A Review of Photonic Sintering of Non-Oxide Ceramics for Printed Electronics
Abstract
:1. Introduction
1.1. Post-Processing of Non-Oxide Ceramics
1.2. Photonic Sintering Fundamentals
Photonic Sintering of Ceramic Materials
1.3. Scope of This Review
2. Photonic Sintering of Non-Oxide Perovskites
2.1. Influence of PS in the Perovskite Film Morphology and Crystallinity
2.2. Influence of PS in the Optical Properties of the Perovskite Film
2.3. Influence of PS in the Electrical Properties and Overall Device Performance
2.4. Influence of PS in the Perovskite Film Stability
3. Photonic Sintering of Chalcogenides
3.1. Influence of PS in the Morphology and Crystallinity of Chalcogenide Films
3.2. Influence of PS in the Optical Properties of Chalcogenide Films
3.3. Influence of PS in the Electrical Properties and Device Performance of Chalcogenide Films
4. Photonic Sintering of Other Non-Oxide Ceramics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PS | photonic sintering |
IPL | intense pulsed-light |
PSC | perovskite solar cell |
ED | energy density |
PV | photovoltaic |
TE | thermoelectric |
Voc | open-circuit voltage |
Jsc | short-circuit current |
FF | fill factor |
PCE | power conversion efficiency |
PVP | polyvinylpyrrolidone |
CB | chlorobenzene |
HER | hydrogen evolution reaction |
References
- Cardarelli, F. Ceramics and Glasses. In Materials Handbook: A Concise Desktop Reference; Cardarelli, F., Ed.; Springer: London, UK, 2000; pp. 337–369. [Google Scholar] [CrossRef]
- Zhang, P.; Jia, D.; Yang, Z.; Duan, X.; Zhou, Y. Progress of a Novel Non-Oxide Si-B-C-N Ceramic and Its Matrix Composites. J. Adv. Ceram. 2012, 1, 157–178. [Google Scholar] [CrossRef]
- Eliche-Quesada, D.; Pérez-Villarejo, L.; Sánchez-Soto, P.J.; Eliche-Quesada, D.; Pérez-Villarejo, L.; Sánchez-Soto, P.J. Introductory Chapter. In Ceramic Materials—Synthesis, Characterization, Applications and Recycling; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Watari, K. High thermal conductivity non-oxide ceramics. J. Ceram. Soc. Jpn. 2001, 109, S7–S16. [Google Scholar] [CrossRef]
- Shi, Y.; Wan, Y.; Zhao, D. Ordered Mesoporous Non-Oxide Materials. Chem. Soc. Rev. 2011, 40, 3854–3878. [Google Scholar] [CrossRef]
- Eddy, C.R.; Gaskill, D.K. Silicon Carbide as a Platform for Power Electronics. Science 2009, 324, 1398–1400. [Google Scholar] [CrossRef]
- Dinh, K.N.; Liang, Q.; Du, C.F.; Zhao, J.; Tok, A.I.Y.; Mao, H.; Yan, Q. Nanostructured Metallic Transition Metal Carbides, Nitrides, Phosphides, and Borides for Energy Storage and Conversion. Nano Today 2019, 25, 99–121. [Google Scholar] [CrossRef]
- Cheng, Z.; Liang, J.; Kawamura, K.; Zhou, H.; Asamura, H.; Uratani, H.; Tiwari, J.; Graham, S.; Ohno, Y.; Nagai, Y.; et al. High Thermal Conductivity in Wafer-Scale Cubic Silicon Carbide Crystals. Nat. Commun. 2022, 13, 7201. [Google Scholar] [CrossRef]
- Srinivasan, M.; Rafaniello, W. Non-Oxide Materials: Applications and Engineering. In Carbide, Nitride and Boride Materials Synthesis and Processing; Weimer, A.W., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 1997; pp. 3–42. [Google Scholar] [CrossRef]
- Peters, A.B.; Zhang, D.; Hernandez, A.; Brupbacher, M.C.; Nagle, D.C.; Mueller, T.; Spicer, J.B. Selective Laser Sintering in Reactive Atmospheres: Towards in-Situ Synthesis of Net-Shaped Carbide and Nitride Ceramics. Addit. Manuf. 2021, 45, 102052. [Google Scholar] [CrossRef]
- Hu, F.; Zhu, T.; Xie, Z.; Liu, J. Effect of Composite Sintering Additives Containing Non-Oxide on Mechanical, Thermal and Dielectric Properties of Silicon Nitride Ceramics Substrate. Ceram. Int. 2021, 47, 13635–13643. [Google Scholar] [CrossRef]
- Zhu, D. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications; Technical Report 20180002984; NASA Glenn Research Center: Cleveland, OH, USA, 2018. [Google Scholar]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-Bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef]
- Oses, C.; Toher, C.; Curtarolo, S. High-Entropy Ceramics. Nat. Rev. Mater. 2020, 5, 295–309. [Google Scholar] [CrossRef]
- Nakamura, S.; Fasol, G. The Blue Laser Diode; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar] [CrossRef]
- Nakamura, S.; Fasol, G. Physics of Gallium Nitride and Related Compounds. In The Blue Laser Diode: GaN Based Light Emitters and Lasers; Nakamura, S., Fasol, G., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 21–34. [Google Scholar] [CrossRef]
- Akasaki, I.A.I.; Amano, H.A.H. Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters. Jpn. J. Appl. Phys. 1997, 36, 5393. [Google Scholar] [CrossRef]
- Wadhwa, A.; Benavides-Guerrero, J.; Gratuze, M.; Bolduc, M.; Cloutier, S.G. All Screen Printed and Flexible Silicon Carbide NTC Thermistors for Temperature Sensing Applications. Materials 2024, 17, 2489. [Google Scholar] [CrossRef]
- Cappi, B.; Özkol, E.; Ebert, J.; Telle, R. Direct Inkjet Printing of Si3N4: Characterization of Ink, Green Bodies and Microstructure. J. Eur. Ceram. Soc. 2008, 28, 2625–2628. [Google Scholar] [CrossRef]
- Kelly, A.G.; Finn, D.; Harvey, A.; Hallam, T.; Coleman, J.N. All-Printed Capacitors from Graphene-BN-graphene Nanosheet Heterostructures. Appl. Phys. Lett. 2016, 109, 023107. [Google Scholar] [CrossRef]
- Mallmann, M.; Cordes, N.; Schnick, W. The Potential of Nitride Materials. In Ammonothermal Synthesis and Crystal Growth of Nitrides: Chemistry and Technology; Meissner, E., Niewa, R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 13–25. [Google Scholar] [CrossRef]
- Alivisatos, A.P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933–937. [Google Scholar] [CrossRef]
- Takata, T.; Domen, K. Development of Non-Oxide Semiconductors as Light Harvesting Materials in Photocatalytic and Photoelectrochemical Water Splitting. Dalton Trans. 2017, 46, 10529–10544. [Google Scholar] [CrossRef]
- Fujii, K. Non-Oxide Materials (Nitrides, Chalcogenides, and Arsenides). In Photoelectrochemical Solar Fuel Production: From Basic Principles to Advanced Devices; Giménez, S., Bisquert, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 393–426. [Google Scholar] [CrossRef]
- Hussain, M.I.; Xia, M.; Ren, X.; Ge, C.; Jamil, M.; Gupta, M.K. Digital Light Processing 3D Printing of Ceramic Materials: A Review on Basic Concept, Challenges, and Applications. Int. J. Adv. Manuf. Technol. 2024, 130, 2241–2267. [Google Scholar] [CrossRef]
- Dearnley, P.A.; Bell, T. Engineering the Surface with Boron Based Materials. Surf. Eng. 1985, 1, 203–217. [Google Scholar] [CrossRef]
- Medvedovski, E.; Chinski, F.A.; Stewart, J. Wear- and Corrosion-Resistant Boride-Based Coatings Obtained through Thermal Diffusion CVD Processing. Adv. Eng. Mater. 2014, 16, 713–728. [Google Scholar] [CrossRef]
- Lawson, J.W.; Daw, M.S.; Bauschlicher, C.W., Jr. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations. J. Appl. Phys. 2011, 110, 083507. [Google Scholar] [CrossRef]
- Li, J.; Naiini, M.M.; Vaziri, S.; Lemme, M.C.; Östling, M. Inkjet Printing of MoS2. Adv. Funct. Mater. 2014, 24, 6524–6531. [Google Scholar] [CrossRef]
- Hossain, R.F.; Deaguero, I.G.; Boland, T.; Kaul, A.B. Biocompatible, Large-Format, Inkjet Printed Heterostructure MoS2-graphene Photodetectors on Conformable Substrates. npj 2D Mater. Appl. 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Leng, T.; Parvez, K.; Pan, K.; Ali, J.; McManus, D.; Novoselov, K.S.; Casiraghi, C.; Hu, Z. Printed Graphene/WS2 Battery-Free Wireless Photosensor on Papers. 2D Mater. 2020, 7, 024004. [Google Scholar] [CrossRef]
- Li, B.; Liang, X.; Li, G.; Shao, F.; Xia, T.; Xu, S.; Hu, N.; Su, Y.; Yang, Z.; Zhang, Y. Inkjet-Printed Ultrathin MoS2-Based Electrodes for Flexible In-Plane Microsupercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 39444–39454. [Google Scholar] [CrossRef]
- Saeidi-Javash, M.; Kuang, W.; Dun, C.; Zhang, Y. 3D Conformal Printing and Photonic Sintering of High-Performance Flexible Thermoelectric Films Using 2D Nanoplates. Adv. Funct. Mater. 2019, 29, 1901930. [Google Scholar] [CrossRef]
- Sukharevska, N.; Bederak, D.; Goossens, V.M.; Momand, J.; Duim, H.; Dirin, D.N.; Kovalenko, M.V.; Kooi, B.J.; Loi, M.A. Scalable PbS Quantum Dot Solar Cell Production by Blade Coating from Stable Inks. ACS Appl. Mater. Interfaces 2021, 13, 5195–5207. [Google Scholar] [CrossRef]
- Wang, J.; Pan, Q.; Xie, H.; Ma, Y.; Su, M.; Chen, B.; Wang, H.; Xue, T.; Zhang, Z.; Chi, J.; et al. Printed Chalcogenide/Metal Heterostructured Photodetectors for Flexible Near-Infrared Sensing. Adv. Opt. Mater. 2022, 10, 2200173. [Google Scholar] [CrossRef]
- Du, J.; Zhang, B.; Jiang, M.; Zhang, Q.; Zhang, K.; Liu, Y.; Wang, L.; Jiang, W. Inkjet Printing Flexible Thermoelectric Devices Using Metal Chalcogenide Nanowires. Adv. Funct. Mater. 2023, 33, 2213564. [Google Scholar] [CrossRef]
- Dhage, S.R.; Kim, H.S.; Hahn, H.T. Cu(In,Ga)Se2 Thin Film Preparation from a Cu(In,Ga) Metallic Alloy and Se Nanoparticles by an Intense Pulsed Light Technique. J. Electron. Mater. 2011, 40, 122–126. [Google Scholar] [CrossRef]
- Dharmadasa, R.; Lavery, B.; Dharmadasa, I.M.; Druffel, T. Intense Pulsed Light Treatment of Cadmium Telluride Nanoparticle-Based Thin Films. ACS Appl. Mater. Interfaces 2014, 6, 5034–5040. [Google Scholar] [CrossRef]
- Stolle, C.J.; Harvey, T.B.; Pernik, D.R.; Hibbert, J.I.; Du, J.; Rhee, D.J.; Akhavan, V.A.; Schaller, R.D.; Korgel, B.A. Multiexciton Solar Cells of CuInSe2 Nanocrystals. J. Phys. Chem. Lett. 2014, 5, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Troughton, J.; Carnie, M.J.; Davies, M.L.; Charbonneau, C.; Jewell, E.H.; Worsley, D.A.; Watson, T.M. Photonic Flash-Annealing of Lead Halide Perovskite Solar Cells in 1 Ms. J. Mater. Chem. A 2016, 4, 3471–3476. [Google Scholar] [CrossRef]
- Muydinov, R.; Seeger, S.; Vinoth Kumar, S.H.B.; Klimm, C.; Kraehnert, R.; Wagner, M.R.; Szyszka, B. Crystallisation Behaviour of CH3NH3PbI3 Films: The Benefits of Sub-Second Flash Lamp Annealing. Thin Solid Film. 2018, 653, 204–214. [Google Scholar] [CrossRef]
- Lavery, B.W.; Kumari, S.; Konermann, H.; Draper, G.L.; Spurgeon, J.; Druffel, T. Intense Pulsed Light Sintering of CH3NH3PbI3 Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 8419–8426. [Google Scholar] [CrossRef]
- Ankireddy, K.; Lavery, B.W.; Druffel, T. Atmospheric Processing of Perovskite Solar Cells Using Intense Pulsed Light Sintering. J. Electron. Mater. 2018, 47, 1285–1292. [Google Scholar] [CrossRef]
- Ankireddy, K.; Ghahremani, A.H.; Martin, B.; Gupta, G.; Druffel, T. Rapid Thermal Annealing of CH 3 NH 3 PbI 3 Perovskite Thin Films by Intense Pulsed Light with Aid of Diiodomethane Additive. J. Mater. Chem. A 2018, 6, 9378–9383. [Google Scholar] [CrossRef]
- Kortov, V.; Kiryakov, A.; Nikiforov, S.; Ananchenko, D.; Zvonarev, S. Manufacture of Luminescent Ceramics by Vacuum Sintering of Nanopowder Oxides. Vacuum 2017, 143, 433–437. [Google Scholar] [CrossRef]
- Zgalat-Lozynskyy, O.; Matviichuk, O.; Tolochyn, O.; Ievdokymova, O.; Zgalat-Lozynska, N.; Zakiev, V. Polymer Materials Reinforced with Silicon Nitride Particles for 3D Printing. Powder Metall. Met. Ceram. 2021, 59, 515–527. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, X.; Shang, Y.; Xiong, K.; Xu, Z.; Guo, R.; Cai, S.; Zheng, C. Dense Ceramics with Complex Shape Fabricated by 3D Printing: A Review. J. Adv. Ceram. 2021, 10, 195–218. [Google Scholar] [CrossRef]
- Furong, N.; Xiaole, Y.; Yuanbing, L.; Jinyu, G.; Peng, L.; Zhipeng, X.; Xianfeng, Y. Fused Deposition Modeling of Si3N4 Ceramics: A Cost-Effective 3D-printing Route for Dense and High Performance Non-Oxide Ceramic Materials. J. Eur. Ceram. Soc. 2022, 42, 7369–7376. [Google Scholar] [CrossRef]
- Vidakis, N.; Mangelis, P.; Petousis, M.; Mountakis, N.; Papadakis, V.; Moutsopoulou, A.; Tsikritzis, D. Mechanical Reinforcement of ABS with Optimized Nano Titanium Nitride Content for Material Extrusion 3D Printing. Nanomaterials 2023, 13, 669. [Google Scholar] [CrossRef] [PubMed]
- Zgalat-Lozynskyy, O.B.; Matviichuk, O.O.; Litvyn, R.V.; Myslyvchenko, O.M.; Zgalat-Lozynska, N.O. Microwave Sintering of 3D Printed Composites from Polymers Reinforced with Titanium Nitride Particles. Powder Metall. Met. Ceram. 2023, 62, 164–173. [Google Scholar] [CrossRef]
- Alshihabi, M.; Kayacan, M.Y. Effect of Nanosized Carbon Nanotubes, Titanium Nitride and Cubic Boron Nitride Powders on Mechanical and Thermal Properties of SLA 3D Printed Resin Composites. Polym. Compos. 2024, 45, 15561–15573. [Google Scholar] [CrossRef]
- Gao, X.; Chen, J.; Chen, X.; Wang, W.; Li, Z.; He, R. How to Improve the Curing Ability during the Vat Photopolymerization 3D Printing of Non-Oxide Ceramics: A Review. Materials 2024, 17, 2626. [Google Scholar] [CrossRef]
- Blok, L.G.; Longana, M.L.; Yu, H.; Woods, B.K.S. An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites. Addit. Manuf. 2018, 22, 176–186. [Google Scholar] [CrossRef]
- D’Orazio, G.; Falanga, G.E.; Chazen, Z.; Jones, J.; Sobhani, S. Non-Oxide Ceramic Additive Manufacturing Processes for Aerospace Applications. In AIAA SCITECH 2023 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2023. [Google Scholar] [CrossRef]
- Noh, Y.; Kim, G.Y.; Lee, H.; Shin, J.; An, K.; Kumar, M.; Lee, D. A Review on Intense Pulsed Light Process as Post-Treatment for Metal Oxide Thin Films and Nanostructures for Device Application. Nanotechnology 2022, 33, 272001. [Google Scholar] [CrossRef]
- Bansal, S.; Malhotra, R. Nanoscale-Shape-Mediated Coupling between Temperature and Densification in Intense Pulsed Light Sintering. Nanotechnology 2016, 27, 495602. [Google Scholar] [CrossRef]
- Akhavan, V.; Schroder, K.; Farnsworth, S. Photonic Curing Enabling High-Speed Sintering of Metal Inkjet Inks on Temperature-Sensitive Substrates. In Handbook of Industrial Inkjet Printing; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2017; Chapter 32; pp. 557–566. [Google Scholar] [CrossRef]
- Gerlein, L.F.; Benavides-Guerrero, J.A.; Cloutier, S.G. Photonic Post-Processing of a Multi-Material Transparent Conductive Electrode Architecture for Optoelectronic Device Integration. RSC Adv. 2024, 14, 4748–4758. [Google Scholar] [CrossRef]
- Angmo, D.; Larsen-Olsen, T.T.; Jørgensen, M.; Søndergaard, R.R.; Krebs, F.C. Roll-to-Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integration. Adv. Energy Mater. 2013, 3, 172–175. [Google Scholar] [CrossRef]
- Marjanovic, N.; Hammerschmidt, J.; Perelaer, J.; Farnsworth, S.; Rawson, I.; Kus, M.; Yenel, E.; Tilki, S.; Schubert, U.S.; Baumann, R.R. Inkjet Printing and Low Temperature Sintering of CuO and CdS as Functional Electronic Layers and Schottky Diodes. J. Mater. Chem. 2011, 21, 13634–13639. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, C.J.; Min, K.D.; Hwang, B.U.; Kang, D.G.; Choi, D.H.; Joo, J.; Jung, S.B. Intense Pulsed Light Surface Treatment for Improving Adhesive Bonding of Aluminum and Carbon Fiber Reinforced Plastic (CFRP). Compos. Struct. 2021, 258, 113364. [Google Scholar] [CrossRef]
- Taherian, M.H.; Wadhwa, A.; Fortier, F.X.; Gerlein, L.F.; Shah, K.; Cloutier, S.G.; Bolduc, M. Reshaping Surface Dynamics in Kapton® Substrate for Advanced Printed Electronics: An Investigation of Intense Pulsed Light, Laser and Plasma Treatments. MRS Adv. 2024, 9, 657–664. [Google Scholar] [CrossRef]
- Schroder, K. Mechanisms of Photonic Curing™: Processing High Temperature Films on Low Temperature Substrates. TechConnect Briefs 2011, 2, 220–223. [Google Scholar]
- Guillot, M.J.; McCool, S.C.; Schroder, K.A. Simulating the Thermal Response of Thin Films During Photonic Curing. In Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 9–15 November 2012; Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D. American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2013; pp. 19–27. [Google Scholar] [CrossRef]
- Kinney, L.C.; Tompkins, E.H. Method of Making Printed Circuits. Patent US3451813A, 24 June 1969. [Google Scholar]
- Schroder, K.A.; Rawson, I.M.; Pope, D.S.; Farnsworth, S. Photonic Curing Explanation and Application to Printing Copper Traces on Low Temperature Substrates. Int. Symp. Microelectron. 2011, 2011, 001040–001046. [Google Scholar] [CrossRef]
- Im, T.H.; Lee, J.H.; Wang, H.S.; Sung, S.H.; Kim, Y.B.; Rho, Y.; Grigoropoulos, C.P.; Park, J.H.; Lee, K.J. Flashlight-Material Interaction for Wearable and Flexible Electronics. Mater. Today 2021, 51, 525–551. [Google Scholar] [CrossRef]
- Guillon, O.; Rheinheimer, W.; Bram, M. A Perspective on Emerging and Future Sintering Technologies of Ceramic Materials. Adv. Eng. Mater. 2023, 25, 2201870. [Google Scholar] [CrossRef]
- Wang, K.; Saeidi-Javash, M.; Zeng, M.; Liu, Z.; Zhang, Y.; Luo, T.; Dowling, A.W. Gaussian Process Regression Machine Learning Models for Photonic Sintering. In Computer Aided Chemical Engineering, Proceedings of the 14 International Symposium on Process Systems Engineering, Kyoto, Japan, 19–23 June 2022; Yamashita, Y., Kano, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 49, pp. 1819–1824. [Google Scholar] [CrossRef]
- Gilshtein, E.; Pfeiffer, S.; Rossell, M.D.; Sastre, J.; Gorjan, L.; Erni, R.; Tiwari, A.N.; Graule, T.; Romanyuk, Y.E. Millisecond Photonic Sintering of Iron Oxide Doped Alumina Ceramic Coatings. Sci. Rep. 2021, 11, 3536. [Google Scholar] [CrossRef]
- Ouyang, J.; Cormier, D.; Williams, S.A.; Borkholder, D.A. Photonic Sintering of Aerosol Jet Printed Lead Zirconate Titanate (PZT) Thick Films. J. Am. Ceram. Soc. 2016, 99, 2569–2577. [Google Scholar] [CrossRef]
- Das, S.; Gu, G.; Joshi, P.C.; Yang, B.; Aytug, T.; Rouleau, C.M.; Geohegan, D.B.; Xiao, K. Low Thermal Budget, Photonic-Cured Compact TiO2 Layers for High-Efficiency Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 9685–9690. [Google Scholar] [CrossRef]
- Kim, H.S.; Dhage, S.R.; Shim, D.E.; Hahn, H.T. Intense Pulsed Light Sintering of Copper Nanoink for Printed Electronics. Appl. Phys. A 2009, 97, 791. [Google Scholar] [CrossRef]
- Ghahremani, A.H.; Martin, B.; Gupta, A.; Bahadur, J.; Ankireddy, K.; Druffel, T. Rapid Fabrication of Perovskite Solar Cells through Intense Pulse Light Annealing of SnO2 and Triple Cation Perovskite Thin Films. Mater. Des. 2020, 185, 108237. [Google Scholar] [CrossRef]
- Slimani, M.A.; Wadhwa, A.; Gerlein, L.F.; Benavides-Guerrero, J.A.; Taherian, M.H.; Izquierdo, R.; Cloutier, S.G. Controlling the Optical and Electrical Properties of Perovskite Films and Enhancing Solar Cell Performance Using the Photonic Curing Process. Nanomaterials 2024, 14, 1975. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.Y.; Su, T.S.; Chen, C.A.; Chuang, K.W.; Wei, T.C.; Liao, Y.C. Recrystallized Perovskite Thin Film via Intense Pulse Light Sintering for Vertical Gradient Band Gap Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 14240–14248. [Google Scholar] [CrossRef]
- Jang, Y.R.; Jeong, R.; Kim, H.S.; Park, S.S. Fabrication of Solderable Intense Pulsed Light Sintered Hybrid Copper for Flexible Conductive Electrodes. Sci. Rep. 2021, 11, 14551. [Google Scholar] [CrossRef]
- Oh, Y.W.; Kim, H.; Do, L.M.; Baek, K.H.; Kang, I.S.; Lee, G.W.; Kang, C.m. Rapid Activation of a Solution-Processed Aluminum Oxide Gate Dielectric through Intense Pulsed Light Irradiation. RSC Adv. 2024, 14, 37438–37444. [Google Scholar] [CrossRef]
- Wirth, H.; Panknin, D.; Skorupa, W.; Niemann, E. Efficient P-Type Doping of 6H-SiC: Flash-lamp Annealing after Aluminum Implantation. Appl. Phys. Lett. 1999, 74, 979–981. [Google Scholar] [CrossRef]
- Williams, B.A.; Smeaton, M.A.; Holgate, C.S.; Trejo, N.D.; Francis, L.F.; Aydil, E.S. Intense Pulsed Light Annealing of Copper Zinc Tin Sulfide Nanocrystal Coatings. J. Vac. Sci. Technol. A 2016, 34, 051204. [Google Scholar] [CrossRef]
- Bansal, S.; Gao, Z.; Chang, C.h.; Malhotra, R. Rapid Intense Pulse Light Sintering of Copper Sulphide Nanoparticle Films. In Proceedings of the ASME 2017 12th International Manufacturing Science and Engineering Conference Collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing, Los Angeles, CA, USA, 4–8 June 2017; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Nakamura, T.; Cheong, H.J.; Takamura, M.; Yoshida, M.; Uemura, S. Suitability of Copper Nitride as a Wiring Ink Sintered by Low-Energy Intense Pulsed Light Irradiation. Nanomaterials 2018, 8, 617. [Google Scholar] [CrossRef]
- Dexter, M.; Gao, Z.; Bansal, S.; Chang, C.H.; Malhotra, R. Temperature, Crystalline Phase and Influence of Substrate Properties in Intense Pulsed Light Sintering of Copper Sulfide Nanoparticle Thin Films. Sci. Rep. 2018, 8, 2201. [Google Scholar] [CrossRef]
- Gupta, A.; Ankireddy, K.; Kumar, B.; Alruqi, A.; Jasinski, J.; Gupta, G.; Druffel, T. Intense Pulsed Light, a Promising Technique to Develop Molybdenum Sulfide Catalysts for Hydrogen Evolution. Nanotechnology 2019, 30, 175401. [Google Scholar] [CrossRef]
- Reynard, D.; Nagar, B.; Girault, H. Photonic Flash Synthesis of Mo2C/Graphene Electrocatalyst for the Hydrogen Evolution Reaction. ACS Catal. 2021, 11, 5865–5872. [Google Scholar] [CrossRef]
- Xu, W.; Daunis, T.B.; Piper, R.T.; Hsu, J.W. Effects of Photonic Curing Processing Conditions on MAPbI3 Film Properties and Solar Cell Performance. ACS Appl. Energy Mater. 2020, 3, 8636–8645. [Google Scholar] [CrossRef]
- Chiang, Y.M.; Birnie, D.P.; Kingery, W.D. Physical Ceramics: Principles for Ceramic Science and Engineering; MIT Series in Materials Science & Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Jacobson, N.S.; Opila, E.J. Oxidation/Corrosion of Nonoxide Ceramics. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Oxford, UK, 2001; pp. 6285–6287. [Google Scholar] [CrossRef]
Material | Pulse Fluence (J·) | Pulse Duration (ms) | Duty Cycle | Repetitions | Reference |
---|---|---|---|---|---|
MAPbBr3−xIx + PVP | 26.5 | 2 ms | N/A | 5–20 | [43] |
Cs0.05(MA0.85 FA0.15)0.95 PbI3 + CH2I2 | 1.4 kJ (1) | 2 | N/A | 5 | [74] |
MAPbI3 + CB | 3.52 | 5 | 50% | 1 | [75] |
CH3NH3PbI3−xClx | 3.99 | 1.15 | N/A | 1 | [40] |
MAPbBr3 MAPbBr3−xIx MAPbI3 | 3.92 | 1 | N/A | 1 | [76] |
Cu(In0.7Ga0.3)Se2 | 20 | 2 | N/A | 1 | [37] |
CdTe | 21.6 | 1 | N/A | 100 | [38] |
Bi2Te2.7Se0.3 | 27.1 | 5 | 1.4% | 5 | [33] |
CuInSe2 | 2.2 | 160 | N/A | 1 | [39] |
Al-doped SiC | N/A | 20 | N/A | N/A | [79] |
Cu2ZnSnS4 | 3.9–11.6 | 3.5 | N/A | 1–400 | [80] |
CuxS | 7.5 | 762.215 | 0.159% | 3 | [81] |
Cu3N | 16.60 | 2 | 50% | 4 | [82] |
MoS2 | 12.8 | 20 | 18 µ-pulses | 4 | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerlein, L.F.; Taherian, M.H.; Bolduc, M. A Review of Photonic Sintering of Non-Oxide Ceramics for Printed Electronics. Materials 2025, 18, 2404. https://doi.org/10.3390/ma18102404
Gerlein LF, Taherian MH, Bolduc M. A Review of Photonic Sintering of Non-Oxide Ceramics for Printed Electronics. Materials. 2025; 18(10):2404. https://doi.org/10.3390/ma18102404
Chicago/Turabian StyleGerlein, Luis Felipe, Mohamad Hassan Taherian, and Martin Bolduc. 2025. "A Review of Photonic Sintering of Non-Oxide Ceramics for Printed Electronics" Materials 18, no. 10: 2404. https://doi.org/10.3390/ma18102404
APA StyleGerlein, L. F., Taherian, M. H., & Bolduc, M. (2025). A Review of Photonic Sintering of Non-Oxide Ceramics for Printed Electronics. Materials, 18(10), 2404. https://doi.org/10.3390/ma18102404