Elastic Wave Propagation Control in Porous and Finitely Deformed Locally Resonant Nacre-like Metamaterials
Abstract
1. Introduction
2. Theoretical Background
2.1. Homogenized Properties in Periodic Media
2.2. Nonlinear Static and Dynamic Response of Periodic Media
3. Numerical Simulations for Different Geometric and Material Parameters
3.1. Case 1: Lightened Nacre-like Metamaterials without Hollow Platelets and Lead Cores at the Undeformed Configuration
3.2. Case 2: Lightened Nacre-like Metamaterials with Hollow Platelets and without Lead Cores for Increasing Levels of Deformation (Standard Microstructure)
3.3. Case 3: Lightened Nacre-like Metamaterials with Hollow Platelets and Lead Cores for Increasing Levels of Deformation (Lead-Enhanced Microstructure)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Cherkasov, A.V.; Xie, C.; Arora, N.; Rudykh, S. Nonlinear Elastic Vector Solitons in Hard-Magnetic Soft Mechanical Metamaterials. Int. J. Solids Struct. 2023, 280, 112396. [Google Scholar] [CrossRef]
- Amarante dos Santos, F.; Fraternali, F. Novel Magnetic Levitation Systems for the Vibration Control of Lightweight Structures and Artworks. Struct. Control Health Monit. 2022, 29, e2973. [Google Scholar] [CrossRef]
- Santos, F.A.; Caroço, C.; Amendola, A.; Miniaci, M.; Fraternali, F. 3D Tensegrity Braces with Superelastic Response for Seismic Control. Int. J. Multiscale Comput. Eng. 2022, 20, 53–64. [Google Scholar] [CrossRef]
- De Maio, U.; Gaetano, D.; Greco, F.; Lonetti, P.; Nevone Blasi, P.; Pranno, A. The Reinforcing Effect of Nano-Modified Epoxy Resin on the Failure Behavior of FRP-Plated RC Structures. Buildings 2023, 13, 1139. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, Z.; Cai, C.; Shen, H.; Liang, F.; Wang, D.; Wang, C.; Zhu, T.; Guo, J.; Wang, Y.; et al. Bioinspired Materials: From Low to High Dimensional Structure. Adv. Mater. 2014, 26, 6994–7017. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Mcadams, D.A.; Grunlan, J.C. Nano/Micro-Manufacturing of Bioinspired Materials: A Review of Methods to Mimic Natural Structures. Adv. Mater. 2016, 28, 6292–6321. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, J.; Chen, W.; Bao, R. Tunable Bandgaps in Soft Phononic Plates with Spring-Mass-like Resonators. Int. J. Mech. Sci. 2019, 151, 300–313. [Google Scholar] [CrossRef]
- Liu, F.; Li, T.; Jia, Z.; Wang, L. Combination of Stiffness, Strength, and Toughness in 3D Printed Interlocking Nacre-like Composites. Extrem. Mech. Lett. 2020, 35, 100621. [Google Scholar] [CrossRef]
- Slesarenko, V.; Kazarinov, N.; Rudykh, S. Distinct Failure Modes in Bio-Inspired 3D-Printed Staggered Composites under Non-Aligned Loadings. Smart Mater. Struct. 2017, 26, 035053. [Google Scholar] [CrossRef]
- Wang, B.; Hu, X.; Lu, P. Modelling and Testing of Large-Scale Masonry Elements under Three-Point Bending—Tough and Strong Nacre-like Structure Enlarged by a Factor of 20,000. Eng. Fract. Mech. 2020, 229, 106961. [Google Scholar] [CrossRef]
- Wei, Z.; Xu, X. Gradient Design of Bio-Inspired Nacre-like Composites for Improved Impact Resistance. Compos. Part B Eng. 2021, 215, 108830. [Google Scholar] [CrossRef]
- Wan, H.; Leung, N.; Algharaibeh, S.; Sui, T.; Liu, Q.; Peng, H.-X.; Su, B. Cost-Effective Fabrication of Bio-Inspired Nacre-like Composite Materials with High Strength and Toughness. Compos. Part B Eng. 2020, 202, 108414. [Google Scholar] [CrossRef]
- Bouville, F. Strong and Tough Nacre-like Aluminas: Process–Structure–Performance Relationships and Position within the Nacre-Inspired Composite Landscape. J. Mater. Res. 2020, 35, 1076–1094. [Google Scholar] [CrossRef]
- Greco, F.; Leonetti, L.; De Maio, U.; Rudykh, S.; Pranno, A. Macro- and Micro-Instabilities in Incompressible Bioinspired Composite Materials with Nacre-like Microstructure. Compos. Struct. 2021, 269, 114004. [Google Scholar] [CrossRef]
- Greco, F.; Leonetti, L.; Lonetti, P. A Novel Approach Based on ALE and Delamination Fracture Mechanics for Multilayered Composite Beams. Compos. Part B Eng. 2015, 78, 447–458. [Google Scholar] [CrossRef]
- De Maio, U.; Gaetano, D.; Greco, F.; Lonetti, P.; Pranno, A. The Damage Effect on the Dynamic Characteristics of FRP-Strengthened Reinforced Concrete Structures. Compos. Struct. 2023, 309, 116731. [Google Scholar] [CrossRef]
- Bertoldi, K.; Bigoni, D.; Drugan, W.J. Nacre: An Orthotropic and Bimodular Elastic Material. Compos. Sci. Technol. 2008, 68, 1363–1375. [Google Scholar] [CrossRef]
- Prasad, A.; Varshney, V.; Nepal, D.; Frank, G.J. Bioinspired Design Rules from Highly Mineralized Natural Composites for Two-Dimensional Composite Design. Biomimetics 2023, 8, 500. [Google Scholar] [CrossRef] [PubMed]
- Srivatsa, S.; Paćko, P.; Mishnaevsky, L.; Uhl, T.; Grabowski, K. Deformation of Bioinspired MXene-Based Polymer Composites with Brick and Mortar Structures: A Computational Analysis. Materials 2020, 13, 5189. [Google Scholar] [CrossRef]
- Grossman, M.; Pivovarov, D.; Bouville, F.; Dransfeld, C.; Masania, K.; Studart, A.R. Hierarchical Toughening of Nacre-Like Composites. Adv. Funct. Mater. 2019, 29, 1806800. [Google Scholar] [CrossRef]
- Flores-Johnson, E.A.; Shen, L.; Guiamatsia, I.; Nguyen, G.D. Numerical Investigation of the Impact Behaviour of Bioinspired Nacre-like Aluminium Composite Plates. Compos. Sci. Technol. 2014, 96, 13–22. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, G.-Y.; Wang, Y.-F.; Wang, Y.-S. A Mechanical Model for Elastic Wave Propagation in Nacre-Like Materials with Brick-and-Mortar Microstructures. J. Appl. Mech. 2022, 89, 091002. [Google Scholar] [CrossRef]
- Pranno, A.; Greco, F.; Leonetti, L.; Lonetti, P.; Luciano, R.; De Maio, U. Band Gap Tuning through Microscopic Instabilities of Compressively Loaded Lightened Nacre-like Composite Metamaterials. Compos. Struct. 2022, 282, 115032. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, P.; Qi, J.; Chen, G.; Wang, Y.; Tao, R.; Chen, Z.; Li, Y. Adjustable Indentation and Vibration Isolation Performances of Nacre-like Metamaterial. Int. J. Smart Nano Mater. 2023, 14, 303–320. [Google Scholar] [CrossRef]
- Mazzotti, M.; Foehr, A.; Bilal, O.R.; Bergamini, A.; Bosia, F.; Daraio, C.; Pugno, N.M.; Miniaci, M. Bio-Inspired Non Self-Similar Hierarchical Elastic Metamaterials. Int. J. Mech. Sci. 2022, 241, 107915. [Google Scholar] [CrossRef]
- Yang, H.; Gao, D.; Chen, P.; Lu, G. Numerical Investigation on the Ballistic Performance of Semi-Cylindrical Nacre-like Composite Shells under High-Velocity Impact. Materials 2023, 16, 3699. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L. Tunable Band Gaps in Bio-Inspired Periodic Composites with Nacre-like Microstructure. J. Appl. Phys. 2014, 116, 063506. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L. Multiband Wave Filtering and Waveguiding in Bio-Inspired Hierarchical Composites. Extrem. Mech. Lett. 2015, 5, 18–24. [Google Scholar] [CrossRef]
- Salama, N.A.; Desouky, M.; Obayya, S.S.A.; Swillam, M.A. Free Space Super Focusing Using All Dielectric Hyperbolic Metamaterial. Sci. Rep. 2020, 10, 11529. [Google Scholar] [CrossRef]
- Valagiannopoulos, C.A. Effect of Cylindrical Scatterer with Arbitrary Curvature on the Features of a Metamaterial Slab Antenna. Prog. Electromagn. Res. 2007, 71, 59–83. [Google Scholar] [CrossRef]
- Li, J.; Slesarenko, V.; Rudykh, S. Auxetic Multiphase Soft Composite Material Design through Instabilities with Application for Acoustic Metamaterials. Soft Matter 2018, 14, 6171–6180. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.; Wang, P.; Bertoldi, K. Harnessing Instability-Induced Pattern Transformation to Design Tunable Phononic Crystals. Int. J. Solids Struct. 2015, 58, 52–61. [Google Scholar] [CrossRef]
- Dalklint, A.; Wallin, M.; Bertoldi, K.; Tortorelli, D. Tunable Phononic Bandgap Materials Designed via Topology Optimization. J. Mech. Phys. Solids 2022, 163, 104849. [Google Scholar] [CrossRef]
- Bertoldi, K.; Boyce, M.C. Wave Propagation and Instabilities in Monolithic and Periodically Structured Elastomeric Materials Undergoing Large Deformations. Phys. Rev. B 2008, 78, 184107. [Google Scholar] [CrossRef]
- De Maio, U.; Greco, F.; Luciano, R.; Sgambitterra, G.; Pranno, A. Microstructural Design for Elastic Wave Attenuation in 3D Printed Nacre-like Bioinspired Metamaterials Lightened with Hollow Platelets. Mech. Res. Commun. 2023, 128, 104045. [Google Scholar] [CrossRef]
- Arora, N.; Batan, A.; Li, J.; Slesarenko, V.; Rudykh, S. On the Influence of Inhomogeneous Interphase Layers on Instabilities in Hyperelastic Composites. Materials 2019, 12, 763. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Zou, J. Minnaert Resonances for Bubbles in Soft Elastic Materials. SIAM J. Appl. Math. 2022, 82, 119–141. [Google Scholar] [CrossRef]
- Li, H.; Zou, J. Mathematical Theory on Dipolar Resonances of Hard Inclusions within a Soft Elastic Material. arXiv 2023, arXiv:2310.12861. [Google Scholar] [CrossRef]
wp | 0.25 | 0.5 | 1 | 2 | 4 |
wb | 0.25 | 0.5 | 1 | 2 | 4 |
k | 1000 | 10,000 | 100,000 | - | - |
k | 1 | 5 | 10 | 20 | 30 | 40 | 50 | 100 |
wb | 1 | 5 | 10 | 20 | 30 | 40 | 50 | 100 |
wp | 4 | 5 | 6 | 7 | - | - | - | - |
vf | 0.5 | 0.55 | 0.6 | 0.65 | 0.7 | 0.75 | 0.8 | - |
vf(hp) | 1 | 0.95 | 0.9 | 0.85 | 0.8 | 0.75 | 0.7 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Maio, U.; Greco, F.; Nevone Blasi, P.; Pranno, A.; Sgambitterra, G. Elastic Wave Propagation Control in Porous and Finitely Deformed Locally Resonant Nacre-like Metamaterials. Materials 2024, 17, 705. https://doi.org/10.3390/ma17030705
De Maio U, Greco F, Nevone Blasi P, Pranno A, Sgambitterra G. Elastic Wave Propagation Control in Porous and Finitely Deformed Locally Resonant Nacre-like Metamaterials. Materials. 2024; 17(3):705. https://doi.org/10.3390/ma17030705
Chicago/Turabian StyleDe Maio, Umberto, Fabrizio Greco, Paolo Nevone Blasi, Andrea Pranno, and Girolamo Sgambitterra. 2024. "Elastic Wave Propagation Control in Porous and Finitely Deformed Locally Resonant Nacre-like Metamaterials" Materials 17, no. 3: 705. https://doi.org/10.3390/ma17030705
APA StyleDe Maio, U., Greco, F., Nevone Blasi, P., Pranno, A., & Sgambitterra, G. (2024). Elastic Wave Propagation Control in Porous and Finitely Deformed Locally Resonant Nacre-like Metamaterials. Materials, 17(3), 705. https://doi.org/10.3390/ma17030705