The Effect of Substrate Surface Oxidation on Patterned Graphene Growth for Flexible Electronics
Abstract
1. Introduction
2. Materials and Methods
2.1. Pretreatment of Copper Foil
2.2. Patterning of Copper Substrate
2.3. Growth of Patterned Graphene
2.4. Transfer of Graphene and Device Fabrication
2.5. Measurements and Characterization
3. Results and Discussion
3.1. Process of Device Fabrication and Characterization of Patterned Substrate
3.2. Regulation of Oxidation Time and Boundary Precision Between Oxidized and Unoxidized Regions
3.3. Growth of Patterned Graphene Based on Optimized Patterned Substrate
3.4. Fabrication of Flexible Electronics Based on Patterned Graphene
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef]
- Sekitani, T.; Someya, T. Stretchable, Large-area Organic Electronics. Adv. Mater. 2010, 22, 2228–2246. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Hong, B.H. Graphene for displays that bend. Nat. Nanotechnol. 2014, 9, 737–738. [Google Scholar] [CrossRef]
- Sun, M.; Wang, S.; Liang, Y.; Wang, C.; Zhang, Y.; Liu, H.; Zhang, Y.; Han, L. Flexible Graphene Field-Effect Transistors and Their Application in Flexible Biomedical Sensing. Nano-Micro Lett. 2024, 17, 34. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef]
- Jang, H.; Park, Y.J.; Chen, X.; Das, T.; Kim, M.-S.; Ahn, J.-H. Graphene-Based Flexible and Stretchable Electronics. Adv. Mater. 2016, 28, 4184–4202. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced Carbon for Flexible and Wearable Electronics. Adv. Mater. 2019, 31, 1801072. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, M.; Wan, C.; Cai, P.; Loh, X.J.; Chen, X. Devising Materials Manufacturing Toward Lab-to-Fab Translation of Flexible Electronics. Adv. Mater. 2020, 32, 2001903. [Google Scholar] [CrossRef]
- Lee, Y.; Ji, E.; Kim, M.J.; Lee, G.-H. Flexible and transparent gold network electrodes on fluorinated graphene. J. Mater. Chem. A 2024, 12, 24556–24564. [Google Scholar] [CrossRef]
- Song, H.; Nie, B.; Zhu, Y.; Qi, G.; Zhang, Y.; Peng, W.; Li, X.; Shao, J.; Wei, R. Flexible Grid Graphene Electrothermal Films for Real-Time Monitoring Applications. Langmuir 2024, 40, 6940–6948. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Tang, D.; Shen, W.; Jiang, R.; Lu, M. Flexible, high temperature resistant and highly efficient E-heating graphene/polyimide film. AIP Adv. 2024, 14, 015041. [Google Scholar] [CrossRef]
- Wei, T.; Hauke, F.; Hirsch, A. Evolution of Graphene Patterning: From Dimension Regulation to Molecular Engineering. Adv. Mater. 2021, 33, 2104060. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Li, M.; Liu, Y.; Zhang, Z.; Wang, F.; Sha, Y.; Huang, J.; Xu, Y.; Wu, M.; Chen, G.; et al. Photochemically Patterning Graphene in a Highly Efficient, Anisotropic, and Clean Way. ACS Appl. Nano Mater. 2024, 7, 10690–10698. [Google Scholar] [CrossRef]
- Tang, P.; Sun, J.; Mei, Y.; Du, Z.; Fang, A.; Xiong, F.; Guo, W. A patterning technology of transfer-free graphene for transparent electrodes of near-ultraviolet light-emitting diodes. J. Mater. Chem. C 2024, 12, 9824–9833. [Google Scholar] [CrossRef]
- Gentili, D.; Calabrese, G.; Lunedei, E.; Borgatti, F.; Mirshokraee, S.A.; Benekou, V.; Tseberlidis, G.; Mezzi, A.; Liscio, F.; Candini, A.; et al. Tuning Electronic and Functional Properties in Defected MoS2 Films by Surface Patterning of Sulphur Atomic Vacancies. Small Methods 2025, 9, 2401486. [Google Scholar] [CrossRef]
- Garcia, R.; Knoll, A.W.; Riedo, E. Advanced scanning probe lithography. Nat. Nanotechnol. 2014, 9, 577–587. [Google Scholar] [CrossRef]
- Cavallini, M.; Gentili, D.; Greco, P.; Valle, F.; Biscarini, F. Micro- and nanopatterning by lithographically controlled wetting. Nat. Protoc. 2012, 7, 1668–1676. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Fu, J.; Wang, H.; Wei, X.; Li, X.; Shi, H. In-Situ Growth of High-Quality Customized Monolayer Graphene Structures for Optoelectronics. Adv. Funct. Mater. 2022, 32, 2202376. [Google Scholar] [CrossRef]
- Wu, Y.; Fang, R.; Shen, L.; Bai, H. Dual mechanisms in hydrogen reduction of copper oxide: Surface reaction and subsurface oxygen atom transfer. RSC Adv. 2024, 14, 9985–9995. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Li, J.; Zakharov, D.; Stach, E.A.; Zhou, G. In situ atomic-scale imaging of the metal/oxide interfacial transformation. Nat. Commun. 2017, 8, 307. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Lu, H.; Ma, X.; Chen, X. Heterogeneous nucleation on surfaces of the three-dimensional cylindrical substrate. J. Cryst. Growth 2021, 575, 126340. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Z.; Dong, J.; Yi, D.; Niu, J.; Wu, M.; Lin, L.; Yin, R.; Li, M.; Zhou, J.; et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074–1080. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef]
- Li, X.; Wu, G.; Zhang, L.; Huang, D.; Li, Y.; Zhang, R.; Li, M.; Zhu, L.; Guo, J.; Huang, T.; et al. Single-crystal two-dimensional material epitaxy on tailored non-single-crystal substrates. Nat. Commun. 2022, 13, 1773. [Google Scholar] [CrossRef]
- Bautista-Flores, C.; Sato-Berrú, R.Y.; Mendoza, D. Raman spectroscopy of CVD graphene during transfer process from copper to SiO2/Si substrates. Mater. Res. Express 2019, 6, 015601. [Google Scholar] [CrossRef]
- Heller, E.J.; Yang, Y.; Kocia, L.; Chen, W.; Fang, S.; Borunda, M.; Kaxiras, E. Theory of Graphene Raman Scattering. ACS Nano 2016, 10, 2803–2818. [Google Scholar] [CrossRef] [PubMed]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef]
- Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S.K.; Waghmare, U.V.; Novoselov, K.S.; Krishnamurthy, H.R.; Geim, A.K.; Ferrari, A.C.; et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215. [Google Scholar] [CrossRef]
- Bernard, S.; Whiteway, E.; Yu, V.; Austing, D.; Hilke, M. Probing the experimental phonon dispersion of graphene using 12C and 13C isotopes. Phys. Rev. B 2012, 86, 85409. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Jiang, Y.; Wang, Y.-X.; Wu, Y.; Lai, J.-C.; Niu, S.; Xu, C.; Shih, C.-C.; Wang, C.; et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 2022, 603, 624–630. [Google Scholar] [CrossRef]
- Burns, S.; MacLeod, J.; Trang Do, T.; Sonar, P.; Yambem, S.D. Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs. Sci. Rep. 2017, 7, 40805. [Google Scholar] [CrossRef]
- Swathi, R.S.; Sebastian, K.L. Excitation energy transfer from dye molecules to doped graphene#. J. Chem. Sci. 2012, 124, 233–240. [Google Scholar]
- Prabakaran, G.; Velmurugan, K.; David, C.I.; Nandhakumar, R. Role of Förster Resonance Energy Transfer in Graphene-Based Nanomaterials for Sensing. Appl. Sci. 2022, 12, 6844. [Google Scholar] [CrossRef]
- Kim, J.; Cote, L.J.; Kim, F.; Huang, J. Visualizing Graphene Based Sheets by Fluorescence Quenching Microscopy. J. Am. Chem. Soc. 2010, 132, 260–267. [Google Scholar] [CrossRef]
- Kasry, A.; Ardakani, A.A.; Tulevski, G.S.; Menges, B.; Copel, M.; Vyklicky, L. Highly Efficient Fluorescence Quenching with Graphene. J. Phys. Chem. C 2012, 116, 2858–2862. [Google Scholar] [CrossRef]
- Guo, X.; Zafar, A.; Nan, H.; Yu, Y.; Zhao, W.; Liang, Z.; Zhang, X.; Ni, Z. Manipulating fluorescence quenching efficiency of graphene by defect engineering. Appl. Phys. Express 2016, 9, 055502. [Google Scholar] [CrossRef]
- Posudievsky, O.Y.; Kondratyuk, A.S.; Papakin, M.S.; Kozarenko, O.A.; Koshechko, V.G.; Pokhodenko, V.D. Quenching of substituted polyparaphenylenevinylenes photoluminescence by 2D MoS2 and modified graphenes. Synth. Met. 2020, 264, 116376. [Google Scholar] [CrossRef]
Oxidation Time (min) | No. 1 * [μm] | No. 2 [μm] | No. 3 [μm] | No. 4 [μm] | No. 5 [μm] | Mean [μm] | Standard Deviation [μm] | Median [μm] |
---|---|---|---|---|---|---|---|---|
15 | 2.300 | 1.503 | 2.402 | 2.500 | 1.600 | 2.061 | 0.4717 | 2.30 |
30 | 0.889 | 1.000 | 1.482 | 1.334 | 0.519 | 1.045 | 0.3800 | 1.00 |
45 | 0.534 | 0.481 | 0.560 | 0.379 | 0.517 | 0.494 | 0.0705 | 0.52 |
60 | 1.446 | 1.154 | 1.250 | 0.962 | 0.865 | 1.135 | 0.2308 | 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Hou, N.; Wang, H.; Chen, X.; Shi, H.; Li, X. The Effect of Substrate Surface Oxidation on Patterned Graphene Growth for Flexible Electronics. Materials 2025, 18, 3338. https://doi.org/10.3390/ma18143338
Zhang R, Hou N, Wang H, Chen X, Shi H, Li X. The Effect of Substrate Surface Oxidation on Patterned Graphene Growth for Flexible Electronics. Materials. 2025; 18(14):3338. https://doi.org/10.3390/ma18143338
Chicago/Turabian StyleZhang, Ruiqi, Ning Hou, Huawen Wang, Xu Chen, Haofei Shi, and Xin Li. 2025. "The Effect of Substrate Surface Oxidation on Patterned Graphene Growth for Flexible Electronics" Materials 18, no. 14: 3338. https://doi.org/10.3390/ma18143338
APA StyleZhang, R., Hou, N., Wang, H., Chen, X., Shi, H., & Li, X. (2025). The Effect of Substrate Surface Oxidation on Patterned Graphene Growth for Flexible Electronics. Materials, 18(14), 3338. https://doi.org/10.3390/ma18143338