay | Homogeneous soil | Wu [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Sun, W.; Chen, Y.; Yi, X.; Liu, Y.; Liu, L. A Study on the Negative Friction Mechanisms in Piles Within Recycled Dredged Waste Fills. Materials 2025, 18, 3904. https://doi.org/10.3390/ma18163904
Hou X, Sun W, Chen Y, Yi X, Liu Y, Liu L. A Study on the Negative Friction Mechanisms in Piles Within Recycled Dredged Waste Fills. Materials. 2025; 18(16):3904. https://doi.org/10.3390/ma18163904
Chicago/Turabian StyleHou, Xiangyang, Wei Sun, Yongle Chen, Xiaoli Yi, Yaohui Liu, and Lulu Liu. 2025. "A Study on the Negative Friction Mechanisms in Piles Within Recycled Dredged Waste Fills" Materials 18, no. 16: 3904. https://doi.org/10.3390/ma18163904
APA StyleHou, X., Sun, W., Chen, Y., Yi, X., Liu, Y., & Liu, L. (2025). A Study on the Negative Friction Mechanisms in Piles Within Recycled Dredged Waste Fills. Materials, 18(16), 3904. https://doi.org/10.3390/ma18163904