Influence of Fission Product Distribution in Medium-Burnup UO2 Fuel on Cracking Behavior
Abstract
1. Introduction
2. Irradiation History and Characterization Methods
3. Results and Discussion
4. Conclusions and Prospects
- (1)
- Grain boundary embrittlement and the formation of intragranular striped cracks are the primary mechanisms of fuel cracking at medium burnup, which are closely associated with the segregation of fission products and localized stress concentration.
- (2)
- In the grain boundary region, solid fission products, including Mo, Ru, Rh, and Pd, are enriched in spherical particles and tend to form high-density segregation around impurity particles, leading to localized stress concentration and grain boundary embrittlement.
- (3)
- The formation of an intragranular striped area is closely related to the segregation of fission elements and the amorphization process, which gradually transform into intragranular cracks under irradiation conditions.
- (4)
- Under 40.6GWd/tU burnup conditions, the size and number density of intragranular Xe bubbles are ~6.24 ± 0.24 nm and 5.2 × 1022 m−3, respectively, and Xe did not exert a significant influence on crack nucleation under the conditions analyzed in this study. Instead, a “Xe bubble free zone” in the vicinity of the grain boundaries was formed, indicating that grain boundary cracks serve as an escape pathway for fission gas.
- (1)
- Additional experimental studies should be conducted, complemented by atomic-scale simulations and molecular dynamics simulations, to deeply elucidate the nucleation, growth, and migration mechanisms of fission products in UO2 fuel, particularly focusing on the dynamic behavior of Xe gas bubbles and solid fission product clusters with irradiation defects.
- (2)
- For UO2 fuel under different burnup conditions, the distribution characteristics of fission products and their impact on fuel performance should be investigated in more detail, exploring the critical conditions for fuel swelling, cracking, and gas release at different burnup levels.
- (3)
- In view of the fact that cracks emerge in the fuel at medium-burnup levels, during the fabrication of fuel pellets, it is necessary to explore the possibility of enhancing the stability of fission products within the matrix to a certain extent through doping while precisely controlling the impurity content. This would effectively impede the migration of fission elements towards the grain boundaries, thereby enhancing the stability of the microstructure.
- (4)
- During the operation of the nuclear reactor, stringent control over power and temperature management is of the utmost importance and is essential for ensuring the safety performance of fuel pellets throughout every stage of the production and utilization process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burns, P.C.; Ewing, R.C.; Navrotsky, A. Nuclear Fuel in a Reactor Accident. Science 2012, 335, 1184–1188. [Google Scholar] [CrossRef]
- Gunther, S.O.; Schacherl, B. The quest for safer nuclear fuels. Nat. Rev. Chem. 2024, 8, 297. [Google Scholar] [CrossRef]
- Restani, R.; Horvath, M.; Goll, W.; Bertsch, J.; Gavillet, D.; Hermann, A.; Martin, M.; Walker, C.T. On the condition of UO2 nuclear fuel irradiated in a PWR to a burn-up in excess of 110 MWd/kgHM. J. Nucl. Mater. 2016, 481, 88–100. [Google Scholar] [CrossRef]
- Cao, X.; Yang, S.; Lv, J.; Li, Q. A pore pressure model and cracking strength analysis on the UO2 high burnup structure. Nucl. Eng. Des. 2023, 412, 112452. [Google Scholar] [CrossRef]
- Gerczak, T.J.; Parish, C.M.; Edmondson, P.D.; Baldwin, C.A.; Terrani, K.A. Restructuring in high burnup UO2 studied using modern electron microscopy. J. Nucl. Mater. 2018, 509, 245–259. [Google Scholar] [CrossRef]
- Parrish, R.; Winston, A.; Harp, J.; Aitkaliyeva, A. TEM characterization of high burnup fast-reactor MOX fuel. J. Nucl. Mater. 2019, 527, 151794. [Google Scholar] [CrossRef]
- Aagesen, L.K.; Biswas, S.; Jiang, W.; Andersson, D.; Cooper, M.W.D.; Matthews, C. Phase-field simulations of fission gas bubbles in high burnup UO2 during steady-state and LOCA transient conditions. J. Nucl. Mater. 2021, 557, 153267. [Google Scholar] [CrossRef]
- Xiao, H.; Long, C.; Chen, H. Model for evolution of grain size in the rim region of high burnup UO2 fuel. J. Nucl. Mater. 2016, 471, 74–79. [Google Scholar] [CrossRef]
- Guo, J.; Tan, S.; Wang, K.; Cheng, S.; Zhou, W. Development of a fission gas release and swelling model for sodium-cooled fast reactor fuels. Nucl. Eng. Des. 2024, 418, 112919. [Google Scholar] [CrossRef]
- Ge, Z.; Yan, D.; Lei, P.; Yun, D.J.N. A Comprehensive Review of High Burn-Up Structure Formation in UO2: Mechanisms, Interactions, and Future Directions. Nanomaterials 2025, 15, 325. [Google Scholar] [CrossRef]
- Prudil, A.A.; Welland, M.J.; Ofori-Opoku, N. Modelling the growth and evolution of statistically significant populations of intergranular fission gas bubbles by IPM. J. Nucl. Mater. 2022, 566, 153777. [Google Scholar] [CrossRef]
- Muntaha, M.A.; Chatterjee, S.; Blondel, S.; Aagesen, L.; Andersson, D.; Wirth, B.D.; Tonks, M.R. Impact of grain boundary and surface diffusion on predicted fission gas bubble behavior and release in UO2 fuel. J. Nucl. Mater. 2024, 594, 155032. [Google Scholar] [CrossRef]
- Lösönen, P. On the effect of irradiation-induced resolution in modelling fission gas release in UO2 LWR fuel. J. Nucl. Mater. 2017, 496, 140–156. [Google Scholar] [CrossRef]
- Pizzocri, D.; Rabiti, C.; Luzzi, L.; Barani, T.; Van Uffelen, P.; Pastore, G. PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release. J. Nucl. Mater. 2016, 478, 333–342. [Google Scholar] [CrossRef]
- Pizzocri, D.; Barani, T.; Luzzi, L. SCIANTIX: A new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes. J. Nucl. Mater. 2020, 532, 152042. [Google Scholar] [CrossRef]
- Pastore, G.; Militello, N.; Blondel, S.; Wirth, B.D. Single-size and cluster dynamics modeling of intra-granular fission gas bubbles in UO2. J. Nucl. Mater. 2023, 583, 154453. [Google Scholar] [CrossRef]
- Salvo, M.; Sercombe, J.; Helfer, T.; Sornay, P.; Désoyer, T. Experimental characterization and modeling of UO2 grain boundary cracking at high temperatures and high strain rates. J. Nucl. Mater. 2015, 460, 184–199. [Google Scholar] [CrossRef]
- Neilson, W.D.; Galvin, C.O.T.; Dillon, S.J.; Cooper, M.W.D.; Andersson, D.A. Irradiation-induced creep in UO2: The role of grain boundaries. Phys. Rev. Mater. 2024, 8, 103602. [Google Scholar] [CrossRef]
- Li, X.-Y.; Zhang, Y.-G.; Xu, Y.-C.; Wu, X.-B.; Kong, X.-S.; Wang, X.-P.; Fang, Q.-F.; Liu, C.-S. Interaction of radiation-induced defects with tungsten grain boundaries at across scales: A short review. Tungsten 2020, 2, 15–33. [Google Scholar] [CrossRef]
- Murphy, S.T.; Jay, E.E.; Grimes, R.W. Pipe diffusion at dislocations in UO2. J. Nucl. Mater. 2014, 447, 143–149. [Google Scholar] [CrossRef]
- Goyal, A.; Rudzik, T.; Deng, B.; Hong, M.; Chernatynskiy, A.; Sinnott, S.B.; Phillpot, S.R. Segregation of ruthenium to edge dislocations in uranium dioxide. J. Nucl. Mater. 2013, 441, 96–102. [Google Scholar] [CrossRef]
- Kim, J.J.; Seong, H.W.; Ryu, H.J. First principles calculations of cohesive energy of fission-product-segregated grain boundary of UO2. J. Nucl. Mater. 2022, 566, 153780. [Google Scholar] [CrossRef]
- Tian, S.; Xie, J.; Zhou, X.; Qian, B.; Lun, J.; Yu, L.; Wang, W. Microstructure and creep behavior of FGH95 nickel-base superalloy. Mater. Sci. Eng. A 2011, 528, 2076–2084. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, D.; Cao, M.; Chen, R.; Feng, Z.; Poprawe, R.; Schleifenbaum, J.H.; Ziegler, S. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process. Mater. Sci. Eng. A 2019, 767, 138327. [Google Scholar] [CrossRef]
- Andersson, D.A.; Tonks, M.R.; Casillas, L.; Vyas, S.; Nerikar, P.; Uberuaga, B.P.; Stanek, C.R. Multiscale simulation of xenon diffusion and grain boundary segregation in UO2. J. Nucl. Mater. 2015, 462, 15–25. [Google Scholar] [CrossRef]
- Zamzamian, S.M.; Zolfaghari, A.; Kowsar, Z. Molecular dynamics investigation of xenon, uranium, and oxygen diffusion in UO2 nuclear fuel. Comput. Mater. Sci. 2022, 211, 111553. [Google Scholar] [CrossRef]
- Middleburgh, S.C.; King, D.M.; Lumpkin, G.R. Atomic scale modelling of hexagonal structured metallic fission product alloys. R. Soc. Open Sci. 2015, 2, 140292. [Google Scholar] [CrossRef]
- Han, W.Z.; Demkowicz, M.J.; Fu, E.G.; Wang, Y.Q.; Misra, A. Effect of grain boundary character on sink efficiency. Acta Mater. 2012, 60, 6341–6351. [Google Scholar] [CrossRef]
- Walker, C.; Knappik, P.; Mogensen, M. Concerning the development of grain face bubbles and fission gas release in UO2 fuel. J. Nucl. Mater. 1988, 160, 10–23. [Google Scholar] [CrossRef]
- Nerikar, P.V.; Parfitt, D.C.; Casillas Trujillo, L.A.; Andersson, D.A.; Unal, C.; Sinnott, S.B.; Grimes, R.W.; Uberuaga, B.P.; Stanek, C.R. Segregation of xenon to dislocations and grain boundaries in uranium dioxide. Phys. Rev. B 2011, 84, 174105. [Google Scholar] [CrossRef]
- Liu, X.Y.; Andersson, D.A. Molecular dynamics study of fission gas bubble nucleation in UO2. J. Nucl. Mater. 2015, 462, 8–14. [Google Scholar] [CrossRef]
- Kashibe, S.; Une, K.; Nogita, K. Formation and growth of intragranular fission gas bubbles in UO2 fuels with burnup of 6–83 GWd/t. J. Nucl. Mater. 1993, 206, 22–34. [Google Scholar] [CrossRef]
- Yang, L.; Wirth, B.D. An improved xenon equation of state for nanobubbles in UO2. J. Nucl. Mater. 2022, 572, 154089. [Google Scholar] [CrossRef]
- Stubbins, J. Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels; University of Illinois at Urbana-Champagne: Champaign, IL, USA, 2012. [Google Scholar]
- Brindelle, G. Fission Gas Release Mechanism Between 600 °C and 800 °C During Thermal Transient on Irradiated Fuel; Centrale Supelec: Gif-sur-Yvette, France, 2017. [Google Scholar]
- Noirot, J.; Dowek, R.; Zacharie-Aubrun, I.; Blay, T.; Cabié, M.; Dumont, M.J.J.o.A.P. Restructuring in high burn-up pressurized water reactor UO2 fuel central parts: Experimental 3D characterization by focused ion beam—Scanning electron microscopy. J. Appl. Phys. 2022, 132, 195902. [Google Scholar] [CrossRef]
- Kessler, S.H.; Lach, T.G.; Garrett, K.E.; Conroy, M.A.; Abrecht, D.G.; Schwantes, J.M.; Clark, R.A. Direct observations of Pd–Te compound formation within noble metal inclusions in spent nuclear fuel. J. Nucl. Mater. 2020, 538, 152249. [Google Scholar] [CrossRef]
- Szenes, G. New insight on the high radiation resistance of UO2 against fission fragments. J. Nucl. Mater. 2016, 482, 28–33. [Google Scholar] [CrossRef]
- Li, Y.; Ran, G.; Pei, K.; Huang, X.; Zhang, R.; Wang, Q.; Niu, B. In-situ TEM study on composition change and amorphous transformation of Laves phase precipitates in FeCrAl alloy during Fe+ irradiation. J. Nucl. Mater. 2022, 563, 153620. [Google Scholar] [CrossRef]
- Liu, J.; He, G.; Hu, J.; Shen, Z.; Kirk, M.; Li, M.; Ryan, E.; Baldo, P.; Lozano-Perez, S.; Grovenor, C. Irradiation-induced amorphization in the zirconium suboxide on Zr-0.5Nb alloys. J. Nucl. Mater. 2019, 513, 226–231. [Google Scholar] [CrossRef]
- Bowman, J.; Wang, P.; Was, G.S.; Bachhav, M.; Motta, A.T. Ion irradiation induced amorphization of precipitates in Zircaloy. J. Nucl. Mater. 2022, 571, 153988. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, D.; Tang, C.; Fu, T.; Si, J.; Teng, C.; Wu, L. Influence of Fission Product Distribution in Medium-Burnup UO2 Fuel on Cracking Behavior. Materials 2025, 18, 3571. https://doi.org/10.3390/ma18153571
Xie D, Tang C, Fu T, Si J, Teng C, Wu L. Influence of Fission Product Distribution in Medium-Burnup UO2 Fuel on Cracking Behavior. Materials. 2025; 18(15):3571. https://doi.org/10.3390/ma18153571
Chicago/Turabian StyleXie, Dongsheng, Chuanbao Tang, Tong Fu, Jiaxuan Si, Changqing Teng, and Lu Wu. 2025. "Influence of Fission Product Distribution in Medium-Burnup UO2 Fuel on Cracking Behavior" Materials 18, no. 15: 3571. https://doi.org/10.3390/ma18153571
APA StyleXie, D., Tang, C., Fu, T., Si, J., Teng, C., & Wu, L. (2025). Influence of Fission Product Distribution in Medium-Burnup UO2 Fuel on Cracking Behavior. Materials, 18(15), 3571. https://doi.org/10.3390/ma18153571