Effect of Geometry on Local Microstructure in Ti-6Al-4V Fabricated by Laser Powder Bed Fusion
Abstract
1. Introduction
2. Experimental Section
2.1. Fabrication
2.2. Geometries
2.3. Characterization
3. Results
3.1. Print Quality
3.2. Effects of Geometry on the Microstructure
3.2.1. Prime-β Grains
3.2.2. Martensitic and Intrinsic Heat-Treated (IHT) Microstructure
3.3. Effect of Heat Treatment
4. Discussion
5. Summaries
- (1)
- While columnar prime-β grains form in the bulk and up-skin regions, equiaxed prime-β grains can be found in specific down-skin regions lacking support. The equiaxed region is linked to local heat dissipation during L-PBF.
- (2)
- The direction of columnar prime-β grains can shift at specific locations, such as the down-skin region of overhangs and the partially fused region in penholders.
- (3)
- The IHT effect was identified in specific down-skin regions. We observed a gradual transition from a martensite decomposed α+β lamellar structure to a fully α′ martensite structure in the down-skin region of horizontal holes.
- (4)
- A thick grain-boundary α phase (GB-α) layer tended to form in the down-skin regions after heat treatment at 850 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, S.; Zou, Y.; Lim, C.V.S.; Wu, X. Review of laser powder bed fusion (LPBF) fabricated Ti-6Al-4V: Process, post-process treatment, microstructure, and property. Light Adv. Manuf. 2021, 2, 313–332. [Google Scholar] [CrossRef]
- Kok, Y.; Tan, X.P.; Wang, P.; Nai, M.L.S.; Loh, N.H.; Liu, E.; Tor, S.B. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [Google Scholar] [CrossRef]
- Gu, D.; Shi, X.; Poprawe, R.; Bourell, D.L.; Setchi, R.; Zhu, J. Material-structure-performance integrated laser-metal additive manufacturing. Science 2021, 372, eabg1487. [Google Scholar] [CrossRef] [PubMed]
- Careri, F.; Khan, R.H.U.; Todd, C.; Attallah, M.M. Additive manufacturing of heat exchangers in aerospace applications: A review. Appl. Therm. Eng. 2023, 235, 121387. [Google Scholar] [CrossRef]
- Liu, S.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- Tyagi, S.A.; Manjaiah, M. Laser Additive Manufacturing of Titanium-Based Functionally Graded Materials: A Review. J. Mater. Eng. Perform. 2022, 31, 6131–6148. [Google Scholar] [CrossRef]
- Sun, P.; Fang, Z.Z.; Xia, Y.; Zhang, Y.; Zhou, C. A novel method for production of spherical Ti-6Al-4V powder for additive manufacturing. Powder Technol. 2016, 301, 331–335. [Google Scholar] [CrossRef]
- Dong, Y.P.; Li, Y.L.; Zhou, S.Y.; Zhou, Y.H.; Dargusch, M.S.; Peng, H.X.; Yan, M. Cost-affordable Ti-6Al-4V for additive manufacturing: Powder modification, compositional modulation and laser in-situ alloying. Addit. Manuf. 2021, 37, 101699. [Google Scholar] [CrossRef]
- Collins, P.C.; Brice, D.A.; Samimi, P.; Ghamarian, I.; Fraser, H.L. Microstructural Control of Additively Manufactured Metallic Materials. Annu. Rev. Mater. Res. 2016, 46, 63–91. [Google Scholar] [CrossRef]
- Scime, L.; Joslin, C.; Collins, D.A.; Sprayberry, M.; Singh, A.; Halsey, W.; Duncan, R.; Snow, Z.; Dehoff, R.; Paquit, V. A Data-Driven Framework for Direct Local Tensile Property Prediction of Laser Powder Bed Fusion Parts. Materials 2023, 16, 7293. [Google Scholar] [CrossRef]
- Sanaei, N.; Fatemi, A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review. Prog. Mater Sci. 2021, 117, 100724. [Google Scholar] [CrossRef]
- Parry, L.A.; Ashcroft, I.A.; Wildman, R.D. Geometrical effects on residual stress in selective laser melting. Addit. Manuf. 2019, 25, 166–175. [Google Scholar] [CrossRef]
- Charles, A.; Elkaseer, A.; Thijs, L.; Scholz, S.G. Dimensional Errors Due to Overhanging Features in Laser Powder Bed Fusion Parts Made of Ti-6Al-4V. Appl. Sci. 2020, 10, 2416. [Google Scholar] [CrossRef]
- Barriobero-Vila, P.; Artzt, K.; Stark, A.; Schell, N.; Siggel, M.; Gussone, J.; Kleinert, J.; Kitsche, W.; Requena, G.; Haubrich, J. Mapping the geometry of Ti-6Al-4V: From martensite decomposition to localized spheroidization during selective laser melting. Scr. Mater. 2020, 182, 48–52. [Google Scholar] [CrossRef]
- Mukherjee, T.; Elmer, J.W.; Wei, H.L.; Lienert, T.J.; Zhang, W.; Kou, S.; DebRoy, T. Control of grain structure, phases, and defects in additive manufacturing of high-performance metallic components. Prog. Mater Sci. 2023, 138, 101153. [Google Scholar] [CrossRef]
- Teixeira, Ó.; Silva, F.J.G.; Ferreira, L.P.; Atzeni, E. A Review of Heat Treatments on Improving the Quality and Residual Stresses of the Ti–6Al–4V Parts Produced by Additive Manufacturing. Metals 2020, 10, 1006. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, C.-T. Design of titanium alloys by additive manufacturing: A critical review. Adv. Powder Mater. 2022, 1, 100014. [Google Scholar] [CrossRef]
- Dimopoulos, A.; Zournatzis, I.; Gan, T.-H.; Chatzakos, P. Multi-Response Optimization of Ti6Al4V Support Structures for Laser Powder Bed Fusion Systems. J. Manuf. Mater. Process. 2023, 7, 22. [Google Scholar] [CrossRef]
- Zhou, H.; Su, H.; Guo, Y.; Liu, Y.; Zhao, D.; Yang, P.; Shen, Z.; Xia, L.; Guo, M. Formation and Evolution of Surface Morphology in Overhang Structure of IN718 Superalloy Fabricated by Laser Powder Bed Fusion. Acta Metall. Sin. (Engl. Lett.) 2023, 36, 1433–1453. [Google Scholar] [CrossRef]
- Belloli, F.; Demir, A.G.; Previtali, B. Understanding the deformation mechanisms of horizontal internal channels during the LPBF of 18Ni300 maraging steel. J. Manuf. Processes 2021, 71, 237–248. [Google Scholar] [CrossRef]
- Carrozza, A.; Bircher, B.A.; Aversa, A.; Biamino, S. Investigating Complex Geometrical Features in LPBF-Produced Parts: A Material-Based Comparison Between Different Titanium Alloys. Met. Mater. Int. 2023, 29, 3697–3714. [Google Scholar] [CrossRef]
- Yağmur, I.P.A.; Miles, A. The Hitchhiker’s Guide to Smart Fusion. 2023. Available online: https://3d.eos.info/whitepaper-smart-fusion (accessed on 20 July 2024).
- GmbH, E.O. Metal 3D Printing Without Supports. 2021. Available online: https://www.eos.info/en-us/content/blog/metal-3d-printing-without-supports (accessed on 20 July 2024).
- Haas, B.; Whitepaper, F.F. 2021. Available online: https://www.slm-solutions.com/fileadmin/Content/Case_Studies/SLM-Solutions-FreeFloat-WhitePaper.pdf#:~:text=This%20SLM%20Solution%E2%80%99s%20white%20paper%20reveals%20Free%20Float%E2%80%99s,impact%20on%20the%20additive%20industry%2C%20and%20future%20applications (accessed on 20 July 2024).
- Tan, X.; Kok, Y.; Tan, Y.J.; Descoins, M.; Mangelinck, D.; Tor, S.B.; Leong, K.F.; Chua, C.K. Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting. Acta Mater. 2015, 97, 1–16. [Google Scholar] [CrossRef]
- Todaro, C.J.; Easton, M.A.; Qiu, D.; Zhang, D.; Bermingham, M.J.; Lui, E.W.; Brandt, M.; StJohn, D.H.; Qian, M. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat. Commun. 2020, 11, 142. [Google Scholar] [CrossRef]
- Yoon, H.; Liu, P.; Park, Y.; Choi, G.; Choi, P.P.; Sohn, H. Pulsed laser-assisted additive manufacturing of Ti-6Al-4V for in-situ grain refinement. Sci. Rep. 2022, 12, 22247. [Google Scholar] [CrossRef]
- Munk, J.; Breitbarth, E.; Siemer, T.; Pirch, N.; Häfner, C. Geometry Effect on Microstructure and Mechanical Properties in Laser Powder Bed Fusion of Ti-6Al-4V. Metals 2022, 12, 482. [Google Scholar] [CrossRef]
- Simonelli, M.; Tse, Y.Y.; Tuck, C. On the Texture Formation of Selective Laser Melted Ti-6Al-4V. Metall. Mater. Trans. A 2014, 45, 2863–2872. [Google Scholar] [CrossRef]
- Simonelli, M.; Tse, Y.Y.; Tuck, C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V. Mater. Sci. Eng. A 2014, 616, 1–11. [Google Scholar] [CrossRef]
- Yang, J.; Yu, H.; Yin, J.; Gao, M.; Wang, Z.; Zeng, X. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Mater. Des. 2016, 108, 308–318. [Google Scholar] [CrossRef]
- Cao, S.; Chu, R.; Zhou, X.; Yang, K.; Jia, Q.; Lim, C.V.S.; Huang, A.; Wu, X. Role of martensite decomposition in tensile properties of selective laser melted Ti-6Al-4V. J. Alloys Compd. 2018, 744, 357–363. [Google Scholar] [CrossRef]
- Vilaro, T.; Colin, C.; Bartout, J.D. As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting. Metall. Mater. Trans. A 2011, 42, 3190–3199. [Google Scholar] [CrossRef]
- Xu, W.; Brandt, M.; Sun, S.; Elambasseril, J.; Liu, Q.; Latham, K.; Xia, K.; Qian, M. Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition. Acta Mater. 2015, 85, 74–84. [Google Scholar] [CrossRef]
- Xu, W.; Lui, E.W.; Pateras, A.; Qian, M.; Brandt, M. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater. 2017, 125, 390–400. [Google Scholar] [CrossRef]
- Antonysamy, A.A.; Meyer, J.; Prangnell, P.B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting. Mater. Charact. 2013, 84, 153–168. [Google Scholar] [CrossRef]
- Prithiv, T.S.; Kloenne, Z.; Li, D.; Shi, R.; Zheng, Y.; Fraser, H.L.; Gault, B.; Antonov, S. Grain boundary segregation and its implications regarding the formation of the grain boundary α phase in the metastable β-Titanium Ti–5Al–5Mo–5V–3Cr alloy. Scr. Mater. 2022, 207, 114320. [Google Scholar] [CrossRef]
- Foltz, J.W.; Welk, B.; Collins, P.C.; Fraser, H.L.; Williams, J.C. Formation of Grain Boundary α in β Ti Alloys: Its Role in Deformation and Fracture Behavior of These Alloys. Metall. Mater. Trans. A 2010, 42, 645–650. [Google Scholar] [CrossRef]
- Kumar, K.N.; Muneshwar, P.; Singh, S.K.; Jha, A.K.; Pant, B.; George, K.M. Effect of Grain Boundary Alpha on Mechanical Properties of Ti5.4Al3Mo1V Alloy. JOM 2015, 67, 1265–1272. [Google Scholar] [CrossRef]
- Zafari, A.; Xia, K. High Ductility in a fully martensitic microstructure: A paradox in a Ti alloy produced by selective laser melting. Mater. Res. Lett. 2018, 6, 627–633. [Google Scholar] [CrossRef]
- Yao, Z.; He, M.; Yi, J.; Yang, M.; Shi, R.; Wang, C.; Zhong, Z.; Yang, T.; Wang, S.; Liu, X. High-strength titanium alloy with hierarchical-microstructure design via in-situ refinement-splitting strategy in additive manufacturing. Addit. Manuf. 2024, 80, 103969. [Google Scholar] [CrossRef]
- Rafi, H.K.; Karthik, N.V.; Gong, H.; Starr, T.L.; Stucker, B.E. Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting. J. Mater. Eng. Perform. 2013, 22, 3872–3883. [Google Scholar] [CrossRef]
- Dhiman, S.; Chinthapenta, V.; Brandt, M.; Fabijanic, D.; Wei, X. Microstructure control in additively manufactured Ti-6Al-4V during high-power laser powder bed fusion. Addit. Manuf. 2024, 96, 104573. [Google Scholar] [CrossRef]
- Kasperovich, G.; Hausmann, J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J. Mater. Process. Technol. 2015, 220, 202–214. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, L.; Zhang, H.; Maldar, A.; Zhu, G.; Chen, W.; Park, J.-S.; Wang, J.; Zeng, X. Effect of heat treatment on the tensile behavior of selective laser melted Ti-6Al-4V by in situ X-ray characterization. Acta Mater. 2020, 189, 93–104. [Google Scholar] [CrossRef]
P, Laser Power (W) | V, Scanning Velocity (mm/s) | H, Hatch Distance (mm) | T, Layer Thickness (μm) | VED, Volumetric Energy Density (J/mm3) | FOD, Focal Offset Distance (mm) | |
---|---|---|---|---|---|---|
Volume scan | 150 | 1000 | 0.12 | 30 | 41.67 | 0 |
250 | 1000 | 0.12 | 30 | 69.44 | 0 | |
350 | 1000 | 0.12 | 30 | 97.22 | 0 | |
Contour scan | 80 | 450 | 0.12 | 30 | 49.39 | 0 |
Up-skin scan | 100 | 465 | 0.12 | 30 | 59.74 | 0 |
Down-skin scan | 75 | 1000 | 0.12 | 30 | 20.84 | −8 |
Parts | Laser Power, W | Designation | Geometry Description |
---|---|---|---|
Horizontal holes | 150 | H-150 | Hole diameter: 1 mm; 2 mm; 4 mm; 6 mm; 8 mm |
250 | H-250 | ||
350 | H-350 | ||
Overhangs | 150 | OH-150 | Angle: 60°; 50°; 40°; 30° |
250 | OH-250 | ||
Penholders | 150 | PH-150-17 | Gap: 0.17 mm |
PH-150-22 | Gap: 0.22 mm | ||
250 | PH-250-17 | Gap: 0.17 mm | |
PH-250-22 | Gap: 0.22 mm | ||
350 | PH-350-17 | Gap: 0.17 mm | |
PH-350-22 | Gap: 0.22 mm |
Geometry | Shape Fidelity Problem | Microstructure Feature |
---|---|---|
Horizontal holes | “Sagging” down-skin surface on high-VED print | Equiaxed β grain Fine lamellar α+β structure in down-skin region |
Overhangs | Poor down-skin surface on high-VED print | Equiaxed β Fine lamellar α+β structure in down-skin region Inclined β grain |
Penholders | Fused parts on high-VED print | Inclined β grain |
Process | Microstructure | Yield Strength, MPa | Ultimate Tensile Strength, MPa | Elongation, % | Ref. |
---|---|---|---|---|---|
L-PBF | Martensite α′ | 1195 | 1269 | 5.0 | [42] |
L-PBF | Fine lamellar α+β | 1112 | 1165 | 11.6 | [35] |
L-PBF | Fine lamellar α+β | 960 | 1058 | 14.1 | [43] |
L-PBF, heat treated at 700 °C | Martensite α′ | 1051 | 1115 | 11.3 | [44] |
L-PBF, heat treated at 800 °C | lamellar α+β | 953 | 1050 | 14.7 | [32] |
L-PBF, heat treated at 900 °C | Lamellar α+β | 899 | 1046 | 19.2 | [45] |
L-PBF, HIPed | Lamellar α+β | 885 | 973 | 19.0 | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Garcia, N.; Pu, R.; Sun, P.; Fang, Z.Z. Effect of Geometry on Local Microstructure in Ti-6Al-4V Fabricated by Laser Powder Bed Fusion. Materials 2025, 18, 3756. https://doi.org/10.3390/ma18163756
Zhou C, Garcia N, Pu R, Sun P, Fang ZZ. Effect of Geometry on Local Microstructure in Ti-6Al-4V Fabricated by Laser Powder Bed Fusion. Materials. 2025; 18(16):3756. https://doi.org/10.3390/ma18163756
Chicago/Turabian StyleZhou, Chengshang, Noah Garcia, Runlin Pu, Pei Sun, and Zhigang Zak Fang. 2025. "Effect of Geometry on Local Microstructure in Ti-6Al-4V Fabricated by Laser Powder Bed Fusion" Materials 18, no. 16: 3756. https://doi.org/10.3390/ma18163756
APA StyleZhou, C., Garcia, N., Pu, R., Sun, P., & Fang, Z. Z. (2025). Effect of Geometry on Local Microstructure in Ti-6Al-4V Fabricated by Laser Powder Bed Fusion. Materials, 18(16), 3756. https://doi.org/10.3390/ma18163756