Effects of Cu/SnAgCu Powder Fraction and Sintering Time on Microstructure and Mechanical Properties of Transient Liquid Phase Sintered Joints
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bultitude, J.; McConnell, J.; Shearer, C. High temperature capacitors and transient liquid phase interconnects for Pb-solder replacement. J. Mater. Sci. Mater. Electron. 2015, 26, 9236–9242. [Google Scholar] [CrossRef]
- Fujino, M.; Narusawa, H.; Kuramochi, Y.; Higurashi, E.; Suga, T.; Shiratori, T.; Mizukoshi, M. Transient liquid-phase sintering using silver and tin powder mixture for die bonding. Jpn. J. Appl. Phys. 2016, 55, 04EC14. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, S.; Zhang, Z.; Chen, H.; Li, M. Microstructure evolution and mechanical strength evaluation in Ag/Sn/Cu TLP bonding interconnection during aging test. Microelectron. Reliab. 2018, 80, 144–148. [Google Scholar] [CrossRef]
- German, R.M.; Suri, P.; Park, S.J. Liquid phase sintering. J. Mater. Sci. 2009, 44, 1–39. [Google Scholar] [CrossRef]
- Xie, G.; Li, S.; Louzguine-Luzgin, D.V.; Cao, Z.; Yoshikawa, N.; Sato, M.; Inoue, A. Effect of Sn on microwave-induced heating and sintering of Ni-based metallic glassy alloy powders. Intermetallics 2009, 17, 274–277. [Google Scholar] [CrossRef]
- Lis, A.; Leinenbach, C. Effect of process and service conditions on TLP-bonded components with (Ag, Ni–) Sn interlayer combinations. J. Electron. Mater. 2015, 44, 4576–4588. [Google Scholar] [CrossRef]
- Shao, H.; Wu, A.; Bao, Y.; Zhao, Y. Elimination of pores in Ag–Sn TLP bonds by the introduction of dissimilar intermetallic phases. J. Mater. Sci. 2017, 52, 3508–3519. [Google Scholar] [CrossRef]
- Lee, J.-B.; Hwang, H.-Y.; Rhee, M.-W. Reliability investigation of Cu/In TLP bonding. J. Electron. Mater. 2015, 44, 435–441. [Google Scholar] [CrossRef]
- Shao, H.; Wu, A.; Bao, Y.; Zhao, Y.; Zou, G.; Liu, L. Thermal reliability investigation of Ag-Sn TLP bonds for high-temperature power electronics application. Microelectron. Reliab. 2018, 91, 38–45. [Google Scholar] [CrossRef]
- Kim, M.I.; Lee, J.-H. Die sinter bonding in air using Cu@Ag particulate preform and rapid formation of near-full density bondline. J. Mater. Res. Technol. 2021, 14, 1724–1738. [Google Scholar] [CrossRef]
- Sharif, A.; Gan, C.L.; Chen, Z. Transient liquid phase Ag-based solder technology for high-temperature packaging applications. J. Alloys Compd. 2014, 587, 365–368. [Google Scholar] [CrossRef]
- Shao, H.; Wu, A.; Bao, Y.; Zhao, Y.; Zou, G.; Liu, L. Microstructure evolution and mechanical properties of Cu/Sn/Ag TLP-bonded joint during thermal aging. Mater. Charact. 2018, 144, 469–478. [Google Scholar] [CrossRef]
- Hsiao, C.-H.; Kung, W.-T.; Song, J.-M.; Chang, J.-Y.; Chang, T.-C. Development of Cu-Ag pastes for high temperature sustainable bonding. Mater. Sci. Eng. A 2017, 684, 500–509. [Google Scholar] [CrossRef]
- Sun, L.; Chen, M.-H.; Zhang, L. Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. J. Alloys Compd. 2019, 786, 677–687. [Google Scholar] [CrossRef]
- Peng, X.; Wang, Y.; Wang, W.; Ye, Z.; Yang, J.; Huang, J. Kinetics of Cu6Sn5 and Cu3Sn intermetallic compounds growth and isothermal solidification during Cu-Sn transient liquid phase sintering process. J. Alloys Compd. 2023, 949, 169631. [Google Scholar] [CrossRef]
- Mohd Said, R.; Mohd Salleh, M.; Saud, N.; Ramli, M.; Yasuda, H.; Nogita, K. Microstructure and growth kinetic study in Sn–Cu transient liquid phase sintering solder paste. J. Mater. Sci. Mater. Electron. 2020, 31, 11077–11094. [Google Scholar] [CrossRef]
- Mo, L.; Chen, Z.; Wu, F.; Liu, C. Microstructural and mechanical analysis on Cu–Sn intermetallic micro-joints under isothermal condition. Intermetallics 2015, 66, 13–21. [Google Scholar] [CrossRef]
- Wang, S.; Ji, H.; Li, M.; Wang, C. Fabrication of interconnects using pressureless low temperature sintered Ag nanoparticles. Mater. Lett. 2012, 85, 61–63. [Google Scholar] [CrossRef]
- Paknejad, S.A.; Mansourian, A.; Greenberg, J.; Khtatba, K.; Van Parijs, L.; Mannan, S.H. Microstructural evolution of sintered silver at elevated temperatures. Microelectron. Reliab. 2016, 63, 125–133. [Google Scholar] [CrossRef]
- Yang, F.; Zhu, W.; Wu, W.; Ji, H.; Hang, C.; Li, M. Microstructural evolution and degradation mechanism of SiC–Cu chip attachment using sintered nano-Ag paste during high-temperature ageing. J. Alloys Compd. 2020, 846, 156442. [Google Scholar] [CrossRef]
- Yu, F.; Cui, J.; Zhou, Z.; Fang, K.; Johnson, R.W.; Hamilton, M.C. Reliability of Ag sintering for power semiconductor die attach in high-temperature applications. IEEE Trans. Power Electron. 2016, 32, 7083–7095. [Google Scholar] [CrossRef]
- Li, J.; Johnson, C.M.; Buttay, C.; Sabbah, W.; Azzopardi, S. Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles. J. Mater. Process. Technol. 2015, 215, 299–308. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Liu, Z.; Mao, F.; Jiu, Y.; Luo, J.; Shangguan, L.; Jin, X.; Wu, G.; Zhang, S. Research status of evolution of microstructure and properties of Sn-based lead-free composite solder alloys. J. Nanomater. 2020, 2020, 8843166. [Google Scholar] [CrossRef]
- Ramli, M.; Saud, N.; Salleh, M.M.; Derman, M.N.; Said, R.M. Effect of TiO2 additions on Sn-0.7 Cu-0.05 Ni lead-free composite solder. Microelectron. Reliab. 2016, 65, 255–264. [Google Scholar] [CrossRef]
- Zhang, H.; Minter, J.; Lee, N.-C. A brief review on high-temperature, Pb-free die-attach materials. J. Electron. Mater. 2019, 48, 201–210. [Google Scholar] [CrossRef]
- Bhogaraju, S.K.; Conti, F.; Kotadia, H.R.; Keim, S.; Tetzlaff, U.; Elger, G. Novel approach to copper sintering using surface enhanced brass micro flakes for microelectronics packaging. J. Alloys Compd. 2020, 844, 156043. [Google Scholar] [CrossRef]
- Liu, X.; Nishikawa, H. Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging. Scr. Mater. 2016, 120, 80–84. [Google Scholar] [CrossRef]
- Nguyen, Y.N.; Kim, S.; Bae, S.H.; Son, I. Enhancement of bonding strength in BiTe-based thermoelectric modules by electroless nickel, electroless palladium, and immersion gold surface modification. Appl. Surf. Sci. 2021, 545, 149005. [Google Scholar] [CrossRef]
- Yan, H.; Liang, P.; Mei, Y.; Feng, Z. Brief review of silver sinter-bonding processing for packaging high-temperature power devices. Chin. J. Electr. Eng. 2020, 6, 25–34. [Google Scholar] [CrossRef]
- Tang, W.; Long, X.; Liu, Y.; Du, C.; Yao, Y.; Zhou, C.; Wu, Y.; Jia, F. Effect of electric current on constitutive behaviour and microstructure of SAC305 solder joint. In Proceedings of the 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), Singapore, 4–7 December 2018; pp. 717–721. [Google Scholar]
- Joo, H.-S.; Lee, C.-J.; Min, K.D.; Hwang, B.-U.; Jung, S.-B. Mechanical properties and microstructural evolution of solder alloys fabricated using laser-assisted bonding. J. Mater. Sci. Mater. Electron. 2020, 31, 22926–22932. [Google Scholar] [CrossRef]
- Kousar, S.; Hansen, K.; Keller, T.F. Laser-Assisted Micro-Solder Bumping for Copper and Nickel–Gold Pad Finish. Materials 2022, 15, 7349. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.D.; Wang, C.; Swingler, J. Laser-Assisted Sintering of Silver Nanoparticle Paste for Bonding of Silicon to DBC for High-Temperature Electronics Packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 11, 522–529. [Google Scholar] [CrossRef]
- Jung, K.-H.; Min, K.D.; Lee, C.-J.; Jeong, H.; Kim, J.-H.; Jung, S.-B. Ultrafast photonic soldering with Sn–58Bi using intense pulsed light energy. Adv. Eng. Mater. 2020, 22, 2000179. [Google Scholar] [CrossRef]
- Li, Y.; Wong, C. Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications. Mater. Sci. Eng. R: Rep. 2006, 51, 1–35. [Google Scholar] [CrossRef]
- Tu, K.-N.; Gusak, A.M.; Li, M. Physics and materials challenges for lead-free solders. J. Appl. Phys. 2003, 93, 1335–1353. [Google Scholar] [CrossRef]
- Tu, K.-N.; Thompson, R. Kinetics of interfacial reaction in bimetallic CuSn thin films. Acta Metall. 1982, 30, 947–952. [Google Scholar] [CrossRef]
- Tu, K.-N. Cu/Sn interfacial reactions: Thin-film case versus bulk case. Mater. Chem. Phys. 1996, 46, 217–223. [Google Scholar] [CrossRef]
- Ha, H.-B.; Lee, B.H.; Qaiser, N.; Seo, Y.; Kim, J.; Koo, J.M.; Hwang, B. Highly reliable anisotropic interconnection system fabricated using Cu/Sn-Soldered microdumbbell arrays and polyimide films for application to flexible electronics. Intermetallics 2022, 144, 107535. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Yu, C.-Y.; Duh, J.-G. Improving the shear strength of Sn–Ag–Cu–Ni/Cu–Zn solder joints via modifying the microstructure and phase stability of Cu–Sn intermetallic compounds. Intermetallics 2014, 54, 181–186. [Google Scholar] [CrossRef]
- Wang, C.-H.; Shen, H.-T. Effects of Ni addition on the interfacial reactions between Sn–Cu solders and Ni substrate. Intermetallics 2010, 18, 616–622. [Google Scholar] [CrossRef]
- Ding, C.; Wang, J.; Liu, T.; Qin, H.; Yang, D.; Zhang, G. The Mechanical Properties and Elastic Anisotropy of η′-Cu6Sn5 and Cu3Sn Intermetallic Compounds. Crystals 2021, 11, 1562. [Google Scholar] [CrossRef]
- Shang, M.; Dong, C.; Yao, J.; Wang, C.; Ma, H.; Ma, H.; Wang, Y. Competitive growth of Cu3Sn and Cu6Sn5 at Sn/Cu interface during various multi-reflow processes. J. Mater. Sci. Mater. Electron. 2021, 32, 22771–22779. [Google Scholar] [CrossRef]
- Lee, B.-S.; Hyun, S.-K.; Yoon, J.-W. Cu–Sn and Ni–Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging. J. Mater. Sci. Mater. Electron. 2017, 28, 7827–7833. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, C.; Yang, Y.; Zhang, H.; Kim, D.; Sugahara, T.; Nagao, S.; Suganuma, K. Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air. J. Alloys Compd. 2019, 780, 435–442. [Google Scholar] [CrossRef]
- Jiu, J.; Zhang, H.; Koga, S.; Nagao, S.; Izumi, Y.; Suganuma, K. Simultaneous synthesis of nano and micro-Ag particles and their application as a die-attachment material. J. Mater. Sci. Mater. Electron. 2015, 26, 7183–7191. [Google Scholar] [CrossRef]
- Jiu, J.; Zhang, H.; Nagao, S.; Sugahara, T.; Kagami, N.; Suzuki, Y.; Akai, Y.; Suganuma, K. Die-attaching silver paste based on a novel solvent for high-power semiconductor devices. J. Mater. Sci. 2016, 51, 3422–3430. [Google Scholar] [CrossRef]
- Chen, C.; Gao, Y.; Liu, Z.-Q.; Suganuma, K. 3D pyramid-shape Ag plating assisted interface connection growth of sinter micron-sized Ag paste. Scr. Mater. 2020, 179, 36–39. [Google Scholar] [CrossRef]
- Chuang, T.-H.; Chen, Y.-T.; Lai, Y.-C.; Yang, Z.-H. Effects of Sputtering Bias on the Material Characteristics of Ag Nanotwinned Films. IEEE Trans. Compon. Packag. Manuf. Technol. 2023, 13, 750–756. [Google Scholar] [CrossRef]
- Chuang, T.-H.; Chen, Y.-H.; Wu, P.-C. Mechanism of the Evaporation of Ag Nano-Twinned Films on Si Wafers with Assistance of Ion Beam Bombardment. Int. J. Miner. Metall. Mater. 2022, 8, 08–15. [Google Scholar] [CrossRef]
- Chuang, T.-H.; Wu, P.-C.; Lin, Y.-C. Lattice buffer effect of Ti film on the epitaxial growth of Ag nanotwins on Si substrates with various orientations. Mater. Charact. 2020, 167, 110509. [Google Scholar] [CrossRef]
- Lai, Y.-C.; Wu, P.-C.; Chuang, T.-H. Characterization of interfacial structure for low-temperature direct bonding of Si substrates sputtered with Ag nanotwinned films. Mater. Charact. 2021, 175, 111060. [Google Scholar] [CrossRef]
- Abdelhadi, O.M.; Ladani, L. IMC growth of Sn-3.5 Ag/Cu system: Combined chemical reaction and diffusion mechanisms. J. Alloys Compd. 2012, 537, 87–99. [Google Scholar] [CrossRef]
- Suh, J.; Tu, K.-N.; Lutsenko, G.; Gusak, A. Size distribution and morphology of Cu6Sn5 scallops in wetting reaction between molten solder and copper. Acta Mater. 2008, 56, 1075–1083. [Google Scholar] [CrossRef]
- Hsiao, H.-Y.; Liu, C.-M.; Lin, H.-W.; Liu, T.-C.; Lu, C.-L.; Huang, Y.-S.; Chen, C.; Tu, K.N. Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper. Science 2012, 336, 1007–1010. [Google Scholar] [CrossRef]
- Chiu, W.-L.; Liu, C.-M.; Haung, Y.-S.; Chen, C. Formation of nearly void-free Cu3Sn intermetallic joints using nanotwinned Cu metallization. Appl. Phys. Lett. 2014, 104, 171902. [Google Scholar] [CrossRef]
- Lin, J.-A.; Lin, C.-K.; Liu, C.-M.; Huang, Y.-S.; Chen, C.; Chu, D.T.; Tu, K.-N. Formation mechanism of porous Cu3Sn intermetallic compounds by high current stressing at high temperatures in low-bump-height solder joints. Crystals 2016, 6, 12. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Z.; Liu, C.; Wu, Y.; An, B. Micro-mechanical and fracture characteristics of Cu6Sn5 and Cu3Sn intermetallic compounds under micro-cantilever bending. Intermetallics 2016, 76, 10–17. [Google Scholar] [CrossRef]
- Yin, Z.; Sun, F.; Guo, M. Investigation of Elevated Temperature Mechanical Properties of Intermetallic Compounds in the Cu–Sn System Using Nanoindentation. J. Electron. Packag. 2020, 142, 021004. [Google Scholar] [CrossRef]
- Yoon, J.-W.; Back, J.-H. Effect of sintering conditions on the mechanical strength of Cu-sintered joints for high-power applications. Materials 2018, 11, 2105. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, W. Study on the main influencing factors of shear strength of nano-silver joints. J. Mater. Res. Technol. 2020, 9, 4133–4138. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, C.; Suetake, A.; Hsieh, M.-C.; Iwaki, A.; Suganuma, K. Pressureless and low-temperature sinter-joining on bare Si, SiC and GaN by a Ag flake paste. Scr. Mater. 2021, 198, 113833. [Google Scholar] [CrossRef]
- Tan, Y.; Li, X.; Chen, G.; Gao, Q.; Lu, G.-Q.; Chen, X. Effects of thermal aging on long-term reliability and failure modes of nano-silver sintered lap-shear joint. Int. J. Adhes. Adhes. 2020, 97, 102488. [Google Scholar] [CrossRef]
- Wang, W.; Zou, G.; Jia, Q.; Zhang, H.; Feng, B.; Deng, Z.; Liu, L. Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics. Mater. Sci. Eng. A 2020, 793, 139894. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Wang, B.; Chen, W.; Zhang, G.; Zhang, J.; Fan, J.; Liu, P. Effect of epoxy resin addition on properties and corrosion behavior of sintered joints in power modules serviced offshore. J. Mater. Res. Technol. 2023, 25, 6593–6612. [Google Scholar] [CrossRef]
- Son, J.; Yu, D.-Y.; Kim, Y.-C.; Kim, S.-I.; Byun, D.; Bang, J. Thermal reliability of Cu sintering joints for high-temperature die attach. Microelectron. Reliab. 2023, 147, 115002. [Google Scholar] [CrossRef]
- Dai, D.; Li, J.; Qian, J.; Wang, Z.; Zheng, K.; Yu, J.; Chen, X. The formation of Cu-Cu joints by low temperature sintering Cu NPs with copper formate layer and its oxidation enhancement. Mater. Lett. 2023, 339, 134087. [Google Scholar] [CrossRef]
- Wang, C.; Li, G.; Xu, L.; Li, J.; Zhang, D.; Zhao, T.; Sun, R.; Zhu, P. Low temperature sintered silver nanoflake paste for power device packaging and its anisotropic sintering mechanism. ACS Appl. Electron. Mater. 2021, 3, 5365–5373. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, X.; Huo, Y.; Tu, K.-N.; Liu, Y. Comparison between bulk and particle solder alloy on the performance of low-melting solder joints. J. Mater. Res. Technol. 2023, 24, 71–80. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, D.-P.; Liu, Y.-T.; Chen, C. Effects of Cu/SnAgCu Powder Fraction and Sintering Time on Microstructure and Mechanical Properties of Transient Liquid Phase Sintered Joints. Materials 2024, 17, 2004. https://doi.org/10.3390/ma17092004
Tran D-P, Liu Y-T, Chen C. Effects of Cu/SnAgCu Powder Fraction and Sintering Time on Microstructure and Mechanical Properties of Transient Liquid Phase Sintered Joints. Materials. 2024; 17(9):2004. https://doi.org/10.3390/ma17092004
Chicago/Turabian StyleTran, Dinh-Phuc, Yu-Ting Liu, and Chih Chen. 2024. "Effects of Cu/SnAgCu Powder Fraction and Sintering Time on Microstructure and Mechanical Properties of Transient Liquid Phase Sintered Joints" Materials 17, no. 9: 2004. https://doi.org/10.3390/ma17092004
APA StyleTran, D.-P., Liu, Y.-T., & Chen, C. (2024). Effects of Cu/SnAgCu Powder Fraction and Sintering Time on Microstructure and Mechanical Properties of Transient Liquid Phase Sintered Joints. Materials, 17(9), 2004. https://doi.org/10.3390/ma17092004