Modification of Thermo-Chemical Properties of Hot-Pressed ZrB2-HfB2 Composites by Incorporation of Carbides (SiC, B4C, and WC) or Silicides (MoSi2 and CrSi2) Additives
Abstract
1. Introduction
2. Materials and Methods
- α—thermal diffusivity,
- ρ—apparent density,
- Cp—heat capacity.
3. Results
3.1. Density Measurements
3.2. XRD Phase Composition Analysis
3.3. SEM Microstructure Analysis
3.4. Thermal Conductivity Coefficient (λ)
3.5. The Coefficient of Thermal Expansion (CTE)
3.6. Oxidation Resistance
3.7. Oxidation Cross-Sections
4. Discussion of the Results
4.1. Sintering, Phase Composition, and Microstructure
4.2. Thermal Conductivity
- k—phonon thermal conductivity of porous material,
- kα—phonon thermal conductivity of dense material,
- φ—porosity (inclusion) volume fraction.
4.3. Thermal Expansion
4.4. Discussion of Oxidation Resistance
5. Conclusions
- ✓
- These additives allowed the densification process to be made easier and were the factor of thermo-chemical property tailoring. The investigated composites showed a complex phase composition dominated by (Zr,Hf)B2 solid solutions. The microstructures of composites were similar to that observed in cermets containing local core–shell areas. Such a microstructure was mostly present in silicide-added composites.
- ✓
- The average coefficient of thermal expansion of all the composites is lower than the CTE of the reference composite HP_0 and oscillates around 7⸱10−6 1/K. The addition of the carbides in which a strong covalent bond predominates, i.e., SiC and B4C, has the greatest effect on reducing the CTE.
- ✓
- Porosity and excessive grain growth did not affect favorably either thermal conductivity or thermal expansion of the reference composite (HP_0). In the case of thermal conductivity λ, the addition of well-conductive phases such as SiC and WC significantly increased the thermal conductivity of the composites. In these cases, a percolation mechanism was anticipated. In the case of the HP_WC composite, a greater increase in conductivity would be expected, but the fine-grained microstructure and the presence of many grain boundaries may adversely affect phonon–phonon interactions.
- ✓
- The oxidation resistance of the composites increased significantly when silicon-containing phases, i.e., SiC, MoSi2, and CrSi2, were used as the additives. In such a case, when the temperature exceeded 1100 °C, a tight layer of silica or boron–silicate glass formed on the surface, protecting the material from the destructive effects of oxygen. The models of composite oxidation employed in this paper are in agreement with the literature data. Furthermore, it has been shown that in the case of the HP_SC composite, oxygen diffuses deep into the sample along the grain boundaries.
- ✓
- Among all proposed sintering–activating additives, silicon carbide seems to be the best one. With this additive it is possible to obtain composites with high density and values of thermo-chemical parameters desirable from the point of view of high-temperature applications, primarily low thermal expansion, high thermal conductivity, and very good oxidation resistance.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bajpai, S.; Dubey, S.; Venkateswaran, T.; Singh, S.S.; Balani, K. An Insight to Wetting and Joining of HfB2 and ZrB2 Based Ultra High Temperature Ceramics: A Review. Chem. Eng. J. 2024, 495, 153387. [Google Scholar] [CrossRef]
- Fahrenholtz, W.G.; Hilmas, G.E. Ultra-High Temperature Ceramics: Materials for Extreme Environments. Scr. Mater. 2017, 129, 94–99. [Google Scholar] [CrossRef]
- Fahrenholtz, W.G.; Hilmas, G.E.; Talmy, I.G.; Zaykoski, J.A. Refractory Diborides of Zirconium and Hafnium. J. Am. Ceram. Soc. 2007, 90, 1347–1364. [Google Scholar] [CrossRef]
- Golla, B.R.; Mukhopadhyay, A.; Basu, B.; Thimmappa, S.K. Review on Ultra-High Temperature Boride Ceramics. Prog. Mater. Sci. 2020, 111, 100651. [Google Scholar] [CrossRef]
- Xu, L.; Huang, K.-H.; Guo, W.-M.; Liu, Y.; You, Y.; Huang, Z.-J.; Lin, H.-T. B4C-(Hf,Zr,Ta,Nb,Ti)B2 Composites Prepared by Reactive and Non-Reactive Spark Plasma Sintering. Ceram. Int. 2023, 49, 19556–19560. [Google Scholar] [CrossRef]
- Wang, B.; Cai, D.; Wang, H.; Zou, W.; Yang, Z.; Duan, X.; He, P.; Li, D.; Duan, W.; Jia, D.; et al. Microstructures and Mechanical Properties of B4C–SiC and B4C–SiC–TiB2 Ceramic Composites Fabricated by Hot Pressing. J. Am. Ceram. Soc. 2023, 106, 5046–5066. [Google Scholar] [CrossRef]
- Johnson, S.; Gasch, M.; Lawson, J.; Gusman, M.; Stackpoole, M. Recent Developments in Ultra High Temperature Ceramics at NASA Ames. In Proceedings of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany, 19–22 October 2009. [Google Scholar]
- Wuchina, E.; Opila, E.; Opeka, M.; Fahrenholtz, B.; Talmy, I. UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications. Electrochem. Soc. Interface 2007, 16, 30–36. [Google Scholar] [CrossRef]
- Savino, R.; Criscuolo, L.; Di Martino, G.D.; Mungiguerra, S. Aero-Thermo-Chemical Characterization of Ultra-High-Temperature Ceramics for Aerospace Applications. J. Eur. Ceram. Soc. 2018, 38, 2937–2953. [Google Scholar] [CrossRef]
- Lönnberg, B. Thermal Expansion Studies on the Group IV–VII Transition Metal Diborides. J. Less Common Met. 1988, 141, 145–156. [Google Scholar] [CrossRef]
- Weimer, A. Carbide, Nitride and Boride Materials Synthesis and Processing; Springer: Dordrecht, The Netherlands, 1997; p. 671. [Google Scholar] [CrossRef]
- Zimmermann, J.W.; Hilmas, G.E.; Fahrenholtz, W.G.; Dinwiddie, R.B.; Porter, W.D.; Wang, H. Thermophysical Properties of ZrB2 and ZrB2–SiC Ceramics. J. Am. Ceram. Soc. 2008, 91, 1405–1411. [Google Scholar] [CrossRef]
- Hwang, S.S.; Vasiliev, A.L.; Padture, N.P. Improved Processing and Oxidation-Resistance of ZrB2 Ultra-High Temperature Ceramics Containing SiC Nanodispersoids. Mater. Sci. Eng. A 2007, 464, 216–224. [Google Scholar] [CrossRef]
- Opeka, M.M.; Talmy, I.G.; Wuchina, E.J.; Zaykoski, J.A.; Causey, S.J. Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and Zirconium Compounds. J. Eur. Ceram. Soc. 1999, 19, 2405–2414. [Google Scholar] [CrossRef]
- Opeka, M.; Talmy, I.; Zaykoski, J. Oxidation-based Materials Selection for 2000 °C + Hypersonic Aerosurfaces: Theoretical Considerations and Historical Experience. J. Mater. Sci. 2004, 39, 5887–5904. [Google Scholar] [CrossRef]
- Silvestroni, L.; Meriggi, G.; Sciti, D. Oxidation Behavior of ZrB2 Composites Doped with Various Transition Metal Silicides. Corros. Sci. 2014, 83, 281–291. [Google Scholar] [CrossRef]
- Kazemzadeh Dehdashti, M.; Fahrenholtz, W.G.; Hilmas, G.E. Effects of Transition Metals on the Oxidation Behavior of ZrB2 Ceramics. Corros. Sci. 2015, 91, 224–231. [Google Scholar] [CrossRef]
- Thimmappa, S.K.; Golla, B.R.; VV Prasad, B. Oxidation Behavior of Silicon-Based Ceramics Reinforced Diboride UHTC: A Review. Silicon 2022, 14, 12049–12074. [Google Scholar] [CrossRef]
- Silvestroni, L.; Failla, S.; Neshpor, I.; Grigoriev, O. Method to Improve the Oxidation Resistance of ZrB2-Based Ceramics for Reusable Space Systems. J. Eur. Ceram. Soc. 2018, 38, 2467–2476. [Google Scholar] [CrossRef]
- Fahrenholtz, W.G. Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC-Depleted Region. J. Am. Ceram. Soc. 2007, 90, 143–148. [Google Scholar] [CrossRef]
- Sciti, D.; Balbo, A.; Bellosi, A. Oxidation Behaviour of a Pressureless Sintered HfB2–MoSi2 Composite. J. Eur. Ceram. Soc. 2009, 29, 1809–1815. [Google Scholar] [CrossRef]
- Silvestroni, L.; Kleebe, H.-J.; Lauterbach, S.; Müller, M.; Sciti, D. Transmission Electron Microscopy on Zr- and Hf-Borides with MoSi2 Addition: Densification Mechanisms. J. Mater. Res. 2010, 25, 828–834. [Google Scholar] [CrossRef]
- Bellosi, A.; Guicciardi, S.; Medri, V.; Monteverde, F.; Sciti, D.; Silvestroni, L. Processing and Properties of Ultra-Refractory Composites Based on Zr- and Hf-Borides: State of the Art and Perspectives; Springer: Dordrecht, The Netherlands, 2010; pp. 147–160. [Google Scholar] [CrossRef]
- Guria, J.F.; Bansal, A.; Kumar, V. Effect of Additives on the Thermal Conductivity of Zirconium Diboride Based Composites—A review. J. Eur. Ceram. Soc. 2021, 41, 1–23. [Google Scholar] [CrossRef]
- Mashayekh, S.; Baharvandi, H.R. Effects of WC Contamination on the Densification of Spark Plasma Sintered Monolithic HfB2. Open Ceram. 2023, 16, 100461. [Google Scholar] [CrossRef]
- Gubernat, A.; Zych, Ł.; Kornaus, K.; Zientara, D.; Komarek, S.; Stan-Głowińska, K.; Klimczyk, P.; Podsiadło, M.; Dusza, J.; Lis, J.; et al. The Influence of Sintering Additives on Densification and Phase Composition of ZrB2–HfB2 Composite. J. Eur. Ceram. Soc. 2024, 44, 116685. [Google Scholar] [CrossRef]
- Ma, H.-B.; Zou, J.; Zhu, J.-T.; Lu, P.; Xu, F.-F.; Zhang, G.-J. Thermal and Electrical Transport in ZrB2-SiC-WC Ceramics up to 1800°C. Acta Mater. 2017, 129, 159–169. [Google Scholar] [CrossRef]
- Chakraborty, S.; Debnath, D.; Mallick, A.R.; Das, P.K. Mechanical and Thermal Properties of Hot-Pressed ZrB2-SiC Composites. Met. Mater. Trans. A 2014, 45, 6277–6284. [Google Scholar] [CrossRef]
- Mallik, M.; Kailath, A.J.; Ray, K.K.; Mitra, R. Electrical and Thermophysical Properties of ZrB2 and HfB2 Based Composites. J. Eur. Ceram. Soc. 2012, 32, 2545–2555. [Google Scholar] [CrossRef]
- McClane, D.L.; Fahrenholtz, W.G.; Hilmas, G.E. Thermal Properties of (Zr,TM)B2 Solid Solutions with TM = Hf, Nb, W, Ti, and, Y.J. Am. Ceram. Soc. 2014, 97, 1552–1558. [Google Scholar] [CrossRef]
- Hu, D.-L.; Gu, H.; Zou, J.; Zheng, Q.; Zhang, G.-J. Core–Rim Structure, Bi-solubility and a Hierarchical Phase Relationship in Hot-pressed ZrB2–SiC–MC Ceramics (M = Nb, Hf, Ta, W). J. Mater. 2021, 7, 69–79. [Google Scholar] [CrossRef]
- Monteverde, F.; Grohsmeyer, R.J.; Stanfield, A.D.; Hilmas, G.E.; Fahrenholtz, W.G. Densification Behavior of ZrB2-MoSi2 Ceramics: The Formation and Evolution of Core-Shell Solid Solution Structures. J. Alloy. Compd. 2019, 779, 950–961. [Google Scholar] [CrossRef]
- Gilli, N.; Watts, J.; Fahrenholtz, W.G.; Sciti, D.; Silvestroni, L. Design of Ultra-High Temperature Ceramic Nano-Composites from Multi-Scale Length Microstructure Approach. Compos. Part B Eng. 2021, 226, 109344. [Google Scholar] [CrossRef]
- Silvestroni, L.; Sciti, D.; Bellosi, A. Microstructure and Properties of Pressureless Sintered HfB2-Based Composites with Additions of ZrB2 or HfC. Adv. Eng. Mater. 2007, 9, 915–920. [Google Scholar] [CrossRef]
- Silvestroni, L.; Gilli, N.; Sangiorgi, A.; Corozzi, A.; Filipović, S.; Obradović, N.; Ortiz-Membrado, L.; Jiménez-Piqué, E.; Fahrenholtz, W.G. Multi-phase (Zr,Ti,Cr)B2 Solid Solutions: Preparation, Multi-Scale Microstructure and Local Properties. J. Adv. Ceram. 2023, 12, 414–431. [Google Scholar] [CrossRef]
- Razeghi, M. Fundamentals of Solid State Engineering; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Gasch, M.; Johnson, S.; Marschall, J. Thermal Conductivity Characterization of Hafnium Diboride-Based Ultra-High-Temperature Ceramics. J. Am. Ceram. Soc. 2008, 91, 1423–1432. [Google Scholar] [CrossRef]
- Guo, S.-Q. Densification of ZrB2-Based Composites and their Mechanical and Physical Properties: A review. J. Eur. Ceram. Soc. 2009, 29, 995–1011. [Google Scholar] [CrossRef]
- Zhang, L.; Pejaković, D.A.; Marschall, J.; Gasch, M. Thermal and Electrical Transport Properties of Spark Plasma-Sintered HfB2 and ZrB2 Ceramics. J. Am. Ceram. Soc. 2011, 94, 2562–2570. [Google Scholar] [CrossRef]
- Lonergan, J.M.; Fahrenholtz, W.G.; Hilmas, G.E. Zirconium Diboride with High Thermal Conductivity. J. Am. Ceram. Soc. 2014, 97, 1689–1691. [Google Scholar] [CrossRef]
- Patel, M.; Prasad, V.V.B.; Jayaram, V. Heat Conduction Mechanisms in Hot Pressed ZrB2 and ZrB2–SiC Composites. J. Eur. Ceram. Soc. 2013, 33, 1615–1624. [Google Scholar] [CrossRef]
- Schlichting, K.; Padture, N.; Klemens, P. Thermal Conductivity of Dense and Porous Yttria-Stabilized Zirconia. J. Mater. Sci. 2001, 36, 3003–3010. [Google Scholar] [CrossRef]
- Maxwell, J. A Treatise of Electricity and Magnetism; Clarendon Press: Oxford, UK, 1873. [Google Scholar]
- Guo, S.; Kagawa, Y.; Nishimura, T.; Tanaka, H. Thermal and Electric Properties in Hot-Pressed ZrB2–MoSi2–SiC Composites. J. Am. Ceram. Soc. 2007, 90, 2255–2258. [Google Scholar] [CrossRef]
- Tye, R.P.; Clougherty, E.V. The Thermal and Electrical Conductivities of some Electrically Conducting Compounds. In Proceedings of the Fifth Symposium on Thermophysical Properties, Newton, MA, USA, 30 September–2 October 1970; pp. 396–401. [Google Scholar]
- Suri, A.; Krishnamurthy, N.; Subramanian, C. Issues in the Synthesis and Fabrication of Refractory Carbides, Borides, Silicides and their Mixtures. In Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials III.; Ohji, T., Singh, M., Singh, D., Salem, J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 69–79. [Google Scholar] [CrossRef]
- Mitra, R. Mechanical Behaviour and Oxidation Resistance of Structural Silicides. Int. Mater. Rev. 2006, 51, 13–64. [Google Scholar] [CrossRef]
- Murthy, T.S.R.C.; Sonber, J.K.; Subramanian, C.; Fotedar, R.K.; Kumar, S.; Gonal, M.R.; Suri, A.K. A New TiB2 + CrSi2 Composite —Densification, Characterization and Oxidation Studies. Int. J. Refract. Met. Hard Mater. 2010, 28, 529–540. [Google Scholar] [CrossRef]
- Verkhorobin, L.F.; Matyushenko, N.N. The Thermal Expansion of Disilicides of Some Transition Metals. Sov. Powder Metall. Met. Ceram. 1963, 2, 468–469. [Google Scholar] [CrossRef]
- Monteverde, F.; Bellosi, A.; Guicciardi, S. Processing and Properties of Zirconium Diboride-Based Composites. J. Eur. Ceram. Soc. 2002, 22, 279–288. [Google Scholar] [CrossRef]
- Fahrenholtz, W.G.; Hilmas, G.E.; Zhang, S.C.; Zhu, S. Pressureless Sintering of Zirconium Diboride: Particle Size and Additive Effects. J. Am. Ceram. Soc. 2008, 91, 1398–1404. [Google Scholar] [CrossRef]
- Matovic, B.; Yano, T. Silicon Carbide and Other Carbides: From Stars to the Advanced Ceramics. In Handbook of Advanced Ceramics Materials, Applications, Processing, and Properties, 2nd ed.; Somiya, S., Ed.; Elsevier: Waltham, MA, USA; Oxford, UK; Amsterdam, The Netherlands, 2013; pp. 225–244. [Google Scholar] [CrossRef]
- Voitovich, V.B.; Sverdel, V.V.; Voitovich, R.F.; Golovko, E.I. Oxidation of WC-Co, WC-Ni and WC-Co-Ni Hard Metals in the Temperature Range 500–800°C. Int. J. Refract. Met. Hard Mater. 1996, 14, 289–295. [Google Scholar] [CrossRef]
- Monteverde, F.; Silvestroni, L. Combined Effects of WC and SiC on Densification and Thermo-Mechanical Stability of ZrB2 Ceramics. Mater. Des. 2016, 109, 396–407. [Google Scholar] [CrossRef]
- Kurlov, A.S.; Gusev, A.I. Oxidation of Tungsten Carbide Powders in Air. Int. J. Refract. Met. Hard Mater. 2013, 41, 300–307. [Google Scholar] [CrossRef]
- Han, J.; Hu, P.; Zhang, X.; Meng, S.; Han, W. Oxidation-Resistant ZrB2–SiC Composites at 2200°C. Compos. Sci. Technol. 2008, 68, 799–806. [Google Scholar] [CrossRef]
- Guo, W.-M.; Zhang, G.-J. Oxidation Resistance and Strength Retention of ZrB2–SiC Ceramics. J. Eur. Ceram. Soc. 2010, 30, 2387–2395. [Google Scholar] [CrossRef]
- Yang, B.; Kuang, C.; Liu, Z.; Yu, C.; Deng, C.; Ding, J.; Wang, Z.; Zhao, S. Oxidation Resistance and Physical Properties of ZrB2-SiC-HfB2 Coating Reinforced with Diboride. Ceram. Int. 2024, 50, 55429–55437. [Google Scholar] [CrossRef]
- Sonber, J.K.; Murthy, T.S.R.C.; Subramanian, C.; Krishnamurthy, N.; Hubli, R.C.; Suri, A.K. Effect of CrSi2 and HfB2 Addition on Densification and Properties of ZrB2. Int. J. Refract. Met. Hard Mater. 2012, 31, 125–131. [Google Scholar] [CrossRef]
Designation of the Composite | Composition, % vol. | Sintering Temperature, °C | Dwelling Time, h | Heating Rate, °C/min | ||
---|---|---|---|---|---|---|
ZrB2 | HfB2 | Addition | ||||
HP_0 | 50 | 50 | - | 2100 | 1 | 10 |
HP_SC | 40 | 40 | 20 (SiC) | 2000 | 10 | |
HP_BC | 40 | 40 | 20 (B4C) | 2000 | 10 | |
HP_WC | 40 | 40 | 20 (WC) | 2000 | 10 | |
HP_MS | 40 | 40 | 20 (MoSi2) | 1750 | 10 | |
HP_CS | 40 | 40 | 20 (CrSi2) | 1550 | 10 |
Compound | a | b | c | Temperature Interval, K |
---|---|---|---|---|
ZrB2 | 62.300 | 23.012 | 17.489 | 298–3310 |
HfB2 | 73.764 | 7.824 | 23.012 | 298–3520 |
SiC | 41.714 | 7.615 | 15.230 | 298–3100 |
B4C | 96.190 | 22.594 | 44.852 | 298–1200 |
WC | 51.33 | 8.619 | 11.213 | 298–3060 |
MoSi2 | 67.488 | 15.523 | 7.406 | 298–1200 |
CrSi2 | 59.831 | 44.05 | 174.724 | 298–873 |
Composite | Theoretical Density *, g/cm3 | Apparent Density, g/cm3 | Relative Density, % |
---|---|---|---|
HP_0 | 8.29 | 7.55 | 91.0 |
HP_SC | 7.25 | 7.16 | 98.4 |
HP_BC | 7.24 | 7.24 | 100.0 |
HP_WC | 9.79 | 9.64 | 98.5 |
HP_MS | 7.88 | 7.37 | 93.5 |
HP_CS | 7.62 | 7.18 | 94.4 |
Composite | Quantitative Phase Composition, wt% |
---|---|
HP_0 | 94.1% (Zr,Hf)B2, 3.3% ZrB2, 2.6% HfO2 |
HP_SC | 71.8% (Zr,Hf)B2, 9.7% HfB2, 13.4% SiC, 5.1% ZrB2 |
HP_BC | 98.9% (Zr,Hf)B2, 1.1% HfB2 |
HP_WC | 18.5% (Zr,Hf)B2 (1), 16.5% (Zr,Hf)B2 (2), 11.9% ZrB2, 4.2% HfB2, 24.8% (Zr,W)C, 21.5% WB |
HP_MS | 23.1% (Zr,Hf)B2, 28.8% HfB2, 25.2% ZrB2, 17.9% MoSi2, 5.2%HfO2 |
HP_CS | 38.4% (Zr,Hf)B2 (1), 27.7% (Zr,Hf)B2 (2), 18.6% ZrB2, 7.9% HfB2, 0.3% SiO2,6.3% CrSi2, 0.9% HfO2 |
Composite | Mass Change, mg/cm2 | Thickness of the Oxidated Layer, μm (% of Thickness) | Phases by XRD |
---|---|---|---|
HP_0 | +11 | 500 (20.0%) | m-ZrO2, HfO2 |
HP_SC | +1 | 10 (0.3%) | ZrSiO4, m-ZrO2 |
HP_BC | −10 | full volume oxidation (100%) | m-ZrO2 |
HP_WC | −54 | 500 (20.0%) | m-ZrO2, WOx, HfB traces |
HP_MS | +2 | 20 (0.6%) | ZrSiO4, m-ZrO2, cristobalite, MoB |
HP_CS | +13 | 100 (3.0%) | ZrSiO4, Cr2O3, cristobalite, traces of t-ZrO2 |
Compound | CTE, ×10−6 1/K | Reference |
---|---|---|
ZrB2 | 5.9–6.8 (300–2300 K) | [46] |
HfB2 | 6.3–6.8 (300–2300 K) | |
SiC | 5.1–5.9 (300–2500 K) | [11] |
B4C | 4.8–6.5 (300–2300 K) | [11] |
WC | axis a 5.2, axis c 7.3 (300–2100 K) | [11] |
MoSi2 | 7–10 (300–1300 K) | [47] |
CrSi2 | 7.4–9.2 (300–900 K) | [48,49] |
Composite | Mean CTE, ×10−6 1/K 300–1200 K |
---|---|
HP_0 | 7.52 |
HP_SC | 6.55 |
HP_BC | 6.35 |
HP_WC | 6.87 |
HP_MS | 6.80 |
HP_CS | 6.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gubernat, A.; Kornaus, K.; Zientara, D.; Zych, Ł.; Rutkowski, P.; Komarek, S.; Naughton-Duszova, A.; Liu, Y.; Chlubny, L.; Pędzich, Z. Modification of Thermo-Chemical Properties of Hot-Pressed ZrB2-HfB2 Composites by Incorporation of Carbides (SiC, B4C, and WC) or Silicides (MoSi2 and CrSi2) Additives. Materials 2025, 18, 3761. https://doi.org/10.3390/ma18163761
Gubernat A, Kornaus K, Zientara D, Zych Ł, Rutkowski P, Komarek S, Naughton-Duszova A, Liu Y, Chlubny L, Pędzich Z. Modification of Thermo-Chemical Properties of Hot-Pressed ZrB2-HfB2 Composites by Incorporation of Carbides (SiC, B4C, and WC) or Silicides (MoSi2 and CrSi2) Additives. Materials. 2025; 18(16):3761. https://doi.org/10.3390/ma18163761
Chicago/Turabian StyleGubernat, Agnieszka, Kamil Kornaus, Dariusz Zientara, Łukasz Zych, Paweł Rutkowski, Sebastian Komarek, Annamaria Naughton-Duszova, Yongsheng Liu, Leszek Chlubny, and Zbigniew Pędzich. 2025. "Modification of Thermo-Chemical Properties of Hot-Pressed ZrB2-HfB2 Composites by Incorporation of Carbides (SiC, B4C, and WC) or Silicides (MoSi2 and CrSi2) Additives" Materials 18, no. 16: 3761. https://doi.org/10.3390/ma18163761
APA StyleGubernat, A., Kornaus, K., Zientara, D., Zych, Ł., Rutkowski, P., Komarek, S., Naughton-Duszova, A., Liu, Y., Chlubny, L., & Pędzich, Z. (2025). Modification of Thermo-Chemical Properties of Hot-Pressed ZrB2-HfB2 Composites by Incorporation of Carbides (SiC, B4C, and WC) or Silicides (MoSi2 and CrSi2) Additives. Materials, 18(16), 3761. https://doi.org/10.3390/ma18163761