The 15th Anniversary of Materials—Recent Advances in Advanced Materials Characterization
Acknowledgments
Conflicts of Interest
References
- Tyagi, A.K.; Roy, M.; Kulshreshtha, S.K.; Banerjee, S. Advanced Techniques for Materials Characterization; Trans Tech Publications: Baech, Switzerland, 2009. [Google Scholar]
- Sardela, M. Practical Materials Characterization; Springer: New York, NY, USA, 2014. [Google Scholar]
- Krishnan, K.K. Principles of Materials Characterization and Metrology; Oxford University Press: Oxford, UK, 2021. [Google Scholar]
- Sultan, K. Practical Guide to Materials Characterization: Techniques and Applications; Wiley: Chichester, UK, 2023. [Google Scholar]
- Otsuki, A.; Jose, S.; Mohan, M.; Thomas, S. Non-Destructive Material Characterization Methods; Elsevier: Oxford, UK, 2023. [Google Scholar]
- Arnold, W.; Goebbels, K.; Kumar, A. Non-Destructive Materials Characterization and Evaluation; Springer: Berlin, Germany, 2023. [Google Scholar]
- Parveen, A.; Ahmad, S.; Sharma, J.; Gambhir, V. Handbook of Sustainable Materials: Modelling, Characterization, and Optimization; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- AhmadvashAghbash, S.; Verpoest, I.; Swolfs, Y.; Mehdikhani, M. Methods and models for fibre–matrix interface characterisation in fibre-reinforced polymers: A review. Int. Mater. Rev. 2023, 68, 1245–1319. [Google Scholar] [CrossRef]
- Xiaomin, X.; Zhang, Z.; Mu, X.; Shan, C.; Gao, X.; Zhu, B. Recent progress on interface characterization methods of carbon fiber reinforced polymer composites. Chem. Eng. J. 2024, 499, 156220. [Google Scholar] [CrossRef]
- Banks, C.E.; Brownson, D.A.C. 2D Materials Characterization, Production and Applications; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef]
- Jayawardena, H.S.N.; Liyanage, S.H.; Rathnayake, K.; Patel, U.; Yan, M. Analytical Methods for Characterization of Nanomaterial Surfaces. Anal. Chem. 2021, 93, 1889–1911. [Google Scholar] [CrossRef]
- Munaweera, I.; Chamalki Madhusha, M.L. Characterization Techniques for Nanomaterials; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Mekuye, B.; Abera, B. Nanomaterials: An overview of synthesis, classification, characterization, and applications. Nano Select 2023, 4, 486–501. [Google Scholar] [CrossRef]
- Jaffe, M.; Hammond, W.P.; Tolias, P.; Arinzeh, T. Characterization of Biomaterials; Woodhead Publishing: Cambridge, UK, 2013. [Google Scholar]
- Mitić, Ž.; Stolić, A.; Stojanović, S.; Najman, S.; Ignjatović, N.; Nikolić, G.; Trajanović, M. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review. Mater. Sci. Eng. C 2017, 79, 930–949. [Google Scholar] [CrossRef] [PubMed]
- Läubli, N.F.; Burri, J.T.; Marquard, J.; Vogler, H.; Mosca, G.; Vertti-Quintero, N.; Shamsudhin, N.; deMello, A.; Grossniklaus, U.; Ahmed, D.; et al. 3D mechanical characterization of single cells and small organisms using acoustic manipulation and force microscopy. Nat. Comm. 2021, 12, 2583. [Google Scholar] [CrossRef] [PubMed]
- Singh Chandel, A.K.; Parihar, A.; Khan, R. Smart Ways of Biomaterial Designing Synthesis and Characterization: Prospects of Enhanced Application from Labs to Clinics; CRC Press: Boca Raton, FL, USA, 2025. [Google Scholar]
- Jin, H.; Zhang, B.; Cao, Q.; Zhang, E.; Bora, A.; Krishnaswamy, S.; Karniadakis, G.E.; Espinosa, H.D. Characterization and Inverse Design of Stochastic Mechanical Metamaterials Using Neural Operators. Adv. Mater. 2025, in press. [Google Scholar] [CrossRef]
- Duan, Z. Metamaterial-Based Electromagnetic Radiations and Applications; Springer/Science Press: Beijing, China, 2025. [Google Scholar]
- Mura, F.; Cognigni, F.; Ferroni, M.; Morandi, V.; Rossi, M. Advances in Focused Ion Beam Tomography for Three-Dimensional Characterization in Materials Science. Materials 2023, 16, 5808. [Google Scholar] [CrossRef]
- Giannuzzi, L.; Prenitzer, B.; Kempshall, B. Ion—Solid Interactions. In Introduction to Focus Ion Beam—Instrumentation, Theory, Techniques & Practice; Giannuzzi, L.A., Stevie, F.A., Eds.; Springer: New York, NY, USA, 2005; pp. 13–52. [Google Scholar]
- Cantoni, M.; Holzer, L. Review of FIB tomography. In Nanofabrication Using Focused Ion and Electron Beams—Principles and Applications; Utke, I., Moshkalev, S., Russell, P., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 410–435. [Google Scholar]
- Akhtar, K.; Khan, S.A.; Khan, S.B.; Asiri, A.M. Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. In Handbook of Materials Characterization; Sharma, S.K., Khan, L.U., Kumar, S., Khan, S.B., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 113–145. [Google Scholar]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.M.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-Ray Microanalysis, 4th ed.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2018. [Google Scholar]
- Javed, Y.; Ali, K.; Akhtar, K.; Jawaria, M.; Hussain, I.; Ahmad, G.; Arif, T. TEM for Atomic-Scale Study: Fundamental, Instrumentation, and Applications in Nanotechnology. In Handbook of Materials Characterization; Sharma, S.K., Khan, L.U., Kumar, S., Khan, S.B., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2018; pp. 147–216. [Google Scholar]
- Kirkland, A.I.; Chang, S.L.Y.; Hutchison, J.L. Atomic Resolution Transmission Electron Microscopy. In Springer Handbook of Microscopy; Hawkes, P.W., Spence, J.C.H., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 3–47. [Google Scholar]
- Grediac, M.; Blaysat, B.; Sur, F. A Robust-to-Noise Deconvolution Algorithm to Enhance Displacement and Strain Maps Obtained with Local DIC and LSA. Exp. Mech. 2018, 59, 219–243. [Google Scholar] [CrossRef]
- Speranza, G. Application of the Van Cittert Algorithm for Deconvolving Loss Features in X-ray Photoelectron Spectroscopy Spectra. Materials 2024, 17, 763. [Google Scholar] [CrossRef]
- Briggs, D.; Grant, J.T. Surface Analysis by Auger and X-Ray Photoelectron Spectroscopies, 1st ed.; IM Publications and Surface Spectra: Trowbridge, UK, 2003. [Google Scholar]
- Ilyin, A.M. Auger Electron Spectroscopy. In Microscopy Methods in Nanomaterials Characterization; Thomas, S., Thomas, R., Zachariah, A.K., Mishra, R.K., Eds.; Elsevier: Oxford, UK, 2017; pp. 363–379. [Google Scholar]
- Kumar, J. Photoelectron Spectroscopy: Fundamental Principles and Applications. In Handbook of Materials Characterization; Sharma, S.K., Khan, L.U., Kumar, S., Khan, S.B., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2018; pp. 435–495. [Google Scholar]
- Baer, D.R.; Artyushkova, K.; Brundle, C.R.; Castle, J.E.; Engelhard, M.H.; Gaskell, K.J.; Grant, J.T.; Haasch, R.T.; Linford, M.R.; Powell, C.J.; et al. Practical Guides for X-ray Photoelectron Spectroscopy: First Steps in Planning, Conducting, and Reporting XPS Measurements. J. Vac. Sci. Technol. A Vac. Surf. Film. 2019, 37, 031401. [Google Scholar] [CrossRef]
- Konieczny, J.; Labisz, K.; Ürgün, S.; Yigit, H.; Fidan, S.; Bora, M.Ö.; Atapek, S.H. Metaheuristics Algorithm-Based Optimization for High Conductivity and Hardness CuNi2Si1 Alloy. Materials 2025, 18, 1060. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Reading, MA, USA, 1989. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Clerc, M. Particle Swarm Optimization; ISTE Publishing Company: London, UK, 2006. [Google Scholar]
- Das, B.; Mukherjee, V.; Das, D. Student Psychology Based Optimization Algorithm: A New Population based Optimization Algorithm for Solving Optimization Problems. Adv. Eng. Soft. 2020, 146, 102804. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems. CAD Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Soft. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Fotouhiardakani, F.; Destrieux, A.; Profili, J.; Laurent, M.; Ravichandran, S.; Dorairaju, G.; Laroche, G. Investigating the Behavior of Thin-Film Formation over Time as a Function of Precursor Concentration and Gas Residence Time in Nitrogen Dielectric Barrier Discharge. Materials 2024, 17, 875. [Google Scholar] [CrossRef]
- Griffiths, P.; de Hasseth, J.A. Fourier Transform Infrared Spectrometry, 2nd ed.; John Wiley & Sons: Chichester, UK, 2007. [Google Scholar]
- Khan, S.A.; Khan, S.B.; Khan, L.U.; Farooq, A.; Akhtar, K.; Asiri, A.M. Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization. In Handbook of Materials Characterization; Sharma, S.K., Khan, L.U., Kumar, S., Khan, S.B., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2018; pp. 317–344. [Google Scholar]
- Valli, J. A Review of Adhesion Test Methods for Thin Hard Coatings. J. Vac. Sci. Technol. A Vac. Surf. Film 1986, 4, 3007–3014. [Google Scholar] [CrossRef]
- Rosic, M.; Miloševic, M.; Cebela, M.; Dodevski, V.; Lojpur, V.; Cakar, U.; Stopic, S. Spectroscopic and Morphological Examination of Co0.9R0.1MoO4 (R = Ho, Yb, Gd) Obtained by Glycine Nitrate Procedure. Materials 2025, 18, 397. [Google Scholar] [CrossRef]
- Ozawa, T. Thermal analysis—Review and prospect. Thermochim. Acta 2000, 355, 35–42. [Google Scholar] [CrossRef]
- Cullity, B.D.; Stock, S.R. Elements of X-Ray Diffraction, 3rd ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Adams, F.C. X-Ray Absorption and Diffraction | Overview. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, T., Miró, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 391–403. [Google Scholar]
- Abd Mutalib, M.; Rahman, M.A.; Othman, M.H.D.; Ismail, A.F.; Jaafar, J. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy. In Membrane Characterization; Hilal, N., Ismail, A.F., Matsuura, T., Oatley-Radcliffe, D., Eds.; Elsevier: Oxford, UK, 2017; pp. 161–179. [Google Scholar]
- Neikov, O.D.; Yefimov, N.A. Powder Characterization and Testing. In Handbook of Non-Ferrous Metal Powders, 2nd ed.; Neikov, O.D., Naboychenko, S.S., Yefimov, N.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–62. [Google Scholar]
- Freeland, B.; Ul Ahad, I.; Foley, G.; Brabazon, D. Advanced characterization techniques for nanostructures. In Micro and Nanomanufacturing; Jackson, M.J., Ahmed, W., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2025; Volume 2, pp. 53–89. [Google Scholar]
- Barret, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Lippens, B.C.; Linsen, B.G.; de Boer, J.H. Studies on Pore Systems in Catalysts I. The Adsorption of Nitrogen; Apparatus and Calculation. J. Catal. 1964, 3, 32–37. [Google Scholar] [CrossRef]
- De Giorgi, M. Design of an Optical Device Based on Kirigami Approach. Materials 2024, 17, 1211. [Google Scholar] [CrossRef] [PubMed]
- Grima, J.N.; Evans, K.E. Auxetic behavior from rotating squares. J. Mater. Sci. Lett. 2000, 19, 1563–1565. [Google Scholar] [CrossRef]
- Sciammarella, C.A.; Sciammarella, F.M. Experimental Mechanics of Solids; Wiley: Chichester, UK, 2012. [Google Scholar]
- Camacho Hernandez, J.N.; Link, G. Innovative Approaches on the Estimation of the Effective Permittivity of Fibrous Media. Materials 2025, 18, 14. [Google Scholar] [CrossRef]
- Bal, K.; Kothari, V.K. Study of dielectric behaviour of woven fabric based on two phase models. J. Electrostat. 2009, 67, 751–758. [Google Scholar] [CrossRef]
- Numan, A.B.; Sharawi, M.S. Extraction of Material Parameters for Metamaterials Using a Full-Wave Simulator [Education Column]. IEEE Antennas Propag. Mag. 2013, 55, 202–211. [Google Scholar] [CrossRef]
- Smit, T.H.; Schneider, E.; Odgaard, A. Star length distribution: A volume-based concept for the characterization of structural anisotropy. J. Microsc. 1998, 191 Pt 3, 249–257. [Google Scholar] [CrossRef]
- Dapor, M. Comparison of Electron Compton Scattering with Positron Compton Scattering in Polyethylene. Materials 2025, 18, 1609. [Google Scholar] [CrossRef]
- Gergely, G. Elastic backscattering of electrons: Determination of physical parameters of electron transport processes by elastic peak electron spectroscopy. Progr. Surf. Sci. 2002, 71, 31–88. [Google Scholar] [CrossRef]
- Morawski, I.; Nowicki, M. Directional Auger and elastic peak electron spectroscopies: Versatile methods to reveal near-surface crystal structure. Surf. Sci. Rep. 2019, 74, 178–212. [Google Scholar] [CrossRef]
- Brandimarte, P. Handbook in Monte Carlo Simulations; Elsevier: New York, NY, USA, 2014. [Google Scholar]
- Johnson, J.; Kujawski, D. Impact of Notches on Additively Manufactured Inconel 718 Tensile Performance. Materials 2023, 16, 6740. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-C.; Hsu, H.-C.; Liu, M.-Y.; Ho, W.-F. Phase Transformation and Mechanical Optimization of Eggshell-Derived Hydroxyapatite across a Wide Sintering Temperature Range. Materials 2024, 17, 4062. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.L.; Allain, L.G.; Yoshida, S. Study on the Influence of UV Light on Selective Antibacterial Activity of Silver Nanoparticle Synthesized Utilizing Protein/Polypeptide-Rich Aqueous Extract from The Common Walkingstick, Diapheromera femorata. Materials 2024, 17, 713. [Google Scholar] [CrossRef] [PubMed]
- Kurbonov, S.; Pisárcik, M.; Lukác, M.; Czigány, Z.; Kovács, Z.; Tolnai, I.; Kriechbaum, M.; Ryukhtin, V.; Petrenko, V.; Avdeev, M.V.; et al. Ordered Mesoporous Silica Prepared with Biodegradable Gemini Surfactants as Templates for Environmental Applications. Materials 2025, 18, 773. [Google Scholar] [CrossRef]
- Londoño, O.M.; Tancredi, P.; Rivas, P.; Muraca, D.; Socolovsky, L.M.; Knobel, M. Small-Angle X-Ray Scattering to Analyze the Morphological Properties of Nanoparticulated Systems. In Handbook of Materials Characterization; Sharma, S.K., Khan, L.U., Kumar, S., Khan, S.B., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 37–75. [Google Scholar]
- Li, T.; Senesi, A.J.; Lee, B. Small Angle X-ray Scattering for Nanoparticle Research. Chem. Rev. 2016, 116, 11128–11180. [Google Scholar] [CrossRef]
- Strunz, P.; Saroun, J.; Mikula, P.; Lukas, P.; Eichhorn, F. Double-Bent-Crystal Small-Angle Neutron Scattering Setting and its Applications. J. Appl. Cryst. 1997, 30, 844–848. [Google Scholar] [CrossRef]
- Harada, T.; Matsuoka, H. Ultra-small-angle X-ray and neutron scattering study of colloidal dispersions. Curr. Opin. Colloid Interface Sci. 2004, 8, 501–506. [Google Scholar] [CrossRef]
- Lejda, K.; Partyka, J.; Janik, J.F. Thermogravimetric/Thermal–Mass Spectroscopy Insight into Oxidation Propensity of Various Mechanochemically Made Kesterite Cu2ZnSnS4 Nanopowders. Materials 2024, 17, 1232. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Thermogravimetric Analysis. Analyst 1963, 88, 906–924. [Google Scholar] [CrossRef]
- Tanzi, M.C.; Farè, S.; Candiani, G. Foundations of Biomaterials Engineering; Academic Press: London, UK, 2019. [Google Scholar]
- de Hoffmann, E.; Stroobant, V. Mass Spectrometry, 3rd ed; Wiley: Chichester, UK, 2013. [Google Scholar]
- Vadakedath, S.; Kandi, V.; Godishala, V.; Kumar Pinnelli, V.B.; Alkafaas, S.S.; EIkafas, S.S. The Principle, Types, and Applications of Mass Spectrometry: A Comprehensive Review. Biomed. Biotechnol. 2022, 7, 6–22. [Google Scholar] [CrossRef]
- Yoo, D.; Park, S.; Oh, S.; Kim, M.P.; Park, K. In Situ Analysis of Binder Degradation during Catalyst-Accelerated Stress Test of Polymer Electrolyte Membrane Fuel Cells. Materials 2024, 17, 4425. [Google Scholar] [CrossRef] [PubMed]
- Newbury, D.E.; Ritchie, N.W.M. Is Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDS) Quantitative? Scanning 2013, 35, 141–168. [Google Scholar] [CrossRef]
- Wu, L.; Nie, Y.; Li, J.; Wu, J.; Shi, W.; Wu, Y.; Jiang, Y. Chemical Compositions and Chromatic Mechanism of High-Temperature Iron-Series Glazed Wares from the Guangyuan Kiln in Sichuan Province, Southwest China During the Song Dynasty. Materials 2024, 17, 6221. [Google Scholar] [CrossRef]
- Kramar, U. X-Ray Fluorescence Spectrometers. In Encyclopedia of Spectroscopy and Spectrometry, 2nd ed.; Lindon, J.C., Ed.; Academic Press: Oxford, UK, 2016; pp. 2989–2999. [Google Scholar]
- Silveira, P.; Falcade, T. Applications of energy dispersive X-ray fluorescence technique in metallic cultural heritage studies. J. Cult. Herit. 2022, 57, 243–255. [Google Scholar] [CrossRef]
- Dodt, H.U.; Saghafi, S.; Becker, K.; Jahrling, N. Ultramicroscopy: Development and outlook. Neurophotonics 2015, 2, 041407. [Google Scholar] [CrossRef]
- Aflalo, K.; Gao, P.; Trivedi, V.; Sanjeev, A.; Zalevsky, Z. Optical super-resolution imaging: A review and perspective. Opt. Lasers Eng. 2024, 183, 108536. [Google Scholar] [CrossRef]
- Colthup, N.B.; Daly, L.H.; Wiberley, S.E. Introduction to Infrared and Raman Spectroscopy, 3rd ed; Academic Press: New York, NY, USA, 1990. [Google Scholar]
- Larkin, P.J. Infrared and Raman Spectroscopy—Principles and Spectral Interpretation, 2nd ed.; Elsevier: San Diego, CA, USA, 2018. [Google Scholar]
- Colomban, P.; Simsek Franci, G.; Ngo, A.-T.; Gallet, X. Non-Invasive Raman and XRF Study of Mīnā’ī Decoration, the First Sophisticated Painted Enamels. Materials 2025, 18, 575. [Google Scholar] [CrossRef]
- Johansson, S.A.E.; Campbell, J.L.; Malmqvist, K.G. Particle-Induced X-Ray Emission Spectrometry. Wiley: Chichester, UK, 1995. [Google Scholar]
- Zhang, Y.; Debelle, A.; Boulle, A.; Kluth, P.; Tuomisto, F. Advanced techniques for characterization of ion beam modified materials. Curr. Opin. Solid State Mater. Sci. 2015, 19, 19–28. [Google Scholar] [CrossRef]
- Pessanha, S.; Queralt, I.; Carvalho, M.L.; Sampaio, J.M. Determination of gold leaf thickness using X-ray fluorescence spectrometry: Accuracy comparison using analytical methodology and Monte Carlo simulations. Appl. Radiat. Isot. 2019, 152, 6–10. [Google Scholar] [CrossRef]
- Lau, M.L.; Burleigh, A.; Terry, J.; Long, M. Materials characterization: Can artificial intelligence be used to address reproducibility challenges? J. Vac. Sci. Technol. A 2023, 41, 060801. [Google Scholar] [CrossRef]
- Argyriou, D.N.; Bordallo, H.N.; Srinivasan, G.; Sundararaghavan, V. (Eds.) Machine Learning for Materials Characterisation. In Scientific Reports; 2023–2025; Available online: https://www.nature.com/collections/ghabgbifhh (accessed on 21 July 2025).
- Chávez-Angel, E.; Eriksen, M.B.; Castro-Alvarez, A.; Garcia, J.H.; Botifoll, M.; Avalos-Ovando, O.; Arbiol, J.; Mugarza, A. Applied Artificial Intelligence in Materials Science and Material Design. Adv. Intell. Syst. 2025, in press. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, S.; Lamberti, L.; Lacidogna, G. The 15th Anniversary of Materials—Recent Advances in Advanced Materials Characterization. Materials 2025, 18, 3767. https://doi.org/10.3390/ma18163767
Yoshida S, Lamberti L, Lacidogna G. The 15th Anniversary of Materials—Recent Advances in Advanced Materials Characterization. Materials. 2025; 18(16):3767. https://doi.org/10.3390/ma18163767
Chicago/Turabian StyleYoshida, Sanichiro, Luciano Lamberti, and Giuseppe Lacidogna. 2025. "The 15th Anniversary of Materials—Recent Advances in Advanced Materials Characterization" Materials 18, no. 16: 3767. https://doi.org/10.3390/ma18163767
APA StyleYoshida, S., Lamberti, L., & Lacidogna, G. (2025). The 15th Anniversary of Materials—Recent Advances in Advanced Materials Characterization. Materials, 18(16), 3767. https://doi.org/10.3390/ma18163767