Thin-Film Encapsulation for OLEDs and Its Advances: Toward Engineering
Abstract
1. Introduction
2. Fundamentals of Thin-Film Encapsulation
2.1. Development of OLED Encapsulation Technology
2.2. Functioning of Thin-Film Encapsulation
2.2.1. Basic Properties
2.2.2. Reliability (RA)
2.2.3. Compatibility
2.3. Principles and Mechanisms of Thin-Film Encapsulation
2.3.1. Barrier Principles of Thin-Film Encapsulation
2.3.2. Failure Mechanisms of Thin-Film Encapsulation
3. Novel Thin-Film Encapsulation Technology
3.1. Thinning Technology
3.1.1. Monolayer of ALD Barrier Film
3.1.2. Nanolaminate Barrier Film
3.1.3. Other Ultra-Thin Barrier Films
3.2. Ultra-Flexibility Technology
3.2.1. Crack Passivation Technology
3.2.2. Organic/Inorganic Nanolaminate
3.2.3. Stress Management Technology
3.3. Multifunctionality Technology
3.4. Emerging Technology
3.5. Novel Equipment for Thin-Film Encapsulation
- (a)
- The introduction of the substrate motion strategy results in a greater occupied space, exceeding that of the temporal ALD by a factor of two.
- (b)
- The reaction’s inherent limitations necessitate the control of substrate/nozzle movement speed (less than 20 mm/s). At this juncture, the requisite time for the fabrication of a circulating ALD film on the G8.5 glass substrate (2200 × 2500 mm) is a minimum of 110 s. The completion of a 30 nm Al2O3 film would require approximately six hours, rendering the process no faster than that of temporal ALD. Although this situation can be achieved by adding multiple groups of nozzles to complete multiple ALD cycles in a single reciprocating motion, this approach also greatly increases the procurement and maintenance costs of the equipment.
- (c)
- When it is necessary to complete one ALD cycle with one reciprocation, the length of the nozzle should be set to the width of the large-size substrate. Thus, the control of the uniformity of the nozzle’s gas ejection in the longitudinal direction is a key factor affecting the uniformity of the depositing ALD film. This has elevated the requirements of the fluid design.
- (d)
- The current small-size TFEs use a mask containing a metal sheet to realize the film patterning. The mask sheet is directly covered on the substrate. Only the opening area can deposit the thin film. If the patterning method is directly transplanted, the mask sheet may bend, scratch, or otherwise fail to function properly. The substrate-moving platform must also be highly load-bearing and stable, which presents a significant challenge for SALD equipment developers. As a result, effective patterning methods remain elusive. The strategy of area-selective ALD has been developed in recent years as a patterning method [163,164]. However, additional manufacturing steps and appropriate equipment design still remain to be further studied and verified by engineers.
- (a)
- Low-temperature deposition (10~60 °C);
- (b)
- The ability to deposit films of high purity, low pinhole density, and good step coverage;
- (c)
- The capacity to fill nanometer pinholes on the surface of inorganic films and provide a smooth deposition surface for inorganic film deposition.
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LCDs | Liquid Crystal Displays |
TFE | Thin-film encapsulation |
GDBs | Gas diffusion barriers |
WVTR | Water Vapor Transmission Rate |
OTR | Oxygen Transmission Rate |
OLEDs | Organic Light-Emitting Diodes |
AMOLEDs | Active-Matrix Organic Light-Emitting Diodes |
ALD | Atomic layer deposition |
MLD | Molecular Layer Deposition |
RA | Reliability |
pp-HMDSO | Plasma polymer Hexamethyl disiloxane |
TFTs | Thin-film transistors |
COS | Crack onset strain |
LED | Light-Emitting Diode |
R & D | Research and design |
IJP | Inkjet printing |
PECVD | Plasma-enhanced chemical vapor deposition |
TMA | Trimethylaluminum |
PEALD | Plasma-enhanced atomic layer deposition |
APP | Atmospheric Pressure Plasma |
SiON | Silicon oxynitride |
TEM | Transmission electron microscopy |
iCVD | Initiated chemical vapor deposition |
ALI | Atomic Layer Infiltration |
PMMA | Polymethyl Methacrylate |
CE | Current efficiency |
DMD | Dielectric/metal/dielectric |
PDMS | Polydimethylsiloxane |
SALD | Spatial ALD |
FCVA | Filtered Cathode Vacuum Arc |
R2R | Roll to Roll |
References
- Adachi, C.; Nagai, K.; Tamoto, N. Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Appl. Phys. Lett. 1995, 66, 2679–2681. [Google Scholar] [CrossRef]
- Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.-P.; Li, Y.-Q.; Tang, J.-X. Recent advances in flexible organic light-emitting diodes. J. Mater. Chem. C 2016, 4, 9116–9142. [Google Scholar] [CrossRef]
- Li, Y.; He, P.; Chen, S.; Lan, L.; Dai, X.; Peng, J. Inkjet-Printed Oxide Thin-Film Transistors Based on Nanopore-Free Aqueous-Processed Dielectric for Active-Matrix Quantum-Dot Light-Emitting Diode Displays. ACS Appl. Mater. Interfaces 2019, 11, 28052–28059. [Google Scholar] [CrossRef]
- He, P.; Lan, L.; Deng, C.; Wang, J.; Peng, J.; Cao, Y. Highly efficient and stable hybrid quantum-dot light-emitting field-effect transistors. Mater. Horiz. 2020, 7, 2439–2449. [Google Scholar] [CrossRef]
- He, P.; Jiang, C.; Lan, L.; Sun, S.; Li, Y.; Gao, P.; Zhang, P.; Dai, X.; Wang, J.; Peng, J. High-performance, solution-processed quantum dot light-emitting field-effect transistors with a scandium-incorporated indium oxide semiconductor. ACS Nano 2018, 12, 4624–4629. [Google Scholar] [CrossRef]
- Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Electroluminescence in organic films with three-layer structure. Jpn. J. Appl. Phys. 1988, 27, L269. [Google Scholar] [CrossRef]
- Choi, G.C.; Kim, D.-Y.; Chang, S. A Study on the Bottom-Emitting Characteristics of Blue OLED with 7-Layer Laminated Structure. Clean. Technol. 2023, 29, 244–248. [Google Scholar]
- Liew, Y.-F.; Aziz, H.; Hu, N.-X.; Chan, H.S.-O.; Xu, G.; Popovic, Z. Investigation of the sites of dark spots in organic light-emitting devices. Appl. Phys. Lett. 2000, 77, 2650–2652. [Google Scholar] [CrossRef]
- McElvain, J.; Antoniadis, H.; Hueschen, M.; Miller, J.; Roitman, D.; Sheats, J.; Moon, R. Formation and growth of black spots in organic light-emitting diodes. J. Appl. Phys. 1996, 80, 6002–6007. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, K.Y.; Tak, Y.-H.; Lee, J.-L. Dark spot formation mechanism in organic light emitting diodes. Appl. Phys. Lett. 2006, 89, 132108. [Google Scholar] [CrossRef]
- Moro, L.; Rutherford, N.M.; Visser, R.J.; Hauch, J.A.; Klepek, C.; Denk, P.; Schilinsky, P.; Brabec, C.J. Barix multilayer barrier technology for organic solar cells. Org. Photovolt. VII 2006, 6334, 76–84. [Google Scholar] [CrossRef]
- Li, Y.; Lan, L.; Xiao, P.; Lin, Z.; Sun, S.; Song, W.; Song, E.; Gao, P.; Zhang, P.; Peng, J. Facile patterning of amorphous indium oxide thin films based on a gel-like aqueous precursor for low-temperature, high performance thin-film transistors. J. Mater. Chem. C 2016, 4, 2072–2078. [Google Scholar] [CrossRef]
- Yuzhi, L.; Linfeng, L.; Peng, X.; Sheng, S.; Zhenguo, L.; Wei, S.; Erlong, S.; Peixiong, G.; Weijing, W.; Junbiao, P. Coffee-Ring Defined Short Channels for Inkjet-Printed Metal Oxide Thin-Film Transistors. ACS Appl. Mater. Interfaces 2016, 8, 19634–19648. [Google Scholar] [CrossRef]
- Li, Y.; Lan, L.; Sun, S.; Lin, Z.; Gao, P.; Song, W.; Song, E.; Zhang, P.; Peng, J. All inkjet-printed metal-oxide thin-film transistor array with good stability and uniformity using surface-energy patterns. ACS Appl. Mater. Interfaces 2017, 9, 8194–8200. [Google Scholar] [CrossRef]
- Wu, W.; Li, W.; Nominanda, H.; Chen, J.R.; Zhao, L.; Choi, S.Y. Plasma-Polymerized HMDSO for Thin Film Encapsulation of Micro-OLED. SID Symp. Dig. Tech. Pap. 2023, 7, 1203–1205. [Google Scholar] [CrossRef]
- Burrows, P.; Bulovic, V.; Forrest, S.; Sapochak, L.S.; McCarty, D.; Thompson, M. Reliability and degradation of organic light emitting devices. Appl. Phys. Lett. 1994, 65, 2922–2924. [Google Scholar] [CrossRef]
- Koden, M. Encapsulating Technologies. In Flexible OLEDs: Fundamental and Novel Practical Technologies; Springer: Berlin/Heidelberg, Germany, 2022; pp. 71–79. [Google Scholar]
- Tsuruoka, Y.; Hieda, S.; Tanaka, S.; Takahashi, H. 21.2: Transparent thin film desiccant for OLEDs. In Proceedings of the Society for Information Display Symposium Digest of Technical Papers, Baltimore, MD, USA, 20–22 May 2003; pp. 860–863. [Google Scholar]
- Kim, D.Y.; Jung, S.H.; Suh, M.C. Late-News Poster: Influence of Index Matching Epoxy Filler at the Encapsulation Part for the Performance of TEOLED with Internal Wrinkle Structure. In Proceedings of the Society for Information Display Symposium Digest of Technical Papers, San Jose, CA, USA, 12–17 May 2019; pp. 1963–1965. [Google Scholar]
- Chen, Z.; Wang, Z.; Zhou, Y.; Zhang, J.; Li, Z.; Li, C.; Chen, P.; Duan, Y. Stress-matched laminated thin film of SiO(x)N(y)/SiO(2)/ SiO(x)N(y) for enhanced encapsulation of organic light-emitting devices. Opt. Express 2021, 29, 33077–33085. [Google Scholar] [CrossRef]
- Kwon, J.H.; Choi, S.; Jeon, Y.; Kim, H.; Chang, K.S.; Choi, K.C. Functional Design of Dielectric-Metal-Dielectric-Based Thin-Film Encapsulation with Heat Transfer and Flexibility for Flexible Displays. ACS Appl. Mater. Interfaces 2017, 9, 27062–27072. [Google Scholar] [CrossRef]
- Behrendt, A.; Meyer, J.; van de Weijer, P.; Gahlmann, T.; Heiderhoff, R.; Riedl, T. Stress Management in Thin-Film Gas-Permeation Barriers. ACS Appl. Mater. Interfaces 2016, 8, 4056–4061. [Google Scholar] [CrossRef]
- Bulusu, A.; Singh, A.; Wang, C.Y.; Dindar, A.; Fuentes-Hernandez, C.; Kim, H.; Cullen, D.; Kippelen, B.; Graham, S. Engineering the mechanical properties of ultrabarrier films grown by atomic layer deposition for the encapsulation of printed electronics. J. Appl. Phys. 2015, 118, 9. [Google Scholar] [CrossRef]
- Mei, Y.; Huang, G.; Solovev, A.A.; Ureña, E.B.; Mönch, I.; Ding, F.; Reindl, T.; Fu, R.K.; Chu, P.K.; Schmidt, O.G. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv. Mater. 2008, 20, 4085–4090. [Google Scholar] [CrossRef]
- Profijt, H.B.; van de Sanden, M.C.M.; Kessele, W.M.M. Substrate-biasing during plasma-assisted atomic layer deposition to tailor metal-oxide thin film growth. J. Vac. Sci. Technol. A 2013, 31, 9. [Google Scholar] [CrossRef]
- Jen, S.H.; George, S.M. Alucone Interlayers to Minimize Stress Caused by Thermal Expansion Mismatch between Al2O3 Films and Teflon Substrates. ACS Appl. Mater. Interfaces 2013, 5, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.H.; Jeong, Y.J.; An, T.K.; Park, S.; Jang, J.H.; Nam, S.; Jang, J.; Kim, S.H.; Park, C.E. Optimization of Al2O3/TiO2 nanolaminate thin films prepared with different oxide ratios, for use in organic light-emitting diode encapsulation, via plasma-enhanced atomic layer deposition. Phys. Chem. Chem. Phys. 2016, 18, 1042–1049. [Google Scholar] [CrossRef]
- Hussein, M.; Wörhoff, K.; Sengo, G.; Driessen, A. Optimization of plasma-enhanced chemical vapor deposition silicon oxynitride layers for integrated optics applications. Thin Solid. Film. 2007, 515, 3779–3786. [Google Scholar] [CrossRef]
- Visser, R.J.; Moro, L.; Chu, X.; Chen, J.R.; van de Weijer, P.; Akkerman, H.B.; Graham, S.; Söderlund, M.; Perrotta, A.; Creatore, M.A. Thin Film Encapsulation. In Handbook of Organic Light-Emitting Diodes; Adachi, C., Hattori, R., Kaji, H., Tsujimura, T., Eds.; Springer: Tokyo, Japan, 2018; pp. 1–51. [Google Scholar]
- Laidler, K.J. The development of the Arrhenius equation. J. Chem. Educ. 1984, 61, 494. [Google Scholar] [CrossRef]
- Hill, A. Lessons Learned from HALT, HASS, and Accelerating Aging Testing. In Proceedings of the 2024 Annual Reliability and Maintainability Symposium (RAMS), Albuquerque, NM, USA, 22–25 January 2024; pp. 1–4. [Google Scholar]
- Guo, T.; Wang, K.; Lu, R.; Fan, C.; Wang, Y.; Huang, J.; Hsu, H.L. 74-1: A New Flexible Thin Film Encapsulation Structure with High Reliability and Wide Color-Viewing-Angle. In Proceedings of the Society for Information Display Symposium Digest of Technical Papers, San Jose, CA, USA, 12–17 May 2019; pp. 1052–1055. [Google Scholar]
- Sun, T.; Qin, C.; Wang, T.; Zhang, Z.; Wang, Y.; Zhang, S.; Liu, Z.; Shi, S.; Wang, D. 24-4: Research on Water Vapor Penetration of OLED Encapsulation. In Proceedings of the SID Symposium Digest of Technical Papers, Virtual, 17–21 May 2021; pp. 305–307. [Google Scholar]
- Abdulagatov, A.; Yan, Y.; Cooper, J.; Zhang, Y.; Gibbs, Z.; Cavanagh, A.; Yang, R.; Lee, Y.; George, S. Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance. ACS Appl. Mater. Interfaces 2011, 3, 4593–4601. [Google Scholar] [CrossRef]
- Han, S.H.; Shin, J.H.; Choi, S.S. Analytical investigation of multi-layered rollable displays considering nonlinear elastic adhesive interfaces. Sci. Rep. 2023, 13, 5697. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, S.W.; Lee, G.; Yoon, J.; Kim, S.; Hong, J.H.; Jo, S.C.; Jeong, U. Fabrication of practical deformable displays: Advances and challenges. Light. Sci. Appl. 2023, 12, 61. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Fu, H.R.; Tang, R.T.; Zhang, B.C.; Chen, Y.M.; Jiang, J.Q. Failure mechanisms in flexible electronics. Int. J. Smart Nano Mater. 2023, 14, 510–565. [Google Scholar] [CrossRef]
- Park, Y.T.; Kim, S.; Ham, S.B.; Cho, S.M. Folding-stability criteria of thin-film encapsulation layers for foldable organic light-emitting diodes. Thin Solid. Film. 2020, 710, 10. [Google Scholar] [CrossRef]
- Lee, C.-C.; Liou, Y.-Y. Dependent Analyses of Multilayered Material/Geometrical Characteristics on the Mechanical Reliability of Flexible Display Devices. IEEE Trans. Device Mater. Reliab. 2018, 18, 639–642. [Google Scholar] [CrossRef]
- Chang, I.; Park, T.; Lee, J.; Lee, M.H.; Ko, S.H.; Cha, S.W. Bendable polymer electrolyte fuel cell using highly flexible Ag nanowire percolation network current collectors. J. Mater. Chem. A 2013, 1, 8541–8546. [Google Scholar] [CrossRef]
- Jen, S.-H.; Bertrand, J.A.; George, S.M. Critical tensile and compressive strains for cracking of Al2O3 films grown by atomic layer deposition. J. Appl. Phys. 2011, 109, 084305. [Google Scholar] [CrossRef]
- Hoffmann, L.; Theirich, D.; Pack, S.; Kocak, F.; Schlamm, D.; Hasselmann, T.; Fahl, H.; Raupke, A.; Gargouri, H.; Riedl, T. Gas Diffusion Barriers Prepared by Spatial Atmospheric Pressure Plasma Enhanced ALD. ACS Appl. Mater. Interfaces 2017, 9, 4171–4176. [Google Scholar] [CrossRef]
- Chen, Z.; Cotterell, B.; Wang, W. The fracture of brittle thin films on compliant substrates in flexible displays. Eng. Fract. Mech. 2002, 69, 597–603. [Google Scholar] [CrossRef]
- Park, E.K.; Kim, S.; Heo, J.; Kim, H.J. Electrical evaluation of crack generation in SiNx and SiOxNy thin-film encapsulation layers for OLED displays. Appl. Surf. Sci. 2016, 370, 126–130. [Google Scholar] [CrossRef]
- Oh, S.J.; Ma, B.S.; Yang, C.H.; Kim, T.S. Intrinsic Mechanical Properties of Free-Standing SiNx Thin Films Depending on PECVD Conditions for Controlling Residual Stress. Acs Appl. Electron. Mater. 2022, 4, 3980–3987. [Google Scholar] [CrossRef]
- Jen, S.-H.; Lee, B.H.; George, S.M.; McLean, R.S.; Carcia, P.F. Critical tensile strain and water vapor transmission rate for nanolaminate films grown using Al2O3 atomic layer deposition and alucone molecular layer deposition. Appl. Phys. Lett. 2012, 101, 234103. [Google Scholar] [CrossRef]
- Wang, L.; Ruan, C.P.; Li, M.; Zou, J.H.; Tao, H.; Peng, J.B.; Xu, M. Enhanced moisture barrier performance for ALD-encapsulated OLEDs by introducing an organic protective layer. J. Mater. Chem. C 2017, 5, 4017–4024. [Google Scholar] [CrossRef]
- Yang, C.-J.; Liu, S.-H.; Hsieh, H.-H.; Liu, C.-C.; Cho, T.-Y.; Wu, C.-C. Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution. Appl. Phys. Lett. 2007, 91, 253508. [Google Scholar] [CrossRef]
- Cho, D.H.; Park, Y.S.; Choi, S.; Cho, H.; Kwon, B.H.; Shin, J.W.; Cho, N.S. Luminance enhancement of top-emitting blue organic light emitting diodes encapsulated with silicon nitride thin films by a double-layer nano-structure. Opt. Express 2022, 30, 11959–11972. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Kim, J.; Park, Y.-S.; Cho, D.-H.; Kwon, O.E.; Lee, K.M.; Lee, H.C.; Cho, N.S.; Yu, B. Fab-compatible nano-lens array integration for optically efficient flexible top-emitting organic light-emitting diodes. Jpn. J. Appl. Phys. 2019, 58, SDDH01. [Google Scholar] [CrossRef]
- Wrzesniewski, E.; Eom, S.H.; Cao, W.; Hammond, W.T.; Lee, S.; Douglas, E.P.; Xue, J. Enhancing light extraction in top-emitting organic light-emitting devices using molded transparent polymer microlens arrays. Small 2012, 8, 2647–2651. [Google Scholar] [CrossRef]
- Park, Y.; Han, K.; Cho, D.; Cho, N.; Han, Y.; Lee, J.; Lee, H.; Yu, B.; Lee, J.; Kim, J. A highly mass-producible nano-lens array technology for optically efficient full-color organic light emitting diode display applications. In Proceedings of the Society for Information Display (SID) Digest of Tech, San Jose, CA, USA, 12–17 May 2019; pp. 12–17. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Shim, H.R.; Na, Y.; Kang, K.S.; Jeon, Y.; Choi, S.; Jeong, E.G.; Park, Y.C.; Cho, H.-E.; Lee, J.; et al. Foldable and washable textile-based OLEDs with a multi-functional near-room-temperature encapsulation layer for smart e-textiles. npj Flex. Electron. 2021, 5, 15. [Google Scholar] [CrossRef]
- Lan, L.; Li, X.; Ding, C.; Chen, S.; Su, H.; Huang, B.; Chen, B.; Zhou, H.; Peng, J. The Effect of the Charge Transfer Transition of the Tetravalent Terbium on the Photostability of Oxide Thin-Film Transistors. Adv. Electron. Mater. 2022, 8, 2200187. [Google Scholar] [CrossRef]
- Lan, L.; Ding, C.; He, P.; Su, H.; Huang, B.; Xu, J.; Zhang, S.; Peng, J. The mechanism of the photostability enhancement of thin-film transistors based on solution-processed oxide semiconductors doped with tetravalent lanthanides. Nanomaterials 2022, 12, 3902. [Google Scholar] [CrossRef]
- Cazako, C.; Inal, K.; Burr, A.; Georgi, F.; Cauro, R. Hypothetic impact of chemical bonding on the moisture resistance of amorphous SixNyHz by plasma-enhanced chemical vapor deposition. Metall. Res. Technol. 2018, 115, 406. [Google Scholar] [CrossRef]
- Lim, N.; Kim, M.; Kwon, K.H.; Kim, J.K. The Characteristics of Silicon Nitride Films Grown at Low Temperature for Flexible Display. J. Korean Inst. Electr. Electron. Mater. Eng. 2013, 26, 816–820. [Google Scholar] [CrossRef]
- Sasaki, T.; Sun, L.; Kurosawa, Y.; Takahashi, T.; Suzuri, Y. N anometer-Thick SiN Films as Gas Barrier Coatings Densified by Vacuum UV Irradiation. ACS Appl. Nano Mater. 2021, 4, 10344–10353. [Google Scholar] [CrossRef]
- Kim, S.J.; Yong, S.H.; Ahn, H.J.; Shin, Y.; Chae, H. Improvement in the moisture barrier properties and flexibility by reducing hydrogen dangling bonds in SiNx thin films with plasma surface treatment. Surf. Coat. Technol. 2020, 383, 125210. [Google Scholar] [CrossRef]
- Shao, Y.; Ding, S.-J. Effects of hydrogen impurities on performances and electrical reliabilities of indium-gallium-zinc oxide thin film transistors. Acta Phys. Sin. 2018, 67. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Aventurier, B.; Renault, O.; Terlier, T.; Barnes, J.P.; Templier, F. Impact of Hydrogen Diffusion on Electrical Characteristics of IGZO TFTs Passivated by SiO2 or Al2O3; IEEE: New York, NY, USA, 2014; pp. 149–152. [Google Scholar]
- Tsao, S.W.; Chang, T.C.; Huang, S.Y.; Chen, M.C.; Chen, S.C.; Tsai, C.T.; Kuo, Y.J.; Chen, Y.C.; Wu, W.C. Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors. Solid-State Electron. 2010, 54, 1497–1499. [Google Scholar] [CrossRef]
- Yin, Q.W.; Lian, W.D.; Li, J.C.; Qian, J.J.; Zhang, S.D.; Cao, W.R. A study of thin film encapsulation on improving electrical characteristics and reliability for flexible OLEDs. Mater. Sci. Forum 2022, 1058, 93–98. [Google Scholar] [CrossRef]
- Han, J.H.; Kim, T.Y.; Kim, D.Y.; Yang, H.L.; Park, J.S. Water vapor and hydrogen gas diffusion barrier characteristics of Al(2)O(3)-alucone multi-layer structures for flexible OLED display applications. Dalton Trans. 2021, 50, 15841–15848. [Google Scholar] [CrossRef]
- Singh, A.; Nehm, F.; Müller-Meskamp, L.; Hoßbach, C.; Albert, M.; Schroeder, U.; Leo, K.; Mikolajick, T. OLED compatible water-based nanolaminate encapsulation systems using ozone based starting layer. Org. Electron. 2014, 15, 2587–2592. [Google Scholar] [CrossRef]
- Yang, Y.-Q.; Duan, Y.; Duan, Y.-H.; Wang, X.; Chen, P.; Yang, D.; Sun, F.-B.; Xue, K.-w. High barrier properties of transparent thin-film encapsulations for top emission organic light-emitting diodes. Org. Electron. 2014, 15, 1120–1125. [Google Scholar] [CrossRef]
- Wang, T.; Sun, T.; Xie, C.; Wang, Y.; Qin, C.; Zhang, Z. P-171: The Mechanism of the OLED Reliability Failure for Thin Film Encapsulation in Lateral Direction. In Proceedings of the SID Symposium Digest of Technical Papers, San Jose, CA, USA, 12–17 May 2019; pp. 1881–1883. [Google Scholar]
- Chifen, A.N.; Jenkins, A.T.A.; Knoll, W.; Förch, R. Adhesion Improvement of Plasma-Polymerized Maleic Anhydride Films on Gold Using HMDSO/O2 Adhesion Layers. Plasma Process. Polym. 2007, 4, 815–822. [Google Scholar] [CrossRef]
- Erlat, A.G.; Wang, B.C.; Spontak, R.J.; Tropsha, Y.; Mar, K.D.; Montgomery, D.B.; Vogler, E.A. Morphology and gas barrier properties of thin SiOx coatings on polycarbonate: Correlations with plasma-enhanced chemical vapor deposition conditions. J. Mater. Res. 2000, 15, 704–717. [Google Scholar] [CrossRef]
- Kwon, J.H.; Jeong, E.G.; Jeon, Y.; Kim, D.G.; Lee, S.; Choi, K.C. Design of Highly Water Resistant, Impermeable, and Flexible Thin-Film Encapsulation Based on Inorganic/Organic Hybrid Layers. ACS Appl. Mater. Interfaces 2019, 11, 3251–3261. [Google Scholar] [CrossRef] [PubMed]
- Dameron, A.A.; Davidson, S.D.; Burton, B.B.; Carcia, P.F.; McLean, R.S.; George, S.M. Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition. J. Phys. Chem. C 2008, 112, 4573–4580. [Google Scholar] [CrossRef]
- Choi, D.W.; Yoo, M.; Lee, H.M.; Park, J.; Kim, H.Y.; Park, J.S. A Study on the Growth Behavior and Stability of Molecular Layer Deposited Alucone Films Using Diethylene Glycol and Trimethyl Aluminum Precursors, and the Enhancement of Diffusion Barrier Properties by Atomic Layer Deposited Al2O3 Capping. ACS Appl. Mater. Interfaces 2016, 8, 12263–12271. [Google Scholar] [CrossRef] [PubMed]
- Su, D.Y.; Kuo, Y.H.; Tseng, M.H.; Tsai, F.Y. Effects of surface pretreatment and deposition conditions on the gas permeation properties and flexibility of Al2O3 films on polymer substrates by atomic layer deposition. J. Coat. Technol. Res. 2019, 16, 1751–1756. [Google Scholar] [CrossRef]
- Andringa, A.M.; Perrotta, A.; de Peuter, K.; Knoops, H.C.M.; Kessels, W.M.M.; Creatore, M. Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers. ACS Appl. Mater. Interfaces 2015, 7, 22525–22532. [Google Scholar] [CrossRef]
- Hanika, M.; Langowski, H.C.; Moosheimer, U.; Peukert, W. Inorganic layers on polymeric films—Influence of defects and morphology on barrier properties. Chem. Eng. Technol. 2003, 26, 605–614. [Google Scholar] [CrossRef]
- Lim, K.Y.; Kim, D.U.; Kong, J.H.; Choi, B.I.; Seo, W.S.; Yu, J.W.; Choi, W.K. Ultralow Water Permeation Barrier Films of Triad a-SiNx:H/n-SiOxNy/h-SiOx Structure for Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2020, 12, 32106–32118. [Google Scholar] [CrossRef]
- Keuning, W.; Van de Weijer, P.; Lifka, H.; Kessels, W.; Creatore, M. Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al2O3 films and Al2O3/a-SiNx: H stacks. J. Vac. Sci. Technol. A 2012, 30, 01A131. [Google Scholar] [CrossRef]
- Park, J.S.; Yong, S.H.; Choi, Y.J.; Chae, H. Residual stress analysis and control of multilayer flexible moisture barrier films with SiNx and Al2O3 layers. AIP Adv. 2018, 8, 8. [Google Scholar] [CrossRef]
- Yoon, K.H.; Kim, H.S.; Han, K.S.; Kim, S.H.; Lee, Y.E.K.; Shrestha, N.K.; Song, S.Y.; Sung, M.M. Extremely High Barrier Performance of Organic-Inorganic Nanolaminated Thin Films for Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2017, 9, 5399–5408. [Google Scholar] [CrossRef]
- Park, S.H.K.; Oh, J.; Hwang, C.S.; Lee, J.I.; Yang, Y.S.; Chu, H.Y. Ultrathin film encapsulation of an OLED by ALD. Electrochem. Solid. State Lett. 2005, 8, H21–H23. [Google Scholar] [CrossRef]
- Li, S.; Li, M.; Lan, L.; Fu, D.; Sun, X.; Gao, Z. Comprehensive Investigation on the Stability of Silicon Nitride/Oxynitride as Thin-Film Encapsulation Layers Prepared by Plasma-Enhanced Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2025, 17, 10832–10844. [Google Scholar] [CrossRef] [PubMed]
- Park, K.W.; Lee, S.; Lee, H.; Cho, Y.-H.; Park, Y.C.; Im, S.G.; Park, S.-H.K. High-performance thin H: SiON OLED encapsulation layer deposited by PECVD at low temperature. RSC Adv. 2019, 9, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Heya, A.; Niki, T.; Takano, M.; Yonezawa, Y.; Minamikawa, T.; Muroi, S.; Minami, S.; Izumi, A.; Masuda, A.; Umemoto, H.; et al. Effect of atomic hydrogen on preparation of highly moisture-resistive SiNx films at low substrate temperatures. Jpn. J. Appl. Phys. Part. 2—Lett. Express Lett. 2004, 43, L1546–L1548. [Google Scholar] [CrossRef]
- Franke, S.; Baumkötter, M.; Monka, C.; Raabe, S.; Caspary, R.; Johannes, H.-H.; Kowalsky, W.; Beck, S.; Pucci, A.; Gargouri, H. Alumina films as gas barrier layers grown by spatial atomic layer deposition with trimethylaluminum and different oxygen sources. J. Vac. Sci. Technol. A Vac. Surf. Film. 2017, 35, 01B117. [Google Scholar] [CrossRef]
- Kang, K.S.; Jeong, S.Y.; Jeong, E.G.; Choi, K.C. Reliable high temperature, high humidity flexible thin film encapsulation using Al2O3/MgO nanolaminates for flexible OLEDs. Nano Res. 2020, 13, 10. [Google Scholar] [CrossRef]
- Lee, S.M.; Jeon, Y.; Oh, S.J.; Lee, S.W.; Choi, K.C.; Kim, T.S.; Kwon, J.H. Study of mechanical degradation of freestanding ALD Al2O3 by a hygrothermal environment and a facile protective method for environmentally stable Al2O3: Toward highly reliable wearable OLEDs. Mater. Horiz. 2023, 10, 4488–4500. [Google Scholar] [CrossRef]
- Choi, Y.J.; Yong, S.H.; Kim, S.J.; Hwangbo, H.; Cho, S.M.; Pu, L.S.; Chae, H. Hygroscopic interlayers for multilayer Al2O3 barrier films. Thin Solid. Film. 2019, 690, 6. [Google Scholar] [CrossRef]
- Buchwalder, S.; Bourgeois, F.; Leon, J.J.D.; Hogg, A.; Burger, J. Parylene-AlOx Stacks for Improved 3D Encapsulation Solutions. Coatings 2023, 13, 1942. [Google Scholar] [CrossRef]
- Park, Y.C.; Shim, H.R.; Jeong, K.; Im, S.G. A Solvent-Free, Thermally Curable Low-Temperature Organic Planarization Layer for Thin Film Encapsulation. Small 2023, 19, e2206090. [Google Scholar] [CrossRef]
- Gurmessa, B.; Croll, A.B. Influence of Thin Film Confinement on Surface Plasticity in Polystyrene and Poly(2-vinylpyridine) Homopolymer and Block Copolymer Films. Macromolecules 2015, 48, 5670–5676. [Google Scholar] [CrossRef]
- Kim, N.; Graham, S. Development of highly flexible and ultra-low permeation rate thin-film barrier structure for organic electronics. Thin Solid. Film. 2013, 547, 57–62. [Google Scholar] [CrossRef]
- Park, Y.C.; Kim, T.; Shim, H.R.; Choi, Y.; Hong, S.; Yoo, S.; Im, S.G. A highly bendable thin film encapsulation by the modulation of thermally induced interfacial residual stress. Appl. Surf. Sci. 2022, 598, 153874. [Google Scholar] [CrossRef]
- Lee, S.W.; Cho, H.J.; Jang, C.M.; Huh, M.S.; Cho, S.M. Sidewall patterning of organic-inorganic multilayer thin film encapsulation by adhesion lithography. Sci. Rep. 2023, 13, 12394. [Google Scholar] [CrossRef]
- Kwon, B.H.; Joo, C.W.; Cho, H.; Kang, C.M.; Yang, J.H.; Shin, J.W.; Kim, G.H.; Choi, S.; Nam, S.; Kim, K.; et al. Organic/Inorganic Hybrid Thin-Film Encapsulation Using Inkjet Printing and PEALD for Industrial Large-Area Process Suitability and Flexible OLED Application. ACS Appl. Mater. Interfaces 2021, 13, 55391–55402. [Google Scholar] [CrossRef]
- Fujii, T.; Kon, C.; Motoyama, Y.; Shimizu, K.; Shimayama, T.; Yamazaki, T.; Kato, T.; Sakai, S.; Hashikaki, K.; Tanaka, K.; et al. 4032 ppi High-resolution OLED microdisplay. J. Soc. Inf. Disp. 2018, 26, 178–186. [Google Scholar] [CrossRef]
- Yong-Qiang, Y.; Yu, D. Optimization of Al2O3 Films Deposited by ALD at Low Temperatures for OLED Encapsulation. J. Phys. Chem. C 2014, 118, 18783–18787. [Google Scholar] [CrossRef]
- Groner, M.D.; George, S.M.; McLean, R.S.; Carcia, P.F. Gas diffusion barriers on polymers using Al2O3 atomic layer deposition. Appl. Phys. Lett. 2006, 88, 051907. [Google Scholar] [CrossRef]
- Oh, J.; Shin, S.; Park, J.; Ham, G.; Jeon, H. Characteristics of Al2O3/ZrO2 laminated films deposited by ozone-based atomic layer deposition for organic device encapsulation. Thin Solid. Film. 2016, 599, 119–124. [Google Scholar] [CrossRef]
- Yang, Y.-Q.; Duan, Y.; Chen, P.; Sun, F.-B.; Duan, Y.-H.; Wang, X.; Yang, D. Realization of thin film encapsulation by atomic layer deposition of Al2O3 at low temperature. J. Phys. Chem. C 2013, 117, 20308–20312. [Google Scholar] [CrossRef]
- Li, M.; Gao, D.; Li, S.; Zhou, Z.; Zou, J.; Tao, H.; Wang, L.; Xu, M.; Peng, J. Realization of highly-dense Al2O3 gas barrier for top-emitting organic light-emitting diodes by atomic layer deposition. RSC Adv. 2015, 5, 104613–104620. [Google Scholar] [CrossRef]
- Kim, E.; Han, Y.; Kim, W.; Choi, K.C.; Im, H.G.; Bae, B.S. Thin film encapsulation for organic light emitting diodes using a multi-barrier composed of MgO prepared by atomic layer deposition and hybrid materials. Org. Electron. 2013, 14, 1737–1743. [Google Scholar] [CrossRef]
- Duan, Y.; Sun, F.; Yang, Y.; Chen, P.; Yang, D.; Duan, Y.; Wang, X. Thin-film barrier performance of zirconium oxide using the low-temperature atomic layer deposition method. ACS Appl. Mater. Interfaces 2014, 6, 3799–3804. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.H.; Kim, K.; Park, S.; Jeong, Y.J.; Kim, H.; Chung, D.S.; Kim, S.H.; Park, C.E. Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces 2014, 6, 6731–6738. [Google Scholar] [CrossRef]
- Lee, S.; Choi, H.; Shin, S.; Park, J.; Ham, G.; Jung, H.; Jeon, H. Permeation barrier properties of an Al2O3/ZrO2 multilayer deposited by remote plasma atomic layer deposition. Curr. Appl. Phys. 2014, 14, 552–557. [Google Scholar] [CrossRef]
- Meyer, J.; Schmidt, H.; Kowalsky, W.; Riedl, T.; Kahn, A. The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition. Appl. Phys. Lett. 2010, 96, 243308. [Google Scholar] [CrossRef]
- Seo, S.-W.; Jung, E.; Chae, H.; Cho, S.M. Optimization of Al2O3/ZrO2 nanolaminate structure for thin-film encapsulation of OLEDs. Org. Electron. 2012, 13, 2436–2441. [Google Scholar] [CrossRef]
- Meyer, J.; Schneidenbach, D.; Winkler, T.; Hamwi, S.; Weimann, T.; Hinze, P.; Ammermann, S.; Johannes, H.H.; Riedl, T.; Kowalsky, W. Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition. Appl. Phys. Lett. 2009, 94, 3. [Google Scholar] [CrossRef]
- Meyer, J.; Gorrn, P.; Bertram, F.; Hamwi, S.; Winkler, T.; Johannes, H.H.; Weimann, T.; Hinze, P.; Riedl, T.; Kowalsky, W. Al2O3/ZrO2 Nanolaminates as Ultrahigh Gas-Diffusion Barriers-A Strategy for Reliable Encapsulation of Organic Electronics. Adv. Mater. 2009, 21, 1845–1849. [Google Scholar] [CrossRef]
- Chou, C.T.; Yu, P.W.; Tseng, M.H.; Hsu, C.C.; Shyue, J.J.; Wang, C.C.; Tsai, F.Y. Transparent Conductive Gas-Permeation Barriers on Plastics by Atomic Layer Deposition. Adv. Mater. 2013, 25, 1750–1754. [Google Scholar] [CrossRef]
- Seo, H.K.; Park, M.H.; Kim, Y.H.; Kwon, S.J.; Jeong, S.H.; Lee, T.W. Laminated Graphene Films for Flexible Transparent Thin Film Encapsulation. ACS Appl. Mater. Interfaces 2016, 8, 14725–14731. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.J.; Ko, Y.W.; Lim, J.W. Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition. Appl. Phys. Lett. 2004, 85, 4896–4898. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, Y.F.; Yang, H.Z.; Cao, K.; Chen, R. Thin film encapsulation for the organic light-emitting diodes display via atomic layer deposition. J. Mater. Res. 2020, 35, 681–700. [Google Scholar] [CrossRef]
- Ylivaara, O.M.E.; Liu, X.W.; Kilpi, L.; Lyytinen, J.; Schneider, D.; Laitinen, M.; Julin, J.; Ali, S.; Sintonen, S.; Berdova, M.; et al. Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion. Thin Solid. Film. 2014, 552, 124–135. [Google Scholar] [CrossRef]
- Kim, H.G.; Lee, J.G.; Kim, S.S. Surface modification of polymeric substrates to enhance the barrier properties of an Al2O3 layer formed by PEALD process. Org. Electron. 2017, 50, 239–246. [Google Scholar] [CrossRef]
- Jeong, E.G.; Jeon, Y.; Cho, S.H.; Choi, K.C. Textile-based washable polymer solar cells for optoelectronic modules: Toward self-powered smart clothing. Energy Environ. Sci. 2019, 12, 1878–1889. [Google Scholar] [CrossRef]
- Bulusu, A.; Kim, H.; Samet, D.; Graham, S. Improving the stability of atomic layer deposited alumina films in aqueous environments with metal oxide capping layers. J. Phys. D Appl. Phys. 2013, 46. [Google Scholar] [CrossRef]
- Willis, S.A.; McGuinness, E.K.; Li, Y.; Losego, M.D. Re-examination of the Aqueous Stability of Atomic Layer Deposited (ALD) Amorphous Alumina (Al(2)O(3)) Thin Films and the Use of a Postdeposition Air Plasma Anneal to Enhance Stability. Langmuir 2021, 37, 14509–14519. [Google Scholar] [CrossRef]
- Ylivaara, O.M.E.; Kilpi, L.; Liu, X.W.; Sintonen, S.; Ali, S.; Laitinen, M.; Julin, J.; Haimi, E.; Sajavaara, T.; Lipsanen, H.; et al. Aluminum oxide/titanium dioxide nanolaminates grown by atomic layer deposition: Growth and mechanical properties. J. Vac. Sci. Technol. A 2017, 35, 13. [Google Scholar] [CrossRef]
- Jeong, E.G.; Kwon, S.; Han, J.H.; Im, H.G.; Bae, B.S.; Choi, K.C. A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs. Nanoscale 2017, 9, 6370–6379. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.M.; Park, Y.W.; Park, T.H.; Jeong, J.W.; Choi, H.J.; Song, E.H.; Lee, J.W.; Kim, C.H.; Ju, B.K. Highly conformal SiO2/Al2O3 nanolaminate gas-diffusion barriers for large-area flexible electronics applications. Nanotechnology 2010, 21, 475203. [Google Scholar] [CrossRef] [PubMed]
- Nam, T.; Park, Y.J.; Lee, H.; Oh, I.-K.; Ahn, J.-H.; Cho, S.M.; Kim, H.; Lee, H.-B.-R. A composite layer of atomic-layer-deposited Al2O3 and graphene for flexible moisture barrier. Carbon. 2017, 116, 553–561. [Google Scholar] [CrossRef]
- Lee, W.; Cho, S.M. Improvement of deformation stability of Al2O3 moisture-barrier layer by insertion of 4-bipyridine organic monolayers. Korean J. Chem. Eng. 2024, 42, 393–401. [Google Scholar] [CrossRef]
- Kim, B.J.; Park, H.; Seong, H.; Lee, M.S.; Kwon, B.H.; Kim, D.H.; Lee, Y.I.; Lee, H.; Lee, J.I.; Im, S.G. A Single-Chamber System of Initiated Chemical Vapor Deposition and Atomic Layer Deposition for Fabrication of Organic/Inorganic Multilayer Films. Adv. Eng. Mater. 2017, 19, 1600819. [Google Scholar] [CrossRef]
- Chen, G.; Weng, Y.; Sun, F.; Zhou, X.; Wu, C.; Yan, Q.; Guo, T.; Zhang, Y. Low-temperature atomic layer deposition of Al(2)O(3)/alucone nanolaminates for OLED encapsulation. RSC Adv. 2019, 9, 20884–20891. [Google Scholar] [CrossRef]
- Xiao, W.; Hui, D.Y.; Zheng, C.; Yu, D.; Qiang, Y.Y.; Ping, C.; Xiang, C.L.; Yi, Z. A flexible transparent gas barrier film employing the method of mixing ALD/MLD-grown Al2O3 and alucone layers. Nanoscale Res. Lett. 2015, 10, 130. [Google Scholar] [CrossRef]
- Seo, S.W.; Jung, E.; Seo, S.J.; Chae, H.; Chung, H.K.; Cho, S.M. Toward fully flexible multilayer moisture-barriers for organic light-emitting diodes. J. Appl. Phys. 2013, 114, 7. [Google Scholar] [CrossRef]
- Seo, S.W.; Chae, H.; Seo, S.J.; Chung, H.K.; Cho, S.M. Extremely bendable thin-film encapsulation of organic light-emitting diodes. Appl. Phys. Lett. 2013, 102, 4. [Google Scholar] [CrossRef]
- Han, Y.C.; Kim, E.; Kim, W.; Im, H.G.; Bae, B.S.; Choi, K.C. A flexible moisture barrier comprised of a SiO2-embedded organic-inorganic hybrid nanocomposite and Al2O3 for thin-film encapsulation of OLEDs. Org. Electron. 2013, 14, 1435–1440. [Google Scholar] [CrossRef]
- Han, Y.C.; Jeong, E.G.; Kim, H.; Kwon, S.; Im, H.G.; Bae, B.S.; Choi, K.C. Reliable thin-film encapsulation of flexible OLEDs and enhancing their bending characteristics through mechanical analysis. RSC Adv. 2016, 6, 40835–40843. [Google Scholar] [CrossRef]
- Jeong, E.G.; Han, Y.C.; Im, H.-G.; Bae, B.-S.; Choi, K.C. Highly reliable hybrid nano-stratified moisture barrier for encapsulating flexible OLEDs. Org. Electron. 2016, 33, 150–155. [Google Scholar] [CrossRef]
- Kwon, J.H.; Jeon, Y.; Choi, S.; Park, J.W.; Kim, H.; Choi, K.C. Functional Design of Highly Robust and Flexible Thin-Film Encapsulation Composed of Quasi-Perfect Sublayers for Transparent, Flexible Displays. ACS Appl. Mater. Interfaces 2017, 9, 43983–43992. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.H.; Jeon, Y.; Choi, S.; Kim, H.; Choi, K.C. Synergistic gas diffusion multilayer architecture based on the nanolaminate and inorganic-organic hybrid organic layer. J. Inf. Disp. 2018, 19, 135–142. [Google Scholar] [CrossRef]
- Lee, L.; Yoon, K.H.; Jung, J.W.; Yoon, H.R.; Kim, H.; Kim, S.H.; Song, S.Y.; Park, K.S.; Sung, M.M. Ultra Gas-Proof Polymer Hybrid Thin Layer. Nano Lett. 2018, 18, 5461–5466. [Google Scholar] [CrossRef]
- Kim, S.H.; Song, S.Y.; Kim, S.Y.; Chang, M.W.; Kwon, H.J.; Yoon, K.H.; Sung, W.Y.; Sung, M.M.; Chu, H.Y. A compact polymer–inorganic hybrid gas barrier nanolayer for flexible organic light-emitting diode displays. NPJ Flex. Electron. 2022, 6, 21. [Google Scholar] [CrossRef]
- Majee, S.; Cerqueira, M.F.; Tondelier, D.; Geffroy, B.; Bonnassieux, Y.; Alpuim, P.; Bourée, J.E. Flexible organic–inorganic hybrid layer encapsulation for organic opto-electronic devices. Prog. Org. Coat. 2015, 80, 27–32. [Google Scholar] [CrossRef]
- Jang, W.; Han, S.; Gu, T.; Chae, H.; Whang, D. hBN Flake Embedded Al(2)O(3) Thin Film for Flexible Moisture Barrier. Mater. 2021, 14, 7373. [Google Scholar] [CrossRef]
- Seo, S.W.; Hwang, K.H.; Jung, E.; Seo, S.J.; Chae, H.; Cho, S.M. Enhanced moisture-barrier property of a hybrid nanolaminate composed of aluminum oxide and plasma polymer. Mater. Lett. 2014, 134, 142–145. [Google Scholar] [CrossRef]
- Chen, G.; Weng, Y.; Sun, F.; Hong, D.; Zhou, X.; Guo, T.; Zhang, Y.; Yan, Q.; Wu, C.; Sun, L. Improved barrier and mechanical properties of Al2O3/acrylic laminates using rugged fluorocarbon layers for flexible encapsulation. Org. Electron. 2021, 97, 106263. [Google Scholar] [CrossRef]
- Choi, D.-w.; Park, H.; Lim, J.H.; Han, T.H.; Park, J.-S. Three-dimensionally stacked Al2O3/graphene oxide for gas barrier applications. Carbon 2017, 125, 464–471. [Google Scholar] [CrossRef]
- Kim, M.G.; Kim, Y.; Kim, Y.M. Structural sensitivity to reliability of flexible AMOLED modules using mechanical simulation and machine. Org. Electron. 2024, 125, 106967. [Google Scholar] [CrossRef]
- Liao, P.H.; Lee, W.K.; Lee, C.C.; Huang, C.W.; Wen, S.W.; Chen, Y.T.; Chen, C.C.; Lin, W.Y.; Kwak, B.L.; Visser, R.J.; et al. Using angle-selective optical film to enhance the light extraction of a thin-film encapsulated 3D reflective pixel for OLED displays. Opt. Express 2022, 30, 46435–46449. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Fu, X.Y.; Cao, L.Y.; Amoah, S.; Gundogdu, K.; Li, J.; So, F. Multi-mode Organic Light-Emitting Diode to Suppress the Viewing Angle Dependence. ACS Appl. Mater. Interfaces 2020, 12, 31667–31676. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Moon, J.; Cho, H.; Joo, C.W.; Lee, J.; Shin, J.-W.; Park, S.K.; Cho, N.S.; Yang, S.Y.; Kwon, B.-H. Spontaneously formed organic wrinkle structure for top-emitting organic light emitting diodes. J. Ind. Eng. Chem. 2019, 80, 490–496. [Google Scholar] [CrossRef]
- Kwon, J.H.; Jeon, Y.; Choi, K.C. Robust Transparent and Conductive Gas Diffusion Multibarrier Based on Mg- and Al-Doped ZnO as Indium Tin Oxide-Free Electrodes for Organic Electronics. ACS Appl. Mater. Interfaces 2018, 10, 32387–32396. [Google Scholar] [CrossRef]
- Huang, C.B.; Witomska, S.; Aliprandi, A.; Stoeckel, M.A.; Bonini, M.; Ciesielski, A.; Samorì, P. Molecule–graphene hybrid materials with tunable mechanoresponse: Highly sensitive pressure sensors for health monitoring. Am. Ceram. Sociaty 2019, 31, 1804600. [Google Scholar] [CrossRef]
- Deng, C.; Gao, P.; Lan, L.; He, P.; Zhao, X.; Zheng, W.; Chen, W.; Zhong, X.; Wu, Y.; Liu, L. Ultrasensitive and highly stretchable multifunctional strain sensors with timbre-recognition ability based on vertical graphene. Adv. Funct. Mater. 2019, 29, 1907151. [Google Scholar] [CrossRef]
- Ge, G.; Huang, W.; Shao, J.; Dong, X. Recent progress of flexible and wearable strain sensors for human-motion monitoring. J. Semicond. 2018, 39, 011012. [Google Scholar] [CrossRef]
- Tang, G.; Shi, Q.; Zhang, Z.; He, T.; Sun, Z.; Lee, C.J. Hybridized wearable patch as a multi-parameter and multi-functional human-machine interface. Nano Energy 2021, 81, 105582. [Google Scholar] [CrossRef]
- Chen, B.; Shen, K.; Li, Y.; Huang, B.; Su, H.; Xu, J.; Yang, S.; Zhou, Q.; Lan, L.; Peng, J. Artificial Multi-Stimulus-Responsive E-Skin Based on an Ionic Film with a Counter-Ion Exchange Reagent. Small 2024, 20, 2310847. [Google Scholar] [CrossRef]
- Jeon, Y.; Lee, T.Y.; Nam, M.; Lee, H.; Kim, H.; Lee, S.W.; Oh, S.J.; Choi, S.; Yang, J.Y.; Jung, S.; et al. Highly Efficient and Reliable Organic Light-Emitting Diodes Enabled by a Multifunctional Hazy Substrate for Extreme Environments. Adv. Funct. Mater. 2023, 34, 2310268. [Google Scholar] [CrossRef]
- Yurkevich, O.; Modin, E.; Saric, I.; Petravic, M.; Knez, M. Entropy-Driven Self-Healing of Metal Oxides Assisted by Polymer-Inorganic Hybrid Materials. Adv. Mater. 2022, 34, e2202989. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.; Khan, A.; Kant, C.; Chu, C.W.; Katiyar, M.; Lin, H.C. Transparent, Stretchable, and Self-Healable Gas Barrier Films with 2D Nanoplatelets for Flexible Electronic Device Packaging Applications. Adv. Mater. Interfaces 2022, 10, 2202093. [Google Scholar] [CrossRef]
- Wang, J.; Xu, X.; Zhang, J.; Chen, M.; Dong, S.; Han, J.; Wei, M. Moisture-permeable, humidity-enhanced gas barrier films based on organic/inorganic multilayers. ACS Appl. Mater. Interfaces 2018, 10, 28130–28138. [Google Scholar] [CrossRef]
- Yoshida, L. Solution Processing of Functional Thin Films and Their Device Applications. Electrochemistry 2023, 91, 9. [Google Scholar] [CrossRef]
- Sasaki, T.; Sun, L.; Kurosawa, Y.; Takahashi, T.; Suzuri, Y. Solution-Processed Gas Barriers with Glass-Like Ultrahigh Barrier Performance. Adv. Mater. Interfaces 2022, 9, 2201517. [Google Scholar] [CrossRef]
- Green, P.B.; Segura Lecina, O.; Albertini, P.P.; Newton, M.A.; Kumar, K.; Boulanger, C.; Leemans, J.; Thompson, P.B.J.; Loiudice, A.; Buonsanti, R. Colloidal Atomic Layer Deposition on Nanocrystals Using Ligand-Modified Precursors. J. Am. Chem. Soc. 2024, 146, 10708–10715. [Google Scholar] [CrossRef]
- Poodt, P.; Cameron, D.C.; Dickey, E.; George, S.M.; Kuznetsov, V.; Parsons, G.N.; Roozeboom, F.; Sundaram, G.; Vermeer, A. Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 2012, 30, 010802. [Google Scholar] [CrossRef]
- Illiberi, A.; Scherpenborg, R.; Wu, Y.; Roozeboom, F.; Poodt, P. Spatial atmospheric atomic layer deposition of Al(x)Zn(1-x)O. ACS Appl. Mater. Interfaces 2013, 5, 13124–13128. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Sekkat, A.; Jimenez, C.; Munoz, D.; Bellet, D.; Munoz-Rojas, D. Impact of precursor exposure on process efficiency and film properties in spatial atomic layer deposition. Chem. Eng. J. 2021, 403, 8. [Google Scholar] [CrossRef]
- Park, H.; Shin, S.; Choi, H.; Lee, N.; Choi, Y.; Kim, K.; Jeon, H. Thin-film encapsulation of Al2O3 multidensity layer structure prepared by spatial atomic layer deposition. J. Vac. Sci. Technol. A 2020, 38, 7. [Google Scholar] [CrossRef]
- Kim, S.J.; Yong, S.H.; Choi, Y.J.; Hwangbo, H.; Yang, W.Y.; Chae, H. Flexible Al2O3/plasma polymer multilayer moisture barrier films deposited by a spatial atomic layer deposition process. J. Vac. Sci. Technol. A 2020, 38, 6. [Google Scholar] [CrossRef]
- Song, S.K.; Saare, H.; Parsons, G.N. Integrated Isothermal Atomic Layer Deposition/Atomic Layer Etching Supercycles for Area-Selective Deposition of TiO2. Chem. Mat. 2019, 31, 4793–4804. [Google Scholar] [CrossRef]
- Miikkulainen, V.; Väyrynen, K.; Mizohata, K.; Räisänen, J.; Vehkamäki, M.; Ritala, M. Photoassisted atomic layer deposition of oxides employing alkoxides as single-source precursors. J. Vac. Sci. Technol. A Vac. Surf. Film. 2019, 37, 060911. [Google Scholar] [CrossRef]
- Yoon, K.H.; Kim, H.; Koo Lee, Y.-E.; Shrestha, N.K.; Sung, M.M. UV-enhanced atomic layer deposition of Al2O3 thin films at low temperature for gas-diffusion barriers. RSC Adv. 2017, 7, 5601–5609. [Google Scholar] [CrossRef]
- Yuan, H.; Li, Q.; Yan, W.; Zhang, Y.; Chen, L.; Pan, P.; Luo, J.; Liao, B.; Ouyang, X. A novel and efficient technology of depositing Al2O3 film for OLEDs thin film encapsulation. Vacuum 2022, 196, 110741. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, Y.F.; Yan, W.Q.; Zhang, Z.Q.; Li, Q.; Chen, L.; Yin, Z.Y.; Liao, B.; Ouyang, X.P.; Ouyang, X. Flexible alumina films prepared using high-bias pulse power for OLED thin film encapsulation. Ceram. Int. 2022, 48, 36521–36530. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, Y.F.; Li, Q.; Yan, W.Q.; Zhang, X.; Ouyang, X.; Ouyang, X.P.; Chen, L.; Liao, B. A Study of Al2O3/MgO Composite Films Deposited by FCVA for Thin-Film Encapsulation. Materials 2023, 16, 1955. [Google Scholar] [CrossRef]
- Cho, S.-K.; Cho, T.-Y.; Lee, W.J.; Ryu, J.; Lee, J.H. Structural and gas barrier properties of hydrogenated silicon nitride thin films prepared by roll-to-roll microwave plasma-enhanced chemical vapor deposition. Vacuum 2021, 188, 110167. [Google Scholar] [CrossRef]
Film Type | Fabrications | Basic Properties | Reliability | Compatibility Verify | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Equipment | Material | Precursor | Dep. Temp. *(°C) | Thickness (nm) | GPC (nm/ cycle) | Dep. Rate * (nm/min) | WVTR (g m−2 day−1) | Test Evn. * (°C)/RH (%) | Transparency (Visible Spectrum) | Accelerating Aging Test | Bending Test | |||
Inorganic laminate | ALD/ CVD | Al2O3/SiN× | TMA/H2O SiH4/N2O/NH3 | RT/80 | 20/200 | × | × | 5.80 × 10−2 | 38/100 | × | 312 h * OK @25/80 | × | × | [81] |
PECVD/ ALD | Al2O3/SiN× | 30/100 | 205 (160/45) | × | × | 7.00 × 10−3 | 38/90 | × | × | × | × | [89] | ||
Al2O3/SiO× | × | × | 2.40 × 10−4 | 38/90 | × | × | × | × | [89] | |||||
Monolayer | ALD | Al2O3 | TMA/H2O | 80 | 50 | × | × | 1.00 × 10−1 | 38/100 | >85.0% | × | × | Same CE * | [81] |
TMA/H2O | 80 | 100 | × | × | 1.40 × 10−2 | 25/80 | × | × | × | × | [97] | |||
TMA/O3 | 80 | 100 | × | × | 4.00 × 10−3 | 25/80 | × | × | × | × | [97] | |||
TMA/H2O | 120 | 26 | × | × | 1.10 × 10−3 | 23/50 | × | × | ~1.0 × 10−3 @R20 mm 5cyc | [98] | ||||
TMA/O3 | 100 | 100 | × | × | 7.05 × 10−4 | 50/50 | ≈95.0% | × | × | × | [99] | |||
TMA/H2O | 80 | 60 | 0.090 | 0.135 | 4.90 × 10−4 | 20/60 | × | × | × | Same CE Half lower LT * | [100] | |||
TMA/H2O | 80 | 73 | 0.083 | 0.083 | 2.10 × 10−4 | 25/80 | × | × | × | Higher CE | [67] | |||
TMA/O3/H2O | 80 | 47 | 0.094 | × | 5.43 × 10−5 | 40/100 | × | 160 h OK @40/100 | × | × | [101] | |||
TMA/O3 | 80 | 81 | 0.092 | 0.138 | 8.70 × 10−6 | 25/80 | × | × | × | Higher CE | [67] | |||
TMA/O3 | 80 | 60 | 0.090 | 0.268 | 8.70 × 10−6 | 20/60 | × | × | × | Same CE Same LT | [100] | |||
MgO | Mg (CpEt)2/H2O | 70 | 60 | × | × | 5.83 × 10−2 | 30/90 | 84.0% | × | × | × | [102] | ||
ZrO2 | TDMAZr/O3 | 100 | 100 | 0.095 | × | 3.87 × 10−3 | 50/50 | ≈85.0% | × | × | × | [99] | ||
TDMAZr/H2O | 80 | 80 | × | × | 3.74 × 10−3 | 20/60 | × | × | × | Worse LT | [103] | |||
TDMAZr/O3 | 80 | 80 | × | × | 6.09 × 10−4 | 20/60 | × | × | × | Same LT | [103] | |||
PEALD (local) | Al2O3 | TMA/O2_PLS * | 100 | 50 | 0.180 | × | 3.75 × 10−4 | 60/90 | × | 3000 h peeling @40/90 | × | Inferior LT (OTFT) | [104] | |
TiO2 | TDMAT/O2_PLS | 100 | 50 | 0.075 | × | 6.32 × 10−4 | 60/90 | × | × | × | × | [104] | ||
PEALD (remote) | Al2O3 | TMA/O2_PLS | 100 | 100 | × | × | 9.50 × 10−3 | 50/50 | >95.0% | × | × | × | [105] | |
SiN× | SiH2(NHtBu)2/N2_PLS | 120 | 10 | × | × | 1.00 × 10−6 | 20/50 | × | 53 days NG @20/50 40 nm | × | × | [75] | ||
ZrO2 | TEMAZr/O2_PLS | 100 | 100 | × | × | 1.09 × 10−2 | 50/50 | <85.0% | × | × | × | [105] | ||
Spatial ALD (atmosphere) | Al2O3 | TMA/H2O | 75 | 100 | 0.180 | × | 6.00 × 10−3 | 60/60 | × | × | × | × | [83] | |
TMA/O2_PLS | 75 | 100 | 0.170 | × | 7.00 × 10−4 | 60/60 | × | × | Same WVTR @R20 mm | × | [43] | |||
TMA/O2_PLS | 100 | 50 | 0.110 | × | 3.00 × 10−4 | 50/50 | × | × | × | × | [43] | |||
TMA/O2_PLS | 100 | 100 | × | × | 2.00 × 10−4 | 60/60 | × | × | × | × | [85] | |||
TMA/H2O | 150 | 100 | 0.150 | × | 8.00 × 10−5 | 60/60 | × | × | × | × | [43] | |||
TMA/O2_PLS | 150 | 100 | 0.110 | × | 5.00 × 10−5 | 60/60 | × | × | × | × | [43] | |||
TMA/H2O | 100 | 50 | 0.150 | × | 2.00 × 10−5 | 50/50 | × | × | × | × | [43] | |||
TMA/O3 | 100 | 50 | 0.160 | × | 2.00 × 10−5 | 50/50 | × | × | × | × | [85] | |||
PECVD | H: SiON | SiH4/N2O/NH3/H2 | 100 | 80 | × | 43.0 | 5.00 × 10−5 | 38/100 | 81.4% | 720 h OK @RT | 5 × 10−1 @ R 3 mm 3000 cyc | Higher CE | [85] | |
Nanolaminate | ALD | Al2O3/ZrO2 | TMA/TDMAZr/O3 | 100 | 25/25 | × | × | 4.21 × 10−4 | 50/50 | ≈90.0% | × | × | × | [99] |
TMA/TDMAZr/O3 | 100 | 10/10 | × | × | 3.97 × 10−4 | 50/50 | ≈90.0% | × | × | × | [99] | |||
TMA/TDMAZr/O3 | 100 | 1:1cyc | × | × | 3.26 × 10−4 | 50/50 | ≈90.0% | × | × | × | [99] | |||
TMA/TDMAZr/H2O | 80 | 20 (2.1/3.1) | × | × | 3.20 × 10−4 | 80/80 | × | × | × | × | [106] | |||
TMA/TEMAZr/H2O | 80 | 30(0.5:1.5) | × | × | 2.00 × 10−4 | 85/85 | × | 300 h OK @100 nm 85/85 | × | × | [107] | |||
TMA/TDMAZr/H2O | 80 | 20 (2.6/3.6) | × | × | 4.70 × 10−5 | 70/70 | × | × | × | Same CE Inferior LT | [108,109] | |||
HfO2/ZnO | TDMAHf/DEZn/H2O | 150 | 181 (1:19) | 0.170 | × | 6.30 × 10−6 | N/D | >85.0% | × | × | × | [110] | ||
Al2O3/SiO× | tris-(tert-pento×y) silanol/TMA/H2O | 175 | 86 | × | × | 5.00 × 10−5 | 38/100 | × | × | × | × | [72] | ||
PEALD (local) | Al2O3/TiO2 | TMA/TDMAT/O2_PLS | 100 | 50 | 0.255 | 0.339 | 1.81 × 10−4 | 60/90 | × | 3000 h OK @40/90 | × | Same LT (OTFT) | [104] | |
TMA/TDMAT/O2_PLS | 100 | 49.8 | 0.405 | 0.485 | 9.16 × 10−5 | 60/90 | 77.0% | 209 h @60/90 | × | Inferior CE | [28] | |||
PEALD (remote) | Al2O3/ZrO2 | TMA/TEMAZr/O2_PLS | 100 | 25/25 | × | × | 6.70 × 10−3 | 50/50 | 89.0% | × | × | × | [105] | |
100 | 10/10 | × | × | 2.70 × 10−3 | 50/50 | × | × | × | [105] | |||||
100 | 5/5 | × | × | 1.30 × 10−3 | 50/50 | × | × | × | [105] | |||||
100 | 2/2 | × | × | 1.20 × 10−3 | 50/50 | × | × | × | [105] | |||||
100 | 100 | × | × | 9.90 × 10−4 | 50/50 | × | × | × | [105] | |||||
2D | CVD | Graphene | N/A | RT | 6 layer | × | × | 1.78 × 10−2 | 25/45 | 85.5% | × | × | Little higher CE | [111] |
Encapsulation Structure | Basic Properties | Bending Test | Reliability | Compatibility Verify | Ref. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inorganic Layer | Organic Layer | Total Thickness/nm | Stress /MPa | Transparency | WVTR (g m−2 day−1) | WVTR or Failure Status (g m−2 day−1) | Strain (T = Tensile, C = Compressive) | Radius/mm | Accelerating Aging Test | |||||||
Equipment | Material | Dep. Temp. */°C | Thickness/nm | Equipment | Material | Thickness/nm | Before Strain | After Strain | ||||||||
ALD | Al2O3 | 100 | 25–50 | CVD | Graphene | × | × | × | <2% to Al2O3 | 2.62 × 10−4 | 7.65 × 10−4 | 0.89% | 7 | × | × | [122] |
100 | 5 | Evaporation | 4-BP | N/A | 5 × 6 | × | × | × | No crack | × | 1 | 2.5 h OK @85/85 | × | [123] | ||
90 | 25 | iCVD * | pV3D3 | 100 | 100/25 × 6dyads | × | >90% (with glass) | 8.10 × 10−5 | Maintain barrier property | × | 25 | 720 h OK @85/85 | Same CE | [124] | ||
90 | 10 | p(CHA-co-V3D3) | 200 | 10/200/10/200 | 22.5 (1dyad) | 99.70% | 3.10 × 10−5 | 1.09% (T) | 2.3 | × | Inferior CE Same LT | [93] | ||||
90 | 60 | Inkjet | PMMA+Fluoridation | 7000 | 60/7000/60/7000/60/7000 | × | 70% @3 dyads 90% with one more PMMA | 1.02 × 10−6 | Little cracks | (T) | 3 | ≈36 h OK @60/85 | Little higher LT | [93] | ||
90 | 15 | MLD * | Alucone | 2.5 | 102.5 | × | ≈95% | 1.10 × 10−4 | Little damage | 0.72% | 12 | ≈100 h @25/60 | × | [125] | ||
80 | 10.4 | SAOLs (7-OTS + H2O) | 20.1 | (10.4 + 20.1) × 5 | ≈100 | 95% | 1.58 × 10−3 (85/85) 5.43 × 10−7 (RT) | 1.31 × 10−6 | × | 10 | 720 h OK @ 85/85 | × | [80] | |||
80 | 9 | Alucone | 1 nm | 50 nm | × | × | 7.10 × 10−5 | 9.94 × 10−5 | × | 1 | × | × | [126] | |||
80 | 1 cyc * | PECVD | PP-He×ane (C6H14) | 20 | (0.11 + 20 nm) × 200 | × | × | 3.00 × 10−4 | <20% degradation (10 k cycle) | (T) | 5 | 44 h OK @85/85 (Ca test) | Same CE (20 dyads) | [127,128] | ||
70 | 60 | Spin | Silamer | 2000 | (60 + 2000) × 3 | 281.6 | 90% | 3.11 × 10−6 | 1.00 × 10−1 | × | 16.7 | × | Same CE | [71] | ||
70 | 330 cyc (≈30 nm) | S-H Nano * | 190 | <700 nm (3.5 dyads) | × | 85.80% | 1.14 × 10−4 | 2.23 × 10−4 (1.5 dyads) | (T) | 30 | 700 h @under ambient conditions | Same CE Inferior LT | [129] | |||
70 | 190 | × | 85.80% | 5.43 × 10−5 | 6.97 × 10−5 (2.5 dyads) | (T) | 30 | |||||||||
70 | 190 | × | 85.80% | 1.14 × 10−5 | 1.76 × 10−5 (3.5 dyads) | (T) | 30 | |||||||||
70 | 30 | Spin/bar coating | S-H nanocomposite/hybrimer (neutral, 110 um) | 120 | 480 | × | 88.20% | 4.40 × 10−5 | 8.20 × 10−5 | 0.63% | 10 | 720 h OK @30/90 | Inferior CE | [130] | ||
Al2O3/ZnO | 70 | 30 (3 nm/3 nm) | Spin | S-H nanocomposite | 100 | (30 + 100) × 3.5 | × | >85% | 7.87 × 10−6 | 7.78 × 10−5 | 0.63% (T) | 10 | × | Same CE better LT | [120] | |
70 | 100 | × | 2.51 × 10−5 | 0.31% (T) | × | × | ||||||||||
70 | 100 | × | 1.56 × 10−5 | 0.21 (T) | × | × | ||||||||||
70 | 30 | 120 | 30/120/30/120/30 | × | 89.10% | 1.91 × 10−5 | 4.05 × 10−5 | 0.21% | 30 | 720 h OK @30/90 | Same CE | [131] | ||||
ZnO/Al2O3/MgO | 70 | 50 (20/12/10) | 140 | 50/140/50 | 117.2 (ZAM) 30.37 (ZAM/organic TFE) | 91.40% | 2.44 × 10−6 | 4.62 × 10−6 | 0.3% (T) | × | 2000 h OK @RT | [132] | ||||
70 | 8.20 × 10−6 | 0.62% (T) | × | |||||||||||||
70 | 2.65 × 10−5 | 0.89% (T) | × | |||||||||||||
70 | 9.78 × 10−5 | 1.04% (T) | 7 | |||||||||||||
70 | 4.39 × 10−4 | 1.25% (T) | 6 | |||||||||||||
70 | 30 | 1000 | 30/1000/30/1000/30 | × | × | 5.94 × 10−5 | 1.00 × 10−4 | 0.63% | 10 | 240 h OK @60/90 | × | [133] | ||||
ALD/PECVD | SiOx/AlOx | 110 | 150 (100/50) | CVD | Perylene C | 1000 | 1150 | × | × | 2.40 × 10−5 | No crack | 0.8% (T) | 6.4 | × | × | [92] |
ALI | Al2O3 | 100 | 22 | Spin | PI | 20,000 | 20,022 | × | × | 1.00 × 10−7 | No failure | × | 1 | 1000 h OK @85/85 as substrate barrier | × | [134] |
140 | 7 | Spin | 10,000 | 10,007 | × | × | 1.40 × 10−5 | No failure | × | 1 | Same CE | [135] | ||||
Dual-gun sputter | SiO2/Al2O3 | RT | (10 + 10) ×24 | N/D | UV resin | 1000 | 1480 | × | >82% | 3.79 × 10−5 | 1.64 × 10−3 | (T) | 10 | × | × | [121] |
HW-CVD | SiN×:H | 100 | 50 | Spin | PMMA | 300 | 1100 | × | 80% | 9.20 × 10−5 | 1.10 × 10−4 | 0.89% | 5 | × | × | [136] |
LBL/S-PEALD * | h-BN/Al2O3 | 80 | 20 | N/A | N/A | N/A | N/A | × | >95% | 1.80 × 10−4 | <30% degradation | 4% | 3 | × | × | [137] |
LP PECVD | SiNx:H/ SiOxNy | 120–130 | 400/4 | Dip coating | ORMOSIL (PDMS/PUA/h-SiOx) | 150 | 400/4/150/4/400/4/150 | × | 84% | 9.20 × 10−5 | 5.00 × 10−5 | × | 2.5 | × | Same CE Same LT | [77] |
R-PEALD * | Al2O3 | 95 | 30 | Inkjet | PMMA | 2500 | 30/2500/30 | × | 95% | 5.00 × 10−5 | No failure | × | 3.2 | 305 h OK @60/85 | Better CE (30.2%) | [95] |
PECVD | H: SiON | 100 | 80 | Spin | Acrylate-based polymer | 1200 | 1280 | × | 87.80% | 5.00 × 10−5 | 5 × 10−5 (10 k cycle) | × | 1 | 720 h OK @RT | Higher CE | [83] |
TFE Strategy | Achievable Level of WVTR (g m−2 day−1) | Achievable Reliability /h (Convert to 85 °C/85% RH) | Achievable Flexibility (@ Strain, Bending Radius) | Advantages | Disadvantages | Cost | Maturity |
---|---|---|---|---|---|---|---|
ALD/CVD inorganic laminate | ~10−2 (maybe ~10−4 nowadays) | 5.5 | No data | Engineering available High D/R | Modest properties Little studied | Low | High |
ALD monolayer | ~10−6 | 205.5 | No data | Engineering available | Modest properties Low D/R | Medium | High |
ALD nanolaminate | ~10−5 | 300.0 | No data | Acceptable properties | Low D/R | Medium | High |
ALD/iCVD nanolaminate | ~10−5 | 720.0 | Maintain barrier property @1.09% (T) R2.3 | Excellent properties | Low D/R | High | Medium |
ALD/MLD nanolaminate | ~10−7 | 720.0 | Little damage @0.72% R12 | Excellent properties | Low D/R | High | Low |
ALD/inkjet laminate | ~10−6 | 70.9 | No failure @R3.2 | Engineering available | Modest properties Low D/R | Medium | High |
ALD/plasma polymer nanolaminate | ~10−4 | 44.0 | <20% degradation (10 k cycle) @R5 | Engineering available High flexibility | Modest properties Low D/R | Medium | Medium |
ALD/S-H nanocomposite laminate | ~10−5 | 63.2 | Remain at the same WVTR level @0.63%, R10 | Excellent properties | Low suitability for manufacturing | High | Medium |
ALD/2D layer | ~10−4 | No data | Remain at the same WVTR level @1.25% (T), R6 | Excellent flexibility | Low maturity Modest properties | High | Low |
ALI | ~10−7 | 1000.0 | No failure @R1 | Excellent properties | Low maturity Low D/R | High | Low |
Others: H: SiON (low D/R PECVD) | ~10−5 | 7.1 | Remain at the same WVTR level @R1, 10 k cycle bending | Engineering available | Modest properties Low transparency(proposed) | Medium | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Lan, L.; Li, M.; Gao, Z.; Yan, X.; Fu, D.; Sun, X. Thin-Film Encapsulation for OLEDs and Its Advances: Toward Engineering. Materials 2025, 18, 3175. https://doi.org/10.3390/ma18133175
Li S, Lan L, Li M, Gao Z, Yan X, Fu D, Sun X. Thin-Film Encapsulation for OLEDs and Its Advances: Toward Engineering. Materials. 2025; 18(13):3175. https://doi.org/10.3390/ma18133175
Chicago/Turabian StyleLi, Songju, Linfeng Lan, Min Li, Zhuo Gao, Xiaolin Yan, Dong Fu, and Xianwen Sun. 2025. "Thin-Film Encapsulation for OLEDs and Its Advances: Toward Engineering" Materials 18, no. 13: 3175. https://doi.org/10.3390/ma18133175
APA StyleLi, S., Lan, L., Li, M., Gao, Z., Yan, X., Fu, D., & Sun, X. (2025). Thin-Film Encapsulation for OLEDs and Its Advances: Toward Engineering. Materials, 18(13), 3175. https://doi.org/10.3390/ma18133175