Study of Process, Microstructure, and Properties of Double-Wire Narrow-Gap Gas Metal Arc Welding Low-Alloy Steel
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Dynamic Behaviors of Arc and Droplets
3.2. Weld Bead Profile and Formation Mechanism
3.3. Microstructure and Microhardness
4. Conclusions
- (1)
- With the increase in the wire feeding speed from 5 m/min to 8 m/min, the welding current and voltage increase, and the welding arc becomes more and more expanded and more and more bright. The droplet transition mode changes from short-circuit transition mode to spray transition mode.
- (2)
- The gradual increase in welding speed from 5 mm/s to 14 mm/s leads to a reduction in metal filling height and welding width. Lower welding speed leads to undercuts, and higher welding speed leads to a lack of fusion.
- (3)
- The gradual increase in double-wire lateral spacing from 0 mm to 8 mm leads to a larger arc area in the narrow-gap groove, improving the weld formation from finger-like to bowl-shaped. However, the larger lateral spacing of 8 mm would cause the arc to fully burn the sidewall, resulting in undercuts.
- (4)
- When the welding speed is 11 mm/s, the existence time of liquid metal is short, and the cooling rate is fast. This results in a finer acicular ferrite in the weld zone than that of 8 mm/s, which in turn results in a higher microhardness value at a welding speed of 11 mm/s (289.47 ± 10.47 HV0.2) than that of 8 mm/s (230.23 ± 9.07 HV0.2).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Xue, R.; Zhou, J.; Bao, Y.; Xu, Y. Effects of oscillation width on arc characteristics and droplet transfer in vertical oscillation arc narrow-gap p-GMAW of x80 steel. Metals 2023, 13, 1057. [Google Scholar] [CrossRef]
- Ramakrishna R, V.S.M.; Amrutha, P.H.S.L.; Rahman Rashid, R.A.; Palanisamy, S. Narrow gap laser welding (NGLW) of structural steels—a technological review and future research recommendations. Int. J. Adv. Manuf. Technol. 2020, 111, 2277–2300. [Google Scholar] [CrossRef]
- Zheng, B.; Li, Y.; Ao, S.; Zhang, X.; Zhang, D.; Manladan, S.M.; Luo, Z.; Yang, Y.; Bi, Y. Narrow gap welding of x80 steel using laser-CMT hybrid welding with misaligned laser and arc. Crystals 2022, 12, 832. [Google Scholar] [CrossRef]
- Elmesalamy, A.; Francis, J.A.; Li, L. A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316l stainless steel. Int. J. Press. Vessel. Pip. 2014, 113, 49–59. [Google Scholar] [CrossRef]
- Lei, Z.; Cao, H.; Cui, X.; Ma, Y.; Li, L.; Zhang, Q. A novel high efficiency narrow-gap laser welding technology of 120 mm high-strength steel. Opt. Lasers Eng. 2024, 178, 108232. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, X.; Li, X.; Huo, X.; Zhao, B.; Ding, K.; Gao, Y. Microstructure details and impact toughness for dissimilar 9cr/CrMoV welded joints fabricated by NG-SAW and NG-TIG techniques. J. Mater. Res. Technol. 2024, 29, 2936–2946. [Google Scholar] [CrossRef]
- Song, G.; Xu, Z.; Lang, Q.; Liu, X.; Wang, H.; Liu, L. A laser-induced TIG arc narrow-gap welding technique for TC4 titanium alloy thick plates based on the spatial position control of laser, arc and filler wire. Metals 2024, 14, 510. [Google Scholar] [CrossRef]
- Polamuri, S.K.; Nasina, V.; Biswajyoti, B.; Deshmuk, V.; Degala, V.K. Study on the arc behavior and mechanical properties of energy-efficient hybrid CMT-pulsed gas metal arc narrow gap mild steel welds. Int. J. Adv. Manuf. Technol. 2023, 129, 837–854. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, Z.; Wang, J.; Lin, S.; Dou, Q.; Huang, T. A comparison of the swing and non-swing arc behavior in arc ultrasonic assisted narrow gap GMAW. J. Mater. Res. Technol. 2023, 24, 4698–4710. [Google Scholar] [CrossRef]
- Zhu, C.; Cheon, J.; Tang, X.; Na, S.; Lu, F.; Cui, H. Effect of swing arc on molten pool behaviors in narrow-gap GMAW of 5083 al-alloy. J. Mater. Process. Technol. 2018, 259, 243–258. [Google Scholar] [CrossRef]
- Das Banik, S.; Kumar, S.; Singh, P.K.; Bhattacharya, S.; Mahapatra, M.M. Prediction of distortions and residual stresses in narrow gap weld joints prepared by hot wire GTAW and its validation with experiments. Int. J. Press. Vessel. Pip. 2021, 193, 104477. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Q.; Zhang, T.; Zhang, S.; Liu, Y.; Feng, J. Arc characteristics in alternating magnetic field assisted narrow gap pulsed GTAW. J. Mater. Process. Technol. 2018, 254, 254–264. [Google Scholar] [CrossRef]
- Li, J.; Sun, Q.; Kang, K.; Zhen, Z.; Liu, Y.; Feng, J. Process stability and parameters optimization of narrow-gap laser vertical welding with hot wire for thick stainless steel in nuclear power plant. Opt. Laser Technol. 2020, 123, 105921. [Google Scholar] [CrossRef]
- Ni, Z.; Hu, F.; Li, Y.; Lin, S.; Cai, X. Microstructure and mechanical properties of the ternary gas shielded narrow-gap GMA welded joint of high-strength steel. Crystals 2022, 12, 1566. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Kong, H.; Ren, H.; Tao, Y.; Zhang, Q.; Sun, Q. Insight on microstructure and mechanical properties of 40 mm thick-walled ferromagnetic super-MSS by magnetic-field-assisted narrow gap GTAW. J. Mater. Res. Technol. 2023, 24, 5805–5822. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Kang, K.; Sun, Q.; Jin, P.; Liu, Y.; Cai, C.; Sun, Q. A novel approach to regulate energy allocation and melt flow in narrow gap laser welding with electromagnetic assisted wire wobbling. J. Mater. Process. Technol. 2021, 289, 116909. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, Y.; Zhang, Q.; Kang, K.; Liu, C.; Liu, Y.; Tang, X.; Sun, Q. A new method for refinement of ti-6al-4 v prior-β grain structure in the alternating magnetic field assisted narrow gap gas tungsten arc welding (AMF-GTAW) via filler wire oscillation. J. Mater. Process. Technol. 2024, 327, 118376. [Google Scholar] [CrossRef]
- Huang, J.; Chen, H.; He, J.; Yu, S.; Pan, W.; Fan, D. Narrow gap applications of swing TIG-MIG hybrid weldings. J. Mater. Process. Technol. 2019, 271, 609–614. [Google Scholar] [CrossRef]
- Yu, J.; Cai, C.; Xie, J.; Huang, J.; Liu, Y.; Chen, H. Weld formation, arc behavior, and droplet transfer in narrow-gap laser-arc hybrid welding of titanium alloy. J. Manuf. Process. 2023, 91, 44–52. [Google Scholar] [CrossRef]
- Bao, Y.; Xue, R.; Zhou, J.; Liu, H.; Xu, Y. The influence of oscillation parameters on the formation of overhead welding seams in the narrow-gap GMAW process. Appl. Sci. 2023, 13, 5519. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, J.; Liu, S.; Jiang, Y.; Zhu, J.; Li, X.; Zhang, L. Thick-wire swing arc narrow gap GMA welding assisted by pre-embedding cold wires. Int. J. Adv. Manuf. Technol. 2024, 131, 301–313. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Y.; Zhang, Z.; Fang, C.; Xu, K.; He, P.; Zhang, Z. Research on the sidewall penetration mechanisms of cable-type welding wire narrow gap GMAW process. Int. J. Adv. Manuf. Technol. 2022, 120, 2443–2455. [Google Scholar] [CrossRef]
- Liu, G.; Tang, X.; Han, S.; Lu, F.; Cui, H. Influence of interwire angle on undercutting formation and arc behavior in pulsed tandem narrow-gap GMAW. Mater. Des. 2020, 193, 108795. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.; Zhu, J.; Liu, D.; Xu, G.; Li, W. Development of swing arc narrow gap GMAW process assisted by swaying wire. J. Mater. Process. Technol. 2023, 318, 118004. [Google Scholar] [CrossRef]
- Kong, H.; Liu, Y.; Li, F.; Ren, H.; Song, C.; Kang, K.; Sun, Q. In-situ fabrication of martensitic stainless steel via heterogeneous double-wire arc-directed energy deposition. Virtual Phys. Prototyp. 2024, 19, e2350610. [Google Scholar] [CrossRef]
- Kam, D.H.; Lee, T.H.; Kim, D.Y.; Kim, J.; Kang, M. Weld quality improvement and porosity reduction mechanism of zinc coated steel using tandem gas metal arc welding (GMAW). J. Mater. Process. Technol. 2021, 294, 117127. [Google Scholar] [CrossRef]
- Kong, H.; Liu, Y.; Ren, H.; Li, F.; Kang, K.; Tao, Y.; Sun, Q. Surface modification of mild steel via heterogeneous double-wire arc directed energy deposition: Microstructure and performance of cladding layer. Surf. Coat. Technol. 2024, 482, 130751. [Google Scholar] [CrossRef]
- Scalet Rossini, L.F.; Valenzuela Reyes, R.A.; Spinelli, J.E. Double-wire tandem GMAW welding process of HSLA50 steel. J. Manuf. Process. 2019, 45, 227–233. [Google Scholar] [CrossRef]
- Han, S.; Li, J.; Shao, C.; Cui, H.; Tang, X. Numerical evaluation of interwire angle influence on molten pool fluid dynamics and weld defects in tandem NG-GMAW of 5083 aluminum alloy. J. Manuf. Process. 2024, 124, 1112–1123. [Google Scholar] [CrossRef]
- Cai, X.; Fan, C.; Lin, S.; Yang, C.; Ji, X.; Hu, L. Effects of shielding gas composition on arc characteristics and droplet transfer in tandem narrow gap GMA welding. Sci. Technol. Weld. Join. 2017, 22, 446–453. [Google Scholar] [CrossRef]
- Dornelas, P.H.G.; Payão Filho, J.D.C.; Farias, F.W.C.; Moraes, E.; Oliveira, V.H.P.; Moraes, D.D.O.; Zumpano Júnior, P. Influence of the interpass temperature on the microstructure and mechanical properties of the weld metal (AWS a5.18 ER70s-6) of a narrow gap welded API 5l x70 pipe joint. Int. J. Press. Vessel. Pip. 2022, 199, 104690. [Google Scholar] [CrossRef]
- Chen, D.; Chen, M.; Wu, C. Effects of phase difference on the behavior of arc and weld pool in tandem p-GMAW. J. Mater. Process. Technol. 2015, 225, 45–55. [Google Scholar] [CrossRef]
- Wu, K.; Zeng, Y.; Zhang, M.; Hong, X.; Xie, P. Effect of high-frequency phase shift on metal transfer and weld formation in aluminum alloy double-wire DP-GMAW. J. Manuf. Process. 2022, 75, 301–319. [Google Scholar] [CrossRef]
- Li, F.; Sun, Q.; Jin, P.; Liu, Y.; Chen, M.; Li, J.; Hou, S.; Wang, M.; Ji, Y. Wetting behavior of melt and its effect on lack of fusion in arc oscillating NG-GTAW. J. Mater. Process. Technol. 2021, 296, 117176. [Google Scholar] [CrossRef]
- Farias, F.W.C.; Da Cruz Payão Filho, J.; Moraes, E.; Oliveira, V.H.P. Prediction of the interpass temperature of a wire arc additive manufactured wall: FEM simulations and artificial neural network. Addit. Manuf. 2021, 48, 102387. [Google Scholar] [CrossRef]
- Malschaert, D.; Veljkovic, M.; Maljaars, J. Numerical simulations of residual stress formation and its effect on fatigue crack propagation in a fillet welded t-joint. Eng. Fract. Mech. 2024, 306, 110236. [Google Scholar] [CrossRef]
- Qin, H.; Tang, Y.; Liang, P. Effect of heat input on microstructure and corrosion behavior of high strength low alloy steel welds. Int. J. Electrochem. Sci. 2021, 16, 210449. [Google Scholar] [CrossRef]
- Babu, S.S. The mechanism of acicular ferrite in weld deposits. Curr. Opin. Solid State Mater. Sci. 2004, 8, 267–278. [Google Scholar] [CrossRef]
- Lin, C.; Pan, Y.; Su, Y.F.; Lin, G.; Hwang, W.; Kuo, J. Effects of mg-al-o-mn-s inclusion on the nucleation of acicular ferrite in magnesium-containing low-carbon steel. Mater. Charact. 2018, 141, 318–327. [Google Scholar] [CrossRef]
- Yang, Y.; Zhan, D.; Lei, H.; Qiu, G.; Li, Y.; Jiang, Z.; Zhang, H. In situ observation of acicular ferrite nucleation and growth at different cooling rate in ti-zr deoxidized steel. Metallurgical and Materials Transactions. Metall. Mater. Trans. B 2019, 50, 2536–2546. [Google Scholar] [CrossRef]
- Zhao, H.; Palmiere, E.J. Effect of austenite grain size on acicular ferrite transformation in a HSLA steel. Mater. Charact. 2018, 145, 479–489. [Google Scholar] [CrossRef]
- Kim, H.; Jo, M.; Park, J.Y.; Kim, B.J.; Kim, H.C.; Nam, D.; Kim, B.; Ahn, Y.-S. Effects of ti microalloying on the microstructure and mechanical properties of acicular ferrite casting steel for high-speed railway brake discs. Mater. Sci. Eng. A 2022, 857, 144125. [Google Scholar] [CrossRef]
- Lv, S.; Wu, H.; Wang, K.; Wang, S.; Wu, G.; Gao, J.; Yang, X.-S.; Zhu, J.; Mao, X. The microstructure evolution and influence factors of acicular ferrite in low alloy steels. Comput. Mater. Sci. 2023, 218, 111989. [Google Scholar] [CrossRef]
- Fang, Q.; Zhao, L.; Chen, C.; Zhu, Y.; Peng, Y.; Yin, F. Effect of heat input on microstructural and mechanical properties of high strength low alloy steel block parts fabricated by wire arc additive manufacturing. Mater. Today Commun. 2023, 34, 105146. [Google Scholar] [CrossRef]
Materials | C | Si | Mn | Cr | Ni | Mo | Fe |
---|---|---|---|---|---|---|---|
ER70-G | 0.10 | 0.30 | 1.45 | 0.3 | 1.7 | 0.35 | Bal. |
Q235 | 0.22 | 0.23 | 0.56 | - | - | - | Bal. |
Group | Welding Speed (mm/s) | Wire Feeding Speed (m/min) | Wire Extension (mm) |
---|---|---|---|
1 | 8 | 5 | 25 |
2 | 6 | ||
3 | 7 | ||
4 | 8 |
Group | Welding Speed (mm/s) | Double-Wire Lateral Spacing (mm) | Wire Extension (mm) | |
---|---|---|---|---|
1 | 5 | 0 | 25 | |
2 | 8 | |||
3 | 11 | |||
4 | 14 | |||
5 | 8 | 11 | 2 | |
6 | 4 | |||
7 | 6 | |||
8 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, N.; Kong, H.; Sun, Q.; Ma, N. Study of Process, Microstructure, and Properties of Double-Wire Narrow-Gap Gas Metal Arc Welding Low-Alloy Steel. Materials 2024, 17, 6183. https://doi.org/10.3390/ma17246183
Xiao N, Kong H, Sun Q, Ma N. Study of Process, Microstructure, and Properties of Double-Wire Narrow-Gap Gas Metal Arc Welding Low-Alloy Steel. Materials. 2024; 17(24):6183. https://doi.org/10.3390/ma17246183
Chicago/Turabian StyleXiao, Ning, Haoyu Kong, Qingjie Sun, and Ninshu Ma. 2024. "Study of Process, Microstructure, and Properties of Double-Wire Narrow-Gap Gas Metal Arc Welding Low-Alloy Steel" Materials 17, no. 24: 6183. https://doi.org/10.3390/ma17246183
APA StyleXiao, N., Kong, H., Sun, Q., & Ma, N. (2024). Study of Process, Microstructure, and Properties of Double-Wire Narrow-Gap Gas Metal Arc Welding Low-Alloy Steel. Materials, 17(24), 6183. https://doi.org/10.3390/ma17246183