All-Silicon Polarization-Insensitive Metamaterial Absorber in the Terahertz Range
Abstract
1. Introduction
2. Structural Design and Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, Z.; Zheng, Y.; Luo, Y.; Yi, Z.; Zhang, J.; Liu, Z.; Yang, W.; Yu, Y.; Wu, X.; Wu, P. A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection. Phys. Chem. Chem. Phys. 2022, 24, 2527–2533. [Google Scholar] [CrossRef]
- Wang, B.; Gai, K.; Wang, R.; Yan, F.; Li, L. Ultra-broadband perfect terahertz absorber with periodic-conductivity graphene metasurface. Opt. Laser Technol. 2022, 154, 108297. [Google Scholar] [CrossRef]
- Qi, L.; Liu, C.; Shah, S.M.A. A broad dual-band switchable graphene-based terahertz metamaterial absorber. Carbon 2019, 153, 179–188. [Google Scholar] [CrossRef]
- Song, Z.; Chen, A.; Zhang, J.; Wang, J. Integrated metamaterial with functionalities of absorption and electromagnetically induced transparency. Opt. Express 2019, 27, 25196–25204. [Google Scholar] [CrossRef]
- Yue, Z.; Li, J.; Li, J.; Zheng, C.; Liu, J.; Wang, G.; Xu, H.; Chen, M.; Zhang, Y.; Zhang, Y.; et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron. Sci. 2022, 1, 210014. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, G.; Li, J.; Li, J.T.; Wang, S.; Zhao, H.; Li, M.; Yue, Z.; Zhang, Y.T.; Yao, J. All-Dielectric Metasurface for Manipulating the Superpositions of Orbital Angular Momentum via Spin-Decoupling. Adv. Opt. Mater. 2021, 9, 2002007. [Google Scholar] [CrossRef]
- Quan, C.; Zou, J.; Guo, C.; Xu, W.; Zhu, Z.; Zhang, J. High-temperature resistant broadband infrared stealth metamaterial absorber. Opt. Laser Technol. 2022, 156, 108579. [Google Scholar] [CrossRef]
- Li, J.; Bao, L.; Jiang, S.; Guo, Q.; Xu, D.; Xiong, B.; Zhang, G.; Yi, F. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging. Opt. Express 2019, 27, 8375–8386. [Google Scholar] [CrossRef]
- Vora, A.; Gwamuri, J.; Pala, N.; Kulkarni, A.; Pearce, J.M.; Güney, D.Ö. Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Opt. Absorpt. Photovolt. Sci. Rep. 2014, 4, 4901. [Google Scholar] [CrossRef]
- Grant, J.; Escorcia-Carranza, I.; Li, C.; McCrindle, I.J.; Gough, J.; Cumming, D.R. A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer. Laser Photonics Rev. 2013, 7, 1043–1048. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Fang, P.; Shi, X.; Liu, C.; Zhai, X.; Li, H.; Wang, L. Single-and dual-band convertible terahertz absorber based on bulk Dirac semimetal. Opt. Commun. 2020, 462, 125333. [Google Scholar] [CrossRef]
- Le, D.T.; Tong, B.T.; Nguyen, T.K.T.; Cao, T.N.; Nguyen, H.Q.; Tran, M.C.; Truong, C.L.; Bui, X.K.; Vu, D.L.; Nguyen, T.Q.H. Polarization-insensitive dual-band terahertz metamaterial absorber based on asymmetric arrangement of two rectangular-shaped resonators. Optik 2021, 245, 167669. [Google Scholar] [CrossRef]
- Wang, B.X.; Xu, C.; Duan, G.; Jiang, J.; Xu, W.; Yang, Z.; Wu, Y. Miniaturized and actively tunable triple-band terahertz metamaterial absorber using an analogy I-typed resonator. Nanoscale Res. Lett. 2022, 17, 35. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Islam, M.T.; Muhammad, G.; Singh, M.S.J.; Samsuzzaman, M. Quad band metamaterial absorber based on asymmetric circular split ring resonator for multiband microwave applications. Results Phys. 2020, 19, 103467. [Google Scholar] [CrossRef]
- Wang, B.X.; He, Y.; Lou, P.; Huang, W.Q.; Pi, F. Penta-band terahertz light absorber using five localized resonance responses of three patterned resonators. Results Phys. 2020, 16, 102930. [Google Scholar] [CrossRef]
- Zou, H.; Cheng, Y. Design of a six-band terahertz metamaterial absorber for temperature sensing application. Opt. Mater. 2019, 88, 674–679. [Google Scholar] [CrossRef]
- Jain, P.; Chhabra, H.; Chauhan, U.; Prakash, K.; Gupta, A.; Soliman, M.S.; Islam, M.S.; Islam, M.T. Machine learning assisted hepta band THz metamaterial absorber for biomedical applications. Sci. Rep. 2023, 13, 1792. [Google Scholar] [CrossRef]
- Li, S.; Xu, S.; Pan, K.; Du, J.; Qiu, J. Ultra-thin broadband terahertz absorption and electromagnetic shielding properties of MXene/rGO composite film. Carbon 2022, 194, 127–139. [Google Scholar] [CrossRef]
- Bai, P.; Zhang, Y.; Wang, T.; Fu, Z.; Shao, D.; Li, Z.; Wan, W.; Li, H.; Cao, J.; Guo, X.; et al. Broadband THz to NIR up-converter for photon-type THz imaging. Nat. Commun. 2019, 10, 3513. [Google Scholar] [CrossRef]
- Yan, D.; Wang, Y.; Qiu, Y.; Feng, Q.; Li, X.; Li, J.; Qiu, G.; Li, J. A review: The functional materials-assisted terahertz metamaterial absorbers and polarization converters. Photonics 2022, 9, 335. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, Y.; Cheng, Z. Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Li, W.; Guler, U.; Kinsey, N.; Naik, G.V.; Boltasseva, A.; Guan, J.; Shalaev, V.M.; Kildishev, A.V. Refractory plasmonics with titanium nitride: Broadband metamaterial absorber. Adv. Mater. 2014, 26, 7959–7965. [Google Scholar] [CrossRef]
- Kumar, D.; Gupta, M.; Srivastava, Y.K.; Devi, K.M.; Kumar, R.; Chowdhury, D.R. Photoinduced dynamic tailoring of near-field coupled terahertz metasurfaces and its effect on Coulomb parameters. J. Opt. 2022, 24, 045101. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Y.; Fu, W.; Huang, S.; Zhu, Y.F.; Luo, X. Terahertz metamaterial absorber with switchable function between broadband and dual narrowband. Results Phys. 2024, 56, 107283. [Google Scholar] [CrossRef]
- Li, W.; Yi, Y.; Yang, H.; Cheng, S.; Yang, W.; Zhang, H.; Yi, Z.; Yi, Y.; Li, H. Active tunable terahertz bandwidth absorber based on single layer graphene. Commun. Theor. Phys. 2023, 75, 045503. [Google Scholar] [CrossRef]
- Kumar, D.; Devi, K.M.; Kumar, R.; Chowdhury, D.R. Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces. Opt. Commun. 2021, 491, 126949. [Google Scholar] [CrossRef]
- Kumar, D.; Jain, R.; Shahjahan, S.; Banerjee, S.; Prabhu, S.; Kumar, R.; Azad, A.; Chowdhury, D.R. Bandwidth enhancement of planar terahertz metasurfaces via overlapping of dipolar modes. Plasmonics 2020, 15, 1925–1934. [Google Scholar] [CrossRef]
- Zheng, R.; Liu, Y.; Ling, L.; Sheng, Z.; Yi, Z.; Song, Q.; Tang, B.; Zeng, Q.; Chen, J.; Sun, T. Ultra wideband tunable terahertz metamaterial absorber based on single-layer graphene strip. Diam. Relat. Mater. 2024, 141, 110713. [Google Scholar] [CrossRef]
- Ri, K.J.; Kim, P. Dual-broadband Terahertz metamaterial absorber using a single asymmetric resonator. Optik 2024, 298, 171580. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, Z.; Liang, Z.; Meng, D.; Xu, H.; Smith, D.R.; Liu, Y. Ultra-broadband metamaterial absorbers from long to very long infrared regime. Light Sci. Appl. 2021, 10, 138. [Google Scholar] [CrossRef]
- Wang, B.X.; Tang, C.; Niu, Q.; He, Y.; Chen, R. A broadband terahertz metamaterial absorber enabled by the simple design of a rectangular-shaped resonator with an elongated slot. Nanoscale Adv. 2019, 1, 3621–3625. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liang, C.; Zhang, Y.; Yi, Z.; Chen, X.; Zhou, Z.; Yang, H.; Tang, Y.; Yi, Y. Terahertz wideband perfect absorber based on open loop with cross nested structure. Results Phys. 2019, 15, 102603. [Google Scholar] [CrossRef]
- Baek, J.; Kim, J.; Seol, J.H.; Kim, M. All-dielectric polarization-sensitive metasurface for terahertz polarimetric imaging. Sci. Rep. 2024, 14, 7544. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Xu, J.; Cao, J.; Yao, H.; Ali, S.E.; Abo-Dief, H.M.; Alanazi, A.K.; Lan, C.; Lgadi, H.; Zhai, A.X. Highly efficient tunable terahertz all-dielectric metasurface absorber based on high mode. Adv. Compos. Hybrid Mater. 2023, 6, 116. [Google Scholar] [CrossRef]
- Liu, H.; Luo, K.; Tang, S.; Peng, D.; Hu, F.; Tu, L. An ultra-wideband THz/IR metamaterial absorber based on doped silicon. Materials 2018, 11, 2590. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qin, D.; Gao, W.; Long, W.; Jiao, J.; An, B. Mid-infrared to terahertz ultra-broadband absorber based on all-dielectric metamaterial. Opt. Quantum Electron. 2024, 56, 739. [Google Scholar] [CrossRef]
- Cao, M.; Huang, X.; Gao, L.; Li, X.; Guo, L.; Yang, H. Broadband bi-directional all-dielectric transparent metamaterial absorber. Nanomaterials 2022, 12, 4124. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Kaj, K.; Chen, C.; Yang, Z.; Haque, S.R.U.; Zhang, Y.; Zhao, X.; Averitt, R.D.; Zhang, X. Broadband terahertz silicon membrane metasurface absorber. ACS Photonics 2022, 9, 1150–1156. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Withayachumnankul, W.; Upadhyay, A.; Headland, D.; Nie, Y.; Gong, R.Z.; Bhaskaran, M.; Sriram, S.; Abbott, D. Ultrabroadband plasmonic absorber for terahertz waves. Adv. Opt. Mater. 2015, 3, 376–380. [Google Scholar] [CrossRef]
- Xu, Z.C.; Li, Y.J.; Han, B.; Yuan, Q.; Li, Y.; He, W.; Hao, J.; Wu, L.; Yao, J. Ultra-broadband and polarization-insensitive terahertz metamaterial absorber based on undoped silicon. Results Phys. 2023, 51, 106711. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Zheng, C.; Liu, L.; Yue, Z.; Xu, H.; Hao, X.; Li, F.; Tang, T.; Zhang, Y.; et al. Broadband and tunable terahertz absorption via photogenerated carriers in undoped silicon. Sci. China Phys. Mech. Astron. 2022, 65, 214211. [Google Scholar] [CrossRef]
- Spinelli, P.; Verschuuren, M.A.; Polman, A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 2012, 3, 692. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.Y.; Fan, P.Y.; Vasudev, A.P.; White, J.S.; Yu, Z.F.; Cai, W.S.; Schuller, J.A.; Fan, S.H.; Brongersma, M.L. Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 2010, 10, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.; Shi, C.; Chen, L.; Cai, B.; Zhu, Y.; Zhuang, S. Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings. Sci. Rep. 2015, 5, 8901. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Schalch, J.; Duan, G.; Cremin, K.; Zhang, J.; Chen, C.; Averitt, R.D.; Zhang, X. Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers. ACS Photonics 2019, 6, 830–837. [Google Scholar] [CrossRef]
- Torres-Torres, C.; Bornacelli, J.; Rangel-Rojo, R.; García-Merino, J.A.; Can-Uc, B.; Tamayo-Rivera, L.; Cheang-Wong, L.; Rodríguez-Fernández, L.; Oliver, A. Photothermally activated two-photon absorption in ion-implanted silicon quantum dots in silica plates. J. Nanomater. 2018, 2018, 3470167. [Google Scholar] [CrossRef]
- Banerjee, S.; Kumar, S.; Goel, S.; Pal, B.P.; Chowdhury, D.R. Thin Film Sensing with Asymmetric Terahertz Metasurfaces. In Proceedings of the 2019 Workshop on Recent Advances in Photonics (WRAP), Guwahati, India, 13–14 December 2019; pp. 1–3. [Google Scholar]
Refs. | Absorption | Absorption Band (THz) | Relative Bandwidth | Meta-Atoms | Thickness (μm) |
---|---|---|---|---|---|
[3] | ≥80% | 0.473–1.407 | 97.8% | cross-shaped grooves | 95.2 |
[25] | ≥50% | 1.24–2.85 | 79.0% | a rectangular-shaped resonator having an elongated slot | 14 (middle layer) |
[32] | ≥90% | 1.1–1.6 | 38.5% | a n-doped silicon membrane with elliptical holes | 75 |
[33] | ≥90% | 0.67–1.78 | 90.6% | cross structures etched into a doped silicon substrate | 265 |
[35] | ≥90% | 0.58–1.92 | 107.2% | ellipse pillar | 500 |
[38] | ≥95% | 0.92–2.4 | 89.2% | two 90 degree crossed dumbbell-shaped doped-silicon grating | 500 |
our work | ≥90% | 0.77–2.53 | 106.7% | square silicon rings | 550 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Li, Y.; Han, B.; Wang, Y.; Yuan, Q.; Li, Y.; He, W.; Hao, J.; Wu, L.; Yao, J. All-Silicon Polarization-Insensitive Metamaterial Absorber in the Terahertz Range. Materials 2024, 17, 2098. https://doi.org/10.3390/ma17092098
Xu Z, Li Y, Han B, Wang Y, Yuan Q, Li Y, He W, Hao J, Wu L, Yao J. All-Silicon Polarization-Insensitive Metamaterial Absorber in the Terahertz Range. Materials. 2024; 17(9):2098. https://doi.org/10.3390/ma17092098
Chicago/Turabian StyleXu, Zongcheng, Yujie Li, Bin Han, Yue Wang, Quan Yuan, Yanan Li, Weiyan He, Junhua Hao, Liang Wu, and Jianquan Yao. 2024. "All-Silicon Polarization-Insensitive Metamaterial Absorber in the Terahertz Range" Materials 17, no. 9: 2098. https://doi.org/10.3390/ma17092098
APA StyleXu, Z., Li, Y., Han, B., Wang, Y., Yuan, Q., Li, Y., He, W., Hao, J., Wu, L., & Yao, J. (2024). All-Silicon Polarization-Insensitive Metamaterial Absorber in the Terahertz Range. Materials, 17(9), 2098. https://doi.org/10.3390/ma17092098