Surface Oxygen Vacancy Modulation of Nanostructured Li-Rich Mn-Based Oxides for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Materials Synthesis
2.2. Characterization
2.3. Electrochemical Measurements
2.4. Density Functional Theory Calculations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Yu, R.; Huang, Y.; Wang, X.; Wang, Y.; Wu, B.; Liu, Z.; Chen, J. The Influences of Surface Coating Layers on the Properties of Layered/Spinel Heterostructured Li-Rich Cathode Material. ACS Sustain. Chem. Eng. 2018, 6, 12969–12979. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, J.; Luo, J.; Zeng, C.; Su, H.; Zhang, J.; Liu, R.; Hu, E.; Liu, Y.; Liu, W.D.; et al. Ultrafast Non-Equilibrium Synthesis of Cathode Materials for Li-Ion Batteries. Adv. Mater. 2023, 35, e2208974. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xie, Z.; Lv, Q.; Zhu, N.; Shang, S.; Wang, N.; Jin, Y.; Yan, W. Facilitating structural stability of the Li-rich layered cathode materials by cation rearrangements and Li vacancies. Appl. Surf. Sci. 2023, 639, 158203. [Google Scholar] [CrossRef]
- Xu, W.; Li, Y.; Yao, J.; Xiao, S.; Liu, B. LiFePO4/rGO composite prepared from the leaching liquor of jarosite residue as a cathode material for lithium-ion batteries. J. Alloys Compd. 2023, 952, 170105. [Google Scholar] [CrossRef]
- Jing, Z.; Wang, S.; Fu, Q.; Baran, V.; Tayal, A.; Casati, N.P.M.; Missyul, A.; Simonelli, L.; Knapp, M.; Li, F.; et al. Architecting “Li-rich Ni-rich” core-shell layered cathodes for high-energy Li-ion batteries. Energy Storage Mater. 2023, 59, 102775. [Google Scholar] [CrossRef]
- Wang, L.; Xu, L.; Xue, W.; Fang, Q.; Liu, H.; Liu, Y.; Zhou, K.; Li, Y.; Wang, X.; Wang, X.; et al. Synergistic enhancement of Li-rich manganese-based cathode materials through single crystallization and in-situ spinel coating. Nano Energy 2024, 121, 109241. [Google Scholar] [CrossRef]
- Kou, P.; Zhang, Z.; Dong, Z.; Zheng, R.; Song, Z.; Wang, Z.; Sun, H.; Liu, Y. Surface modulation induced oxygen vacancies/stacking faults and spinel-carbon composite coatings toward high-performance Li-rich Mn-based cathode. Appl. Surf. Sci. 2025, 679, 161181. [Google Scholar] [CrossRef]
- Ning, F.; Shang, H.; Li, B.; Jiang, N.; Zou, R.; Xia, D. Surface thermodynamic stability of Li-rich Li2MnO3: Effect of defective graphene. Energy Storage Mater. 2019, 22, 113–119. [Google Scholar] [CrossRef]
- Wang, E.; Zhao, Y.; Xiao, D.; Zhang, X.; Wu, T.; Wang, B.; Zubair, M.; Li, Y.; Sun, X.; Yu, H. Composite Nanostructure Construction on the Grain Surface of Li-Rich Layered Oxides. Adv. Mater. 2020, 32, e1906070. [Google Scholar] [CrossRef]
- Kou, P.; Zhang, Z.; Chen, Y.; Wang, Z.; Zheng, R.; Liu, Y.; Lv, F.; Xu, N. Regulation of surface structure to suppress voltage decay for high-stable Li-rich oxide cathodes. Appl. Surf. Sci. 2024, 664, 160163. [Google Scholar] [CrossRef]
- Ma, L.; Mao, L.; Zhao, X.; Lu, J.; Zhang, F.; Ding, P.; Chen, L.; Lian, F. Improving the Structural Stability of Li-Rich Layered Cathode Materials by Constructing an Antisite Defect Nanolayer through Polyanion Doping. ChemElectroChem 2017, 4, 3068–3074. [Google Scholar] [CrossRef]
- Kim, J.; Yang, S.; Zhong, Y.; Tompsett, G.; Jeong, S.; Mun, J.; Sunariwal, N.; Cabana, J.; Yang, Z.; Wang, Y. High-entropy Li-rich layered oxide cathode for Li-ion batteries. J. Alloys Compd. 2025, 628, 235915. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, Y.; Yu, K.; Zhao, G.; Cheng, Y.; Yu, Z. One-step constructed oxygen vacancies and Fe-doping to improve the electrochemical performance of Li-rich Mn-based cathode. J. Alloys Compd. 2023, 937, 168426. [Google Scholar] [CrossRef]
- Lu, Z.; Dahn, J.R. Understanding the Anomalous Capacity of Li/Li [NixLi(1/3−2x/3)Mn(2/3−x/3)] O2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies. J. Electrochem. Soc. 2002, 149, 815–822. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, X.; Hao, Y.; Zuo, J.; Duan, R.; Li, J.; Cao, G.; Wang, J.; Wang, J.; Li, M.; et al. Oxygen-Vacancy-Assisted Dual Functional Surface Coatings Suppressing Irreversible Phase Transition of Li-Rich Layered Oxide Cathodes. Adv. Funct. Mater. 2025, 35, 2400670. [Google Scholar] [CrossRef]
- Peng, H.; Zhuo, H.; Xia, F.; Zeng, W.; Sun, C.; Wu, J. Effects of Bending on Nucleation and Injection of Oxygen Vacancies into the Bulk Lattice of Li-Rich Layered Cathodes. Adv. Funct. Mater. 2023, 33, 2306804. [Google Scholar] [CrossRef]
- Zhang, P.; Zhai, X.; Huang, H.; Zhou, J.; Wang, X.; Chen, B.; Guo, Z.; He, Y. In-situ reconstruction of spinel interface on Li-rich layered cathode with improved electrochemical performances. J. Power Sources 2021, 499, 2306804. [Google Scholar] [CrossRef]
- Gao, X.; Li, S.; Zhang, H.; Zhang, S.; Chang, S.; Li, H.; Li, S.; Lai, Y.; Zhang, Z. Constructing a robust integrated surface structure for enhancing the performance of Li-rich Mn-based oxides cathodes. Mater. Today Energy 2022, 30, 101152. [Google Scholar] [CrossRef]
- Shi, Z.; Gu, Q.; Yun, L.; Wei, Z.; Hu, D.; Qiu, B.; Chen, G.Z.; Liu, Z. A composite surface configuration towards improving cycling stability of Li-rich layered oxide materials. J. Mater. Chem. A 2021, 9, 24426–24437. [Google Scholar] [CrossRef]
- Ouyang, Y.; Zhang, Y.; Wang, G.; Wei, X.; Zhang, A.; Sun, J.; Wei, S.; Song, L.; Dai, F.; Wu, Z.S. An In Situ Near-Surface Reconstruction Strategy Endowing Lithium-Rich Oxides with Li/O Dual Vacancies and Spinel-Carbon Dual Coating Layers Toward High Energy Density Cathode. Adv. Funct. Mater. 2024, 34, 2401249. [Google Scholar] [CrossRef]
- Li, Q.; Wang, H.; Wang, G.; Xia, F.; Zeng, W.; Peng, H.; Ma, G.; Guo, A.; Dong, R.; Wu, J. Stabilized Li-Rich Layered Oxide Cathode by a Spontaneously Formed Yb and Oxygen-Vacancy Rich Layer on the Surface. Small 2023, 20, 2307419. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Huang, M.; Yang, M.; Li, S.; Zhang, G.; Guo, J.; Yue, B.; Tang, C.; Liu, H. Anion-Cation Dual-Ion Multisite Doping Stabilizes the Crystal Structure of Li-Rich Layered Oxides. ACS Appl. Mater. 2023, 15, 37530–37539. [Google Scholar] [CrossRef]
- Sun, X.; Qin, C.; Zhao, B.; Jia, S.; Wang, Z.; Yang, T.; Liu, X.; Pan, L.; Zheng, L.; Luo, D.; et al. A cation and anion dual-doping strategy in novel Li-rich Mn-based cathode materials for high-performance Li metal batteries. Energy Storage Mater. 2024, 70, 103559. [Google Scholar] [CrossRef]
- Guo, H.; Wei, Z.; Jia, K.; Qiu, B.; Yin, C.; Meng, F.; Zhang, Q.; Gu, L.; Han, S.; Liu, Y.; et al. Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Mater. 2019, 16, 220–227. [Google Scholar] [CrossRef]
- Yu, F.; Nong, J.; Zou, Z.; Feng, M.; Zhang, S.; Liang, F.; Jia, S.; Chen, M. Enhanced electrochemical properties of Li1.2Mn0.54Co0.13Ni0.13O2 by modulation of surface oxygen vacancies. J. Energy Storage 2024, 98, 113149. [Google Scholar] [CrossRef]
- Wu, L.R.; Zhang, Y.H.; Wu, Z.; Tian, J.; Wang, H.; Zhao, H.; Xu, S.; Chen, L.; Duan, X.; Zhang, D.; et al. Stabilized O3-Type Layered Sodium Oxides with Enhanced Rate Performance and Cycling Stability by Dual-Site Ti4+/K+ Substitution. Adv. Sci. 2023, 10, e2304067. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Liang, C.; Jiang, L.; Sun, M.; Cheng, S.; Wang, L.; Chen, S.; Fang, Z.; Li, Y.; Zhang, N.; et al. Probing the thermal degradation mechanism of polycrystalline and single-crystal Li (Ni0.8Co0.1Mn0.1) O2 cathodes from the perspective of oxygen vacancy diffusion. Energy Storage Mater. 2023, 56, 495–505. [Google Scholar] [CrossRef]
- Li, T.; Mao, Y.; Liu, X.; Wang, W.; Li, Y.; Xiao, Y.; Hao, X.; Zhu, T.; You, J.; Zang, J. Controllable oxygen vacancies (in surface and bulk) to suppress the voltage decay of Li-rich layered cathode. Appl. Surf. Sci. 2024, 657, 159841. [Google Scholar] [CrossRef]
- Kong, J.-Z.; Zhai, H.-F.; Qian, X.; Wang, M.; Wang, Q.-Z.; Li, A.-D.; Li, H.; Zhou, F. Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with ultrathin ZnO. J. Alloys Compd. 2017, 694, 848–856. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.; Li, S.; Zhang, S.; Guan, C.; Hu, X.; Guo, J.; Lai, Y.; Zhang, Z. Local Electronic Structure Modulation Enables Fast-Charging Capability for Li-Rich Mn-Based Oxides Cathodes with Reversible Anionic Redox Activity. Adv. Funct. Mater. 2023, 33, 2304065. [Google Scholar] [CrossRef]
- Song, B.; Liu, Z.; Lai, M.O.; Lu, L. Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material. Phys. Chem. Chem. Phys. 2012, 14, 12875. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wang, M.; Xu, G.; Hu, L.; Chen, L.; Gu, Y. Synergistic effect of bulk phase doping and layered-spinel structure formation on improving electrochemical performance of Li-Rich cathode material. Ceram. Int. 2021, 47, 7700–7710. [Google Scholar] [CrossRef]
- Chen, M.; Chen, D.; Liao, Y.; Zhong, X.; Li, W.; Zhang, Y. Layered Lithium-Rich Oxide Nanoparticles Doped with Spinel Phase: Acidic Sucrose-Assistant Synthesis and Excellent Performance as Cathode of Lithium Ion Battery. ACS Appl. Mater. Interfaces 2016, 8, 4575–4584. [Google Scholar] [CrossRef]
- Laisa, C.P.; Nanda Kumar, A.K.; Selva Chandrasekaran, S.; Murugan, P.; Lakshminarasimhan, N.; Govindaraj, R.; Ramesha, K. A comparative study on electrochemical cycling stability of lithium rich layered cathode materials Li1.2Ni0.13M0.13Mn0.54O2 where M = Fe or Co. J. Power Sources 2016, 324, 462–474. [Google Scholar] [CrossRef]
- Liang, F.; Zhong, S.; Zou, Z.; Zhang, S.; Geng, J.; Wu, Q.; Ling, W.; Peng, X.; Gao, Y. Ultrathin V6O13 nanosheets assembled into 3D micro/nano structured flower-like microspheres for high-performance cathode materials of Li-ion batteries. J. Alloys Compd. 2023, 950, 169784. [Google Scholar] [CrossRef]
- Jia, S.; Zou, Z.; Zhang, S.; Chen, M.; Liang, F.; Yu, F.; Nong, J.; Zheng, R.; Song, L.; Wang, Y. Two-pronged approach: Utilizing a 3D microfloral structure of V10O24·nH2O with abundant oxygen vacancies and structural water for aqueous zinc ion batteries. J. Energy Storage 2024, 102, 114064. [Google Scholar] [CrossRef]
- Zeng, L.; Liang, H.; Qiu, B.; Shi, Z.; Cheng, S.; Shi, K.; Liu, Q.; Liu, Z. Voltage Decay of Li-Rich Layered Oxides: Mechanism, Modification Strategies, and Perspectives. Adv. Funct. Mater. 2023, 33, 2213260. [Google Scholar] [CrossRef]
- Ye, D.; Zeng, G.; Nogita, K.; Ozawa, K.; Hankel, M.; Searles, D.J.; Wang, L. Understanding the Origin of Li2MnO3 Activation in Li-Rich Cathode Materials for Lithium-Ion Batteries. Adv. Funct. Mater. 2015, 25, 7488–7496. [Google Scholar] [CrossRef]
- Peng, P.; Chen, Y.; Zhou, Q.; Shen, L.; Wen, Y.; Du, F.; Chen, Y.; Zheng, J. Structure engineering with sodium doping for cobalt-free Li-rich layered oxide toward improving electrochemical stability. J. Colloid Interface Sci. 2024, 676, 847–858. [Google Scholar] [CrossRef]
- Wang, E.; Xiao, D.; Wu, T.; Liu, X.; Zhou, Y.; Wang, B.; Lin, T.; Zhang, X.; Yu, H. Al/Ti Synergistic Doping Enhanced Cycle Stability of Li-Rich Layered Oxides. Adv. Funct. Mater. 2022, 32, 2201744. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, M.; Zhu, A.; Wang, Q.; Wu, H.; Zhang, Y. Semi-Metallic Superionic Layers Suppressing Voltage Fading of Li-Rich Layered Oxide Towards Superior-Stable Li-Ion Batteries. Angew. Chem. Int. Ed. 2023, 62, e202309049. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yan, X.; Li, P.; Tian, X.; Li, S.; Teng, F.; Luo, S.-h. Structural and enhanced electrochemical performance of Co-free lithium-rich layered manganese-based Li1.2Mn0.6Ni0.2O2 cathodes via Na-doping at Li site for lithium-ion batteries. Mater 2024, 28, 101027. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, Y.; He, G.; Zhao, H.; Bai, Y. Improving the long-term electrochemical performances of Li-rich cathode material by encapsulating a three-in-one nanolayer. Nanoscale 2023, 15, 588–598. [Google Scholar] [CrossRef]
- Zhao, T.; Liu, Z.; Gu, Q.; Zhang, X.; Jin, X.; Xie, S.; Liu, S. New exploration of water-soluble lithium polyacrylate/xanthan gum composite binder for Li-rich Mn-based cathode materials. Chem. Phys. Lett. 2024, 841, 141182. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, J.; Zhang, H.; Zhang, L.; Wang, D. Controllable Synthesis and Surface Modifications of a Metastable O2-Type Li-Rich Cathode Material. Crystals 2023, 13, 1154. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.E.; El-Tawil, R.S.; Hashem, A.M.; Mauger, A.; Julien, C.M. Integrated Lithium-Rich yLi2MnO3∙(1-y)LiNi1/3Co1/3Mn1/3O2 Layered Cathode Nanomaterials for Lithium-Ion Batteries. Int. J. Mol. Sci. 2025, 26, 1346. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Wen, J.; Zhu, H.; Tang, Y.; Li, Z.; Li, T.; Wang, Y.; Chen, Z. Highly activated oxygen redox enabling large-capacity Li-rich layered manganese-based oxide cathodes. Phys. Chem. Chem. Phys. 2023, 25, 15271–15278. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, W.; Huang, Y.; Wang, Y.; Wei, Y.; Liu, Q. One-step construction of oxygen vacancies and coating to improve lithium storage performance of Li-rich layered oxides. Appl. Surf. Sci. 2022, 605, 154819. [Google Scholar] [CrossRef]
Sample | a (Å) | c (Å) | c/a | I(003)/I(104) |
---|---|---|---|---|
LRM-8 | 2.8501 | 14.2468 | 4.9987 | 1.26 |
LRM-12 | 2.8512 | 14.2897 | 5.0118 | 1.65 |
LRM-16 | 2.8486 | 14.2490 | 5.0021 | 1.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nong, J.; Zhao, X.; Liang, F.; Jia, S.; Zou, Z. Surface Oxygen Vacancy Modulation of Nanostructured Li-Rich Mn-Based Oxides for Lithium-Ion Batteries. Materials 2025, 18, 2537. https://doi.org/10.3390/ma18112537
Nong J, Zhao X, Liang F, Jia S, Zou Z. Surface Oxygen Vacancy Modulation of Nanostructured Li-Rich Mn-Based Oxides for Lithium-Ion Batteries. Materials. 2025; 18(11):2537. https://doi.org/10.3390/ma18112537
Chicago/Turabian StyleNong, Jinxia, Xiayan Zhao, Fangan Liang, Shengkun Jia, and Zhengguang Zou. 2025. "Surface Oxygen Vacancy Modulation of Nanostructured Li-Rich Mn-Based Oxides for Lithium-Ion Batteries" Materials 18, no. 11: 2537. https://doi.org/10.3390/ma18112537
APA StyleNong, J., Zhao, X., Liang, F., Jia, S., & Zou, Z. (2025). Surface Oxygen Vacancy Modulation of Nanostructured Li-Rich Mn-Based Oxides for Lithium-Ion Batteries. Materials, 18(11), 2537. https://doi.org/10.3390/ma18112537