Alloying Design Strategies for High-Performance Zn Anodes in Aqueous Zinc-Ion Batteries
Abstract
1. Introduction
2. Advantages of Alloying Strategies for Zn Anodes
2.1. Dendrite Suppression via Alloying
2.2. Suppression of HER Parasitic Reactions via Alloying Strategy
2.3. Kinetics Optimization Through Alloy Engineering
3. Fundamental Alloying Strategies for Zinc Anodes
3.1. Bulk-Phase Homogeneous Alloying in Zinc Anodes
3.2. Surface Alloy Engineering Strategies for Zinc Anodes
3.3. Functional Alloying Strategies for Zinc Anodes
3.4. Heterogeneous Composite Alloying for Zinc Anodes
3.5. Gradient Alloying Designs in Zinc Anodes
3.6. Layered Alloying Designs in Zinc Anodes
4. Current Challenges and Future Perspectives
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AZIBs | Aqueous zinc-ion batteries |
Zn | Zinc |
HER | Hydrogen evolution reaction |
DEMS | Differential electrochemical mass spectrometry |
LSV | Linear sweep voltammetry |
DFT | Density functional theory |
COMSOL | COMSOL Multiphysics |
SEM | Scanning electron microscope |
XRD | Phase analysis of X-ray diffraction |
ZIF-8 | Zeolitic Imidazolate Framework-8 |
hcp | Hexagonal Close-Packed |
fcc | Face-Centered Cubic |
bcc | Body-Centered Cubic |
References
- Li, Y.; Wang, J.-Y.; Yin, J.-W.; Wang, P.-F.; Liu, Z.-L.; Shu, J.; Yi, T.-F. Unveiling the mysteries of anode-free Zn metal batteries: From key challenges to viable solutions. Energy Storage Mater. 2025, 75, 104056. [Google Scholar] [CrossRef]
- Tang, M.; Liu, Q.; Zou, X.; Zhang, B.; An, L. High-Energy-Density Aqueous Zinc-Ion Batteries: Recent Progress, Design Strategies, Challenges, and Perspectives. Adv. Mater. 2025, 2501361. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tang, Z.; Bian, S.; Gu, Y.; Ye, F.; Chen, W.; Zhu, K.; Wu, Y.; Hu, L. Zinc Ion Transport Kinetics in Zinc-based Batteries and Its Regulation Strategy. Adv. Energy Mater. 2025, 2500316. [Google Scholar] [CrossRef]
- Li, X.; He, D.; Zhou, Q.; Zhou, X.; Wang, Z.; Wei, C.; Shi, Y.; Hu, X.; Huang, B.; Yang, Z.; et al. Deciphering anomalous zinc ion storage in intermediate-state MnO2 during layer-to-tunnel structural transition. Energy Environ. Sci. 2024, 17, 9195–9204. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, B.; Huang, J.; Xiao, K.; Liu, Z. Microstructure Strain of ZnMn2O4 Spinel by Regulation of Tetrahedral Sites for High-Performance Aqueous Zinc-Ion Battery. Adv. Funct. Mater. 2024, 34, 2405680. [Google Scholar] [CrossRef]
- Dou, X.; Xie, X.; Liang, S.; Fang, G. Low-current-density stability of vanadium-based cathodes for aqueous zinc ion batteries. Sci. Bull. 2024, 69, 833–845. [Google Scholar] [CrossRef]
- Li, D.; Ye, Z.; Ding, H.; Li, J.; Huang, H.; Yang, Z.; Su, J.; Zhu, J.; Zhang, W. Boosting proton intercalation via sulfur anion doping in V2O3 cathode materials towards high capacity and rate performance of aqueous zinc ion batteries. Energy Storage Mater. 2024, 71, 103635. [Google Scholar] [CrossRef]
- Li, Z.; Tan, J.; Zhu, X.; Xie, S.; Fang, H.; Ye, M.; Shen, J. High capacity and long-life aqueous zinc-ion battery enabled by improving active sites utilization and protons insertion in polymer cathode. Energy Storage Mater. 2022, 51, 294–305. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, H.; Li, R.; Yue, C.; Pan, H.; Tang, Z.; Wang, X.; Lin, Y.; Li, H.; Han, C.; et al. Bistate-type ion storage of azo polymer for aqueous zinc ion battery. Energy Storage Mater. 2023, 65, 103102. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, S.; Tang, H.; Guo, X.; Xue, H.; Pang, H. Prussian blue and its derivatives as electrode materials for electrochemical energy storage. Energy Storage Mater. 2017, 9, 11–30. [Google Scholar] [CrossRef]
- You, Y.; Wu, X.; Yin, Y.; Guo, Y. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1643–1647. [Google Scholar] [CrossRef]
- Zeng, Y.; Lu, X.; Zhang, S.; Luan, D.; Li, S.; Lou, X. Construction of Co–Mn Prussian Blue Analog Hollow Spheres for Efficient Aqueous Zn-ion Batteries. Angew. Chem. Int. Ed. 2021, 60, 22189–22194. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ying, Y.; Wang, G.; Hu, K.; Yuan, Y.; Ye, H.; Liu, Z.; Lee, J.; Zhao, D. Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Storage Mater. 2022, 48, 82–89. [Google Scholar] [CrossRef]
- Guan, P.; Li, H.; Zhang, X.; Shi, Z.; Liu, A. Electrodeposition of zinc from ethylene carbonate-ZnCl2 electrolyte system. Ionics 2023, 29, 2947–2958. [Google Scholar] [CrossRef]
- You, G.; He, L. High Performance Electrolyte for Iron-Ion batteries. Acad. J. Sci. Technol. 2023, 5, 244–247. [Google Scholar] [CrossRef]
- Li, J.; Guo, Z.; Wu, J.; Zheng, Z.; Yu, Z.; She, F.; Lai, L.; Li, H.; Chen, Y.; Li, W. Dextran: A Multifunctional and Universal Electrolyte Additive for Aqueous Zn Ion Batteries. Adv. Energy Mater. 2023, 13, 2301743. [Google Scholar] [CrossRef]
- Wang, K.; Li, S.; Chen, X.; Shen, J.; Zhao, H.; Bai, Y. Trifunctional Rb+-Intercalation Enhancing the Electrochemical Cyclability of Ammonium Vanadate Cathode for Aqueous Zinc Ion Batteries. ACS Nano 2024, 18, 7311–7323. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Y.; Liu, S.; Wei, L.; You, S.; Chen, D.; Ye, M.; Yang, Y.; Rui, X.; Qin, Y.; et al. Regulating the Electrolyte Solvation Structure Enables Ultralong Lifespan Vanadium-Based Cathodes with Excellent Low-Temperature Performance. Adv. Funct. Mater. 2022, 32, 2111714. [Google Scholar] [CrossRef]
- Jian, Q.; Wang, T.; Sun, J.; Wu, M.; Zhao, T. In-situ construction of fluorinated solid-electrolyte interphase for highly reversible zinc anodes. Energy Storage Mater. 2022, 53, 559–568. [Google Scholar] [CrossRef]
- Lu, H.; Zheng, S.; Wei, L.; Zhang, X.; Guo, X. Manipulating Zn2+ solvation environment in poly(propylene glycol)-based aqueous Li+/Zn2+ electrolytes for high-voltage hybrid ion batteries. Carbon Energy 2023, 5, e365. [Google Scholar] [CrossRef]
- He, Z.; Zhu, X.; Song, Y.; Li, B.; Xu, X.; Zhang, Z.; Zhao, N.; Liu, Y.; Zhu, J.; Wang, L.; et al. Separator functionalization realizing stable zinc anode through microporous metal-organic framework with special functional group. Energy Storage Mater. 2024, 74, 103886. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, K.; Liu, S.; Zhuang, W.; Shao, Z.; Zhu, K.; Lin, L.; Guo, G.; Wang, W.; Zhang, Q.; et al. Ionic Selective Separator Design Enables Long-Life Zinc–Iodine Batteries via Synergistic Anode Stabilization and Polyiodide Shuttle Suppression. Adv. Funct. Mater. 2024, 34, 2410712. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Wu, M.; Yang, D.; Sun, P.; Sun, J.; Zhang, Z.; Chen, X.; Ba, J.; Wang, Y.; et al. Nanodiamond Implanted Zinc Metal Anode for Long-Life Aqueous Zinc Ion Batteries. Adv. Funct. Mater. 2024, 34, 2315757. [Google Scholar] [CrossRef]
- Wang, W.; Huang, G.; Wang, Y.; Cao, Z.; Cavallo, L.; Hedhili, M.; Alshareef, H. Organic Acid Etching Strategy for Dendrite Suppression in Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2022, 12, 2102797. [Google Scholar] [CrossRef]
- Cao, C.; Zhou, K.; Du, W.; Li, C.; Ye, M.; Zhang, Y.; Tang, Y.; Liu, X. Designing Soft Solid-like Viscoelastic Zinc Powder Anode toward High Performance Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2023, 13, 2301835. [Google Scholar] [CrossRef]
- Li, Q.; Tang, S.; Luo, R.; Wei, P.; Chen, P.; Cong, J.; Liu, G.; Liu, Z.; Gou, Y.; Wu, H.; et al. Regulating the local chemical environment of Zn powder surface by multi site anchoring effect to achieve highly-stable Zn anode. Energy Storage Mater. 2024, 66, 103229. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Q.; Li, W.; Xie, C.; Wu, T.; Hu, C.; Tang, Y.; Wang, H. A Semi-solid Zinc Powder-based Slurry Anode for Advanced Aqueous Zinc-ion Batteries. Angew. Chem. Int. Ed. 2022, 62, e202215306. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X.; Pang, J.; Lei, Z. Recent progress on modification strategies of both metal zinc anode and manganese dioxide cathode materials for high-performance aqueous zinc-ion batteries. Coord. Chem. Rev. 2025, 523, 216255. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Song, Y.-H.; Yang, G.-D.; Zhang, J.-Y.; Shen, X.-Y.; Wu, X.-L.; Sun, H.-Z. Construction of hydrophilic and hydrophobic hybrid interface to achieve controlled zinc deposition for aqueous Zn-ion batteries. Energy Storage Mater. 2024, 72, 103761. [Google Scholar] [CrossRef]
- Cho, B.-K.; Huh, S.-H.; Kim, S.H.; Yu, S.; Bae, J.-S.; Yoo, J.-K.; Yu, S.-H. Long cycle-life aqueous Zn battery enabled by facile carbon nanotube coating on Cu current collector. Carbon Energy 2024, 6, e441. [Google Scholar] [CrossRef]
- Li, Z.; Shu, Z.; Shen, Z.; Liu, Y.; Ji, Y.; Luo, L.; Li, R.; Cai, Y.; Ian, H.; Xie, J.; et al. Dissolution Mechanism for Dendrite-Free Aqueous Zinc-Ions Batteries. Adv. Energy Mater. 2024, 14, 2400572. [Google Scholar] [CrossRef]
- Chen, H.; Huang, W.; Deng, Z.; Peng, W.; Yang, Z.; Yuan, B.; Yang, L.; Li, S.; Zheng, X.; Deng, Y. Advancements in Zinc Reversibility and Utilization for Practical Aqueous Zinc-Ion Battery Applications. Adv. Energy Mater. 2025, 2501052. [Google Scholar] [CrossRef]
- Sun, S.; Billings, A.; Wang, B.; Huang, K. Combined Effect of Dissolved Oxygen and pH in Aqueous Electrolytes on Zn-Anode Corrosion Behavior in Aqueous Zn-Ion Batteries. ACS Electrochem. 2025, 1, 195–204. [Google Scholar] [CrossRef]
- Xie, Z.-L.; Zhu, Y.; Du, J.-Y.; Yang, D.-Y.; Chen, H.; Wang, Z.; Huang, G.; Zhang, X.-B. In situ converting the native passivation layer into a fast ion transport interphase to boost the stability of zinc anodes. Green Energy Environ. 2025, in press. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, Y.; Guo, S.; Cao, X.; Pan, A.; Fang, G.; Zhou, J.; Liang, S. Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review. Energy Environ. Sci. 2020, 13, 4625–4665. [Google Scholar] [CrossRef]
- So, S.; Ahn, Y.N.; Ko, J.; Kim, I.T.; Hur, J. Uniform and oriented zinc deposition induced by artificial Nb2O5 Layer for highly reversible Zn anode in aqueous zinc ion batteries. Energy Storage Mater. 2022, 52, 40–51. [Google Scholar] [CrossRef]
- Tan, Y.; Li, S.; Zhao, X.; Wang, Y.; Shen, Q.; Qu, X.; Liu, Y.; Jiao, L. Unexpected Role of the Interlayer “Dead Zn2+” in Strengthening the Nanostructures of VS2 Cathodes for High-Performance Aqueous Zn-Ion Storage. Adv. Energy Mater. 2022, 12, 2104001. [Google Scholar] [CrossRef]
- Ge, X.; Peng, Z.; Zhang, Q.; Zhu, J.; Zhao, N.; Zhang, Z.; Meng, W.; Li, B.; Wang, L.; Tian, H.; et al. Uniformly dispersed zinc-tin alloy as high-performance anode for aqueous zinc ion batteries. J. Mater. Sci. Technol. 2024, 219, 10–18. [Google Scholar] [CrossRef]
- Kao, C.-C.; Ye, C.; Hao, J.; Shan, J.; Li, H.; Qiao, S.-Z. Suppressing Hydrogen Evolution via Anticatalytic Interfaces toward Highly Efficient Aqueous Zn-Ion Batteries. ACS Nano 2023, 17, 3948–3957. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, F.; Mei, Y.; Hao, Y.; Li, L.; Xie, M.; Chen, R. Establishing Thermal Infusion Method for Stable Zinc Metal Anodes in Aqueous Zinc-Ion Batteries. Adv. Mater. 2022, 34, 2200782. [Google Scholar] [CrossRef]
- Li, Q.; Han, L.; Luo, Q.; Liu, X.; Yi, J. Towards Understanding the Corrosion Behavior of Zinc-Metal Anode in Aqueous Systems: From Fundamentals to Strategies. Batter. Supercaps 2022, 5, e202100417. [Google Scholar] [CrossRef]
- Yu, A.; Zhang, W.; Joshi, N.; Yang, Y. Recent advances in anode design for mild aqueous Zn-ion batteries. Energy Storage Mater. 2023, 64, 103075. [Google Scholar] [CrossRef]
- Chen, X.; Li, W.; Reed, D.; Li, X.; Liu, X. On Energy Storage Chemistry of Aqueous Zn-Ion Batteries: From Cathode to Anode. Electrochem. Energy Rev. 2023, 6, 33. [Google Scholar] [CrossRef]
- Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T. Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives. Nano-Micro Lett. 2022, 14, 42. [Google Scholar] [CrossRef]
- Zhu, C.; Li, P.; Xu, G.; Cheng, H.; Gao, G. Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries. Coord. Chem. Rev. 2023, 485, 215142. [Google Scholar] [CrossRef]
- You, S.; Deng, Q.; Wang, Z.; Chu, Y.; Xu, Y.; Lu, J.; Yang, C. Achieving Highly Stable Zn Metal Anodes at Low Temperature via Regulating Electrolyte Solvation Structure. Adv. Mater. 2024, 36, 2402245. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, Y.; Deng, S.; Tong, H.; Wu, M.; Nie, X.; Su, Y.; He, G.; Zhang, Y.; Li, J.; et al. Amphiphilic electrolyte additive as an ion-flow stabilizer enables superb zinc metal batteries. Energy Environ. Sci. 2024, 17, 3443–3453. [Google Scholar] [CrossRef]
- Yu, L.; Huang, J.; Wang, S.; Qi, L.; Wang, S.; Chen, C. Ionic Liquid “Water Pocket” for Stable and Environment-Adaptable Aqueous Zinc Metal Batteries. Adv. Mater. 2023, 35, 2210789. [Google Scholar] [CrossRef]
- Li, F.; Ma, D.; Ouyang, K.; Yang, M.; Qiu, J.; Feng, J.; Wang, Y.; Mi, H.; Sun, S.; Sun, L.; et al. A Theory-Driven Complementary Interface Effect for Fast-Kinetics and Ultrastable Zn Metal Anodes in Aqueous/Solid Electrolytes. Adv. Energy Mater. 2023, 13, 2204365. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Y.; Sun, L.; Zhang, K.; Liang, J.; Zhu, M.; Tie, Z.; Jin, Z. Fluorinated Interface Engineering toward Controllable Zinc Deposition and Rapid Cation Migration of Aqueous Zn-Ion Batteries. Small 2023, 19, 2302650. [Google Scholar] [CrossRef]
- Wen, Q.; Fu, H.; Sun, C.; Cui, R.; Chen, H.; Ji, R.; Tang, L.; Li, L.; Wang, J.; Wu, Q.; et al. Buried interface engineering towards stable zinc anodes for high-performance aqueous zinc-ion batteries. Sci. Bull. 2024, 70, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Xiao, B.H.; Lu, Y.X.; Xiao, K.; Liu, Z.Q. Structural Design and Interface Modification with Selective H+ Binding of 3D Zinc Anode for Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2025, 2500785. [Google Scholar] [CrossRef]
- Song, W.-J.; Wang, J.-X.; Tang, P.-C.; Bao, Q.-P.; Du, L.-L.; Wang, P.-F.; Gong, Z.; Shi, F.-N.; Zhu, M. Construct wave-like structure on the anode surface for achieving controllable zinc deposition in aqueous zinc-ion batteries. J. Energy Storage 2025, 115, 115911. [Google Scholar] [CrossRef]
- Zhang, M.; Su, Y.; Li, G.; Tang, B.; Zhou, S.; Wang, X.; Liu, D.; Zhu, G. One-Pot preparation of microporous-polymer protected 3D porous Zn anode to enable advanced aqueous zinc batteries. J. Power Sources 2023, 589, 233755. [Google Scholar] [CrossRef]
- Kwon, M.; Lee, J.; Ko, S.; Lim, G.; Yu, S.-H.; Hong, J.; Lee, M. Stimulating Cu–Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid supercapacitors. Energy Environ. Sci. 2022, 15, 2889–2899. [Google Scholar] [CrossRef]
- Meng, H.; Ran, Q.; Dai, T.-Y.; Shi, H.; Zeng, S.-P.; Zhu, Y.-F.; Wen, Z.; Zhang, W.; Lang, X.-Y.; Zheng, W.-T.; et al. Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery. Nano-Micro Lett. 2022, 14, 128. [Google Scholar] [CrossRef]
- Yan, X.; Yunnian, G.; Huanhuan, X.; Shen, C.; Chen, Z.; Huai, Z.; Huajun, T. Quaternary Alloy Interfaces for Stable Zinc Anodes for High-Performance Aqueous Zinc-Ion Batteries With Long-Term Cycling Stability. Small 2025, 2502569. [Google Scholar] [CrossRef]
- Li, R.; Du, Y.; Li, Y.; He, Z.; Dai, L.; Wang, L.; Wu, X.; Zhang, J.; Yi, J. Alloying Strategy for High-Performance Zinc Metal Anodes. ACS Energy Lett. 2022, 8, 457–476. [Google Scholar] [CrossRef]
- Li, B.; Yang, K.; Ma, J.; Shi, P.; Chen, L.; Chen, C.; Hong, X.; Cheng, X.; Tang, M.-C.; He, Y.-B.; et al. Multicomponent Copper-Zinc Alloy Layer Enabling Ultra-Stable Zinc Metal Anode of Aqueous Zn-ion Battery. Angew. Chem. Int. Ed. 2022, 61, e202212587. [Google Scholar] [CrossRef]
- Tao, H.; Hou, Z.; Zhang, L.; Yang, X.; Fan, L.-Z. Manipulating Alloying Reaction to Achieve the Stable and Dendrite-free Zinc Metal Anodes. Chem. Eng. J. 2022, 450, 138048. [Google Scholar] [CrossRef]
- Xue, R.; Kong, J.; Wu, Y.; Wang, Y.; Kong, X.; Gong, M.; Zhang, L.; Lin, X.; Wang, D. Highly reversible zinc metal anodes enabled by a three-dimensional silver host for aqueous batteries. J. Mater. Chem. A 2022, 10, 10043–10050. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, W.; Peng, Z.; Pan, L.; Li, B.; Zhang, Z.; Zhu, J.; Meng, W.; Dai, L.; Wang, L.; et al. Zinc-tin binary alloy interphase for zinc metal batteries. Chem. Eng. J. 2024, 499, 156521. [Google Scholar] [CrossRef]
- Tian, H.; Feng, G.; Wang, Q.; Li, Z.; Zhang, W.; Lucero, M.; Feng, Z.; Wang, Z.-L.; Zhang, Y.; Zhen, C.; et al. Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes. Nat. Commun. 2022, 13, 7922. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yang, F.; Zeng, S.; Gao, X.; Liu, X.; Cao, X.; Yu, P.; Lu, X. Zincophilic Cu Sites Induce Dendrite-Free Zn Anodes for Robust Alkaline/Neutral Aqueous Batteries. Adv. Funct. Mater. 2021, 32, 2110829. [Google Scholar] [CrossRef]
- Zhang, Q.; Luan, J.; Fu, L.; Wu, S.; Tang, Y.; Ji, X.; Wang, H. The Three-Dimensional Dendrite-Free Zinc Anode on a Copper Mesh with a Zinc-Oriented Polyacrylamide Electrolyte Additive. Angew. Chem. Int. Ed. 2019, 58, 15841–15847. [Google Scholar] [CrossRef]
- Liu, J.; Jia, J.-H.; Chen, L.-B.; Meng, H.; Ran, Q.; Shi, H.; Han, G.-F.; Wang, T.-H.; Wen, Z.; Lang, X.-Y.; et al. Gradient Nanoporous Copper–Zinc Alloy Regulating Dendrite-Free Zinc Electrodeposition for High-Performance Aqueous Zinc-Ion Batteries. Nano Lett. 2025, 25, 4298–4306. [Google Scholar] [CrossRef]
- Du, Y.; Feng, Y.; Li, R.; Peng, Z.; Yao, X.; Duan, S.; Liu, S.; Jun, S.C.; Zhu, J.; Dai, L.; et al. Zinc-Bismuth Binary Alloy Enabling High-Performance Aqueous Zinc Ion Batteries. Small 2023, 20, 2307848. [Google Scholar] [CrossRef]
- Wu, J.-C.; Shen, X.; Zhou, H.; Li, X.; Gao, H.; Ge, J.; Xu, T.; Zhou, H. Zn-In Alloying Powder Solvent Free Electrode Toward High-Load Ampere-Hour Aqueous Zn-Mn Secondary Batteries. Small 2023, 20, 2308541. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.; Yang, Y.; Huang, F.; Zhu, M.; Ang, B.T.W.; Xue, J.M. Heterometallic Seed-Mediated Zinc Deposition on Inkjet Printed Silver Nanoparticles Toward Foldable and Heat-Resistant Zinc Batteries. Adv. Funct. Mater. 2021, 31, 2101607. [Google Scholar] [CrossRef]
- Wang, S.-B.; Ran, Q.; Yao, R.-Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X.-Y.; Jiang, Q. Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634. [Google Scholar] [CrossRef]
- Deng, Y.; Gao, J.; Wang, M.; Deng, J.; Zhou, Y.; Sun, W. Refining grains and optimizing grain boundaries by Al2Yb to enable a dendrite-free lithium anode. Energy Environ. Sci. 2024, 17, 5901–5910. [Google Scholar] [CrossRef]
- Xie, H.; Kalisvaart, W.P.; Olsen, B.C.; Luber, E.J.; Mitlin, D.; Buriak, J.M. Sn–Bi–Sb alloys as anode materials for sodium ion batteries. J. Mater. Chem. A 2017, 5, 9661–9670. [Google Scholar] [CrossRef]
- Pan, S.; Cheng, M.; Ma, C.; Jing, H.; Shen, T.; Hu, J.; Liu, Q.; Wei, T.; Wang, R.; Li, W.; et al. Bimetallic Bi–Sn nanoparticles in-situ anchored in carbon nanofiber as flexible self-supporting anode toward advanced magnesium ion batteries. Chem. Eng. J. 2025, 505, 159626. [Google Scholar] [CrossRef]
- Chen, M.; Gong, Y.; Zhao, Y.; Song, Y.; Tang, Y.; Zeng, Z.; Liang, S.; Zhou, P.; Lu, B.; Zhang, X.; et al. Spontaneous grain refinement effect of rare earth zinc alloy anodes enables stable zinc batteries. Natl. Sci. Rev. 2024, 11, nwae205. [Google Scholar] [CrossRef]
- Cao, J.; Wu, H.; Yue, Y.; Zhang, D.; Li, B.; Luo, D.; Zhang, L.; Qin, J.; Zhang, X.; Yang, X. Facilely constructing ultrahigh lattice-matched CuZn5 epitaxial interface for dendrite-free Zn metal anode. J. Energy Chem. 2024, 99, 671–680. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Y.A.; Wang, X.; Chang, M.; Zhang, Y.; You, J.; Hu, F.; Zhu, K. Utilizing Gradient Oxidized Alloys to Establish a Highly Stable Interfacial Chemical Environment for Aqueous Zinc-ion Batteries. Adv. Funct. Mater. 2024, 34, 2314157. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Hu, Y.; Hu, K.; Lin, X.; Liu, X.; Reddy, K.M.; Xie, G.; Qiu, H.-J. Highly Strengthened and Toughened Zn–Li–Mn Alloys as Long-Cycling Life and Dendrite-Free Zn Anode for Aqueous Zinc-Ion Batteries. Small 2022, 18, 2200787. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Zhong, Y.; Yuan, L.; Huang, Y.; Li, Z. Highly Reversible and Anticorrosive Zn Anode Enabled by a Ag Nanowires Layer. ACS Appl. Mater. Interfaces 2022, 14, 9097–9105. [Google Scholar] [CrossRef]
- Wang, L.; Huang, W.; Guo, W.; Guo, Z.H.; Chang, C.; Gao, L.; Pu, X. Sn Alloying to Inhibit Hydrogen Evolution of Zn Metal Anode in Rechargeable Aqueous Batteries. Adv. Funct. Mater. 2022, 32, 2108533. [Google Scholar] [CrossRef]
- Hong, L.; Wang, L.-Y.; Wang, Y.; Wu, X.; Huang, W.; Zhou, Y.; Wang, K.-X.; Chen, J.-S. Toward Hydrogen-Free and Dendrite-Free Aqueous Zinc Batteries: Formation of Zincophilic Protective Layer on Zn Anodes. Adv. Sci. 2022, 9, 2104866. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, W.; Chen, Y.; Chen, L. Ultra-stable Zn metal batteries with dendrite-free Cu-Sn alloy induced high-quality composite Zn mesh. Chem. Eng. J. 2022, 450, 137979. [Google Scholar] [CrossRef]
- Chen, M.-J.; Tian, S.-Y.; Song, Y.-X.; Lu, B.-A.; Tang, Y.; Zhou, J. A corrosion-resistant zinc-chromium alloy layer for highly reversible aqueous zinc-ion batteries. J. Cent. South Univ. 2025, 31, 4549–4559. [Google Scholar] [CrossRef]
- Kim, Y.; Park, Y.; Kim, M.; Lee, J.; Kim, K.J.; Choi, J.W. Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nat. Commun. 2022, 13, 2371. [Google Scholar] [CrossRef]
- Fayette, M.; Chang, H.J.; Li, X.; Reed, D. High-Performance InZn Alloy Anodes toward Practical Aqueous Zinc Batteries. ACS Energy Lett. 2022, 7, 1888–1895. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, S.; Yang, K.; Huang, W.; Ogata, S.; Gao, L.; Pu, X. Screening Selection of Hydrogen Evolution-Inhibiting and Zincphilic Alloy Anode for Aqueous Zn Battery. Adv. Sci. 2024, 11, 2307667. [Google Scholar] [CrossRef]
- Liu, C.; Luo, Z.; Deng, W.; Wei, W.; Chen, L.; Pan, A.; Ma, J.; Wang, C.; Zhu, L.; Xie, L.; et al. Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery. ACS Energy Lett. 2021, 6, 675–683. [Google Scholar] [CrossRef]
- Zhang, Y.; Howe, J.D.; Ben-Yoseph, S.; Wu, Y.; Liu, N. Unveiling the Origin of Alloy-Seeded and Nondendritic Growth of Zn for Rechargeable Aqueous Zn Batteries. ACS Energy Lett. 2021, 6, 404–412. [Google Scholar] [CrossRef]
- Liang, G.; Zhu, J.; Yan, B.; Li, Q.; Chen, A.; Chen, Z.; Wang, X.; Xiong, B.; Fan, J.; Xu, J.; et al. Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy Environ. Sci. 2022, 15, 1086–1096. [Google Scholar] [CrossRef]
- He, C.; Jiang, Q.; Yi, Z.; Yu, J.; Li, P.; Tan, S.; Liang, J.; Hou, F. Cu–Sn Alloy Nanoparticle-Modified Carbon Nanofibers for Dendrite-Free Zinc-Ion Batteries. Batter. Supercaps 2025, 2500205. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhou, F.; Zhu, D.; Jing, X.; Shi, H.; Li, W.; Wang, D. Three-dimensional Porous Alloy Host for Highly Stable and Dendrite-Free Zinc Metal Anode. J. Electrochem. Soc. 2023, 170, 010516. [Google Scholar] [CrossRef]
- Huang, L.; Cuan, J.; Yue, C.; Fang, X.; Zhu, Y. Micro-Nano scale In-Sn protective coating layer with zincophilicity for ultra-stable dendrite-free zinc-ion batteries. Surf. Interfaces 2025, 65, 106492. [Google Scholar] [CrossRef]
- Cao, P.; Tang, J.; Wei, A.; Bai, Q.; Meng, Q.; Fan, S.; Ye, H.; Zhou, Y.; Zhou, X.; Yang, J. Manipulating Uniform Nucleation to Achieve Dendrite-Free Zn Anodes for Aqueous Zn-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 48855–48864. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Li, Y.; Dong, L. Stable anode-free zinc-ion batteries enabled by alloy network-modulated zinc deposition interface. J. Energy Chem. 2023, 76, 32–40. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, X.; Wang, K.; Huang, Z.; Chen, J. Active Screen Plasma-Enabled Metal Alloying for Stable Zinc Metal Growth toward Aqueous Zinc-Ion Batteries. ACS Appl. Mater. Interfaces 2023, 15, 31449–31458. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Ou, Y.; Wang, J.; Xiao, R.; Fu, L.; Yuan, Z.; Zhan, R.; Sun, Y. Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 2020, 27, 205–211. [Google Scholar] [CrossRef]
- Wang, T.; Xi, Q.; Li, Y.; Fu, H.; Hua, Y.; Shankar, E.G.; Kakarla, A.K.; Yu, J.S. Regulating Dendrite-Free Zinc Deposition by Red Phosphorous-Derived Artificial Protective Layer for Zinc Metal Batteries. Adv. Sci. 2022, 9, 2200155. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, Z.; Zeng, Y.; Liu, W.; Wei, B.; Qi, Z.; Wang, Z.; Xia, C.; Liang, H. Electrostatic Shielding Regulation of Magnetron Sputtered Al-Based Alloy Protective Coatings Enables Highly Reversible Zinc Anodes. Nano Lett. 2022, 22, 1017–1023. [Google Scholar] [CrossRef]
- Zhang, H.; Ning, F.; Guo, Y.; Subhan, S.; Liu, X.; Shi, S.; Lu, S.; Xia, Y.; Yi, J. Unraveling the Mechanisms of Aqueous Zinc Ion Batteries via First-Principles Calculations. ACS Energy Lett. 2024, 9, 4761–4784. [Google Scholar] [CrossRef]
- Huang, W.; Wang, L.; Zhu, Q.; Zhang, P.; Pu, X.; Gao, L. Alloying effects on inhibiting hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Mater. Today Commun. 2022, 33, 104576. [Google Scholar] [CrossRef]
- Cao, P.; Zhou, X.; Wei, A.; Meng, Q.; Ye, H.; Liu, W.; Tang, J.; Yang, J. Fast-Charging and Ultrahigh-Capacity Zinc Metal Anode for High-Performance Aqueous Zinc-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2100398. [Google Scholar] [CrossRef]
- Zhou, X.; Ruan, T.; Xu, J.; Li, C.; Huang, S.; Zhou, J.; Lu, S.; Song, R.; Li, R. Host-design strategies of zinc anodes for aqueous zinc-ion batteries. RSC Adv. 2024, 14, 23023–23036. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Tang, J.; Yao, Z.; Cui, J.; Hou, Y.; Chen, J.; Tang, L.; Fu, Y.; Zhang, W.; Zhu, J. Engineering Interphasial Chemistry for Zn Anodes in Aqueous Zinc Ion Batteries. Chem Bio Eng. 2024, 1, 381–413. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Liu, Y.; Zhu, Y.; Ye, F.; Xu, G.; Lin, M.; Kang, W. Bimetal-Initiated Concerted Zn Regulation Enabling Highly Stable Aqueous Zn-Ion Batteries. Batteries 2024, 10, 70. [Google Scholar] [CrossRef]
- Xin, Y.; Qi, J.; Xie, H.; Ge, Y.; Wang, Z.; Zhang, F.; He, B.; Wang, S.; Tian, H. 3D Ternary Alloy Artificial Interphase Toward Ultra-Stable and Dendrite-Free Aqueous Zinc Batteries. Adv. Funct. Mater. 2024, 34, 2403222. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, S.; Chen, M.; Lu, B.; Zhang, X.; Liang, S.; Zhou, J. Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries. Nat. Commun. 2023, 14, 7080. [Google Scholar] [CrossRef]
- Li, A.; Chen, H.; Tian, Q.; Yang, M.; Ma, H.; Chen, M.; Han, X.; Chen, J.; Ma, D.; Zhang, P. Silver nanoflake-mediated anode texture control enabling deep cycling of aqueous zinc-ion batteries. Chem. Eng. J. 2024, 489, 151542. [Google Scholar] [CrossRef]
- Guo, K.; Li, H.; Guo, Y.; Lin, S.; Zhou, S.; Li, G.; Li, H.; Yu, N. Promising Electrolyte Additive-Induced Multifunctional Alloy Interphase Enabling Stable Zinc Anodes for Aqueous Zinc-Ion Batteries. Energy Fuels 2024, 38, 12212–12220. [Google Scholar] [CrossRef]
- Li, M.; Lai, C.; He, X.; Zhang, Z.; Hu, J.; Shan, B.; Jiang, K.; Wang, K. Texturing Crystal Plane of Zinc Metal via Cleavage Fracture for a Dendrite-Free Zinc Anode. ACS Appl. Mater. Interfaces 2022, 14, 49719–49729. [Google Scholar] [CrossRef]
- Fan, X.; Yang, H.; Wang, X.; Han, J.; Wu, Y.; Gou, L.; Li, D.-L.; Ding, Y.-L. Enabling Stable Zn Anode via a Facile Alloying Strategy and 3D Foam Structure. Adv. Mater. Interfaces 2021, 8, 2002184. [Google Scholar] [CrossRef]
- Tian, Y.; An, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Mater. 2021, 41, 343–353. [Google Scholar] [CrossRef]
- Tian, C.; Wang, H.; Xie, L.; Zhong, Y.; Hu, Y. Arrays of Hierarchical Zincophilic Nanorods with Trapping-and-Leveling Deposition for Ultrastable Zn Metal Anodes. Adv. Energy Mater. 2024, 14, 2400276. [Google Scholar] [CrossRef]
- Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Lett. 2017, 17, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Shyamsunder, A.; Hoane, A.G.; Long, D.M.; Kwok, C.Y.; Kotula, P.G.; Zavadil, K.R.; Gewirth, A.A.; Nazar, L.F. Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 2022, 6, 1103–1120. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, B.; Huang, M.; Song, M.; Zhou, W.; Tan, H. Alloying Design Strategies for High-Performance Zn Anodes in Aqueous Zinc-Ion Batteries. Materials 2025, 18, 2997. https://doi.org/10.3390/ma18132997
Qi B, Huang M, Song M, Zhou W, Tan H. Alloying Design Strategies for High-Performance Zn Anodes in Aqueous Zinc-Ion Batteries. Materials. 2025; 18(13):2997. https://doi.org/10.3390/ma18132997
Chicago/Turabian StyleQi, Bowen, Man Huang, Ming Song, Weijia Zhou, and Hua Tan. 2025. "Alloying Design Strategies for High-Performance Zn Anodes in Aqueous Zinc-Ion Batteries" Materials 18, no. 13: 2997. https://doi.org/10.3390/ma18132997
APA StyleQi, B., Huang, M., Song, M., Zhou, W., & Tan, H. (2025). Alloying Design Strategies for High-Performance Zn Anodes in Aqueous Zinc-Ion Batteries. Materials, 18(13), 2997. https://doi.org/10.3390/ma18132997