Enhancement of Magnetorheological Fluids with Size and Morphology—Optimized Fe3O4 Nanoparticles: Impacts on Rheological Properties and Stability
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MRFs | Magnetorheological Fluids |
CI | Carbonyl Iron |
NPs | Nanoparticles |
CIPs | Carbonyl Iron Nanoparticles |
SR | Sedimentation Ratio |
References
- Rabinow, J. The magnetic fluid clutch. Electr. Eng. 1948, 67, 1167. [Google Scholar] [CrossRef]
- López-López, M.; Kuzhir, P.; Lacis, S.; Bossis, G.; González-Caballero, F.; Durán, J. Magnetorheology for suspensions of solid particles dispersed in ferrofluids. J. Phys. Condens. Matter 2006, 18, S2803–S2813. [Google Scholar] [CrossRef]
- Sharmili, P.; Rajesh, S.; Mahendran, M.; Saravanakumar, S.; Abirami, G.; Sivakami, A.; Chokkalingam, R. Rheometric and stability analysis of additive infused magnetorheological fluids: A comparative study. Eur. Phys. J. E 2023, 46, 1–8. [Google Scholar] [CrossRef]
- Marins, J.A.; Plachỳ, T.; Kuzhir, P. Iron–sepiolite magnetorheological fluids with improved performances. J. Rheol. 2019, 63, 125–139. [Google Scholar] [CrossRef]
- Gordaninejad, F.; Wang, X.; Hitchcock, G.; Bangrakulur, K.; Ruan, S.; Siino, M. Modular high-force seismic magneto-rheological fluid damper. J. Struct. Eng. 2010, 136, 135–143. [Google Scholar] [CrossRef]
- Tian, T.; Li, W.; Deng, Y. Sensing capabilities of graphite based MR elastomers. Smart Mater. Struct. 2011, 20, 025022. [Google Scholar] [CrossRef]
- Zheng, J.N.; Li, Y.Z.; Chen, C.; Chen, S.M. The sealing properties of magnetorheological fluids under quasi-static tensile. Smart Mater. Struct. 2020, 29, 105031. [Google Scholar] [CrossRef]
- Catrin, R.; Neauport, J.; Taroux, D.; Cormont, P.; Maunier, C.; Lambert, S. Magnetorheological finishing for removing surface and subsurface defects of fused silica optics. Opt. Eng. 2014, 53, 092010. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, W.; Li, Y.; Liu, P.; Yang, Y.; Jiang, L. Solid–liquid state transformable magnetorheological millirobot. ACS Appl. Mater. Interfaces 2022, 14, 30007–30020. [Google Scholar] [CrossRef]
- Davydov, A.S.; Belousov, A.V.; Krusanov, G.A.; Kolyvanova, M.A.; Kovalev, B.B.; Komlev, A.S.; Krivoshapkin, P.V.; Morozov, V.N.; Zverev, V.I. Promising magnetic nanoradiosensitizers for combination of tumor hyperthermia and X-ray therapy: Theoretical calculation. J. Appl. Phys. 2021, 129, 033902. [Google Scholar] [CrossRef]
- Kim, M.H.; Choi, K.; Do Nam, J.; Choi, H.J. Enhanced magnetorheological response of magnetic chromium dioxide nanoparticle added carbonyl iron suspension. Smart Mater. Struct. 2017, 26, 095006. [Google Scholar] [CrossRef]
- Chen Fei, T.Z.; Xiangfan, W. Novel Process to Prepare High-Performance Magnetorheological Fluid Based on Surfactants Compounding. Mater. Manuf. Process. 2015, 30, 210–215. [Google Scholar] [CrossRef]
- Zhang, P.; Dong, Y.Z.; Choi, H.J.; Lee, C.H. Tribological and rheological tests of core-shell typed carbonyl iron/polystyrene particle-based magnetorheological fluid. J. Ind. Eng. Chem. 2018, 68, 342–349. [Google Scholar] [CrossRef]
- Ghasemi, S.S.; Ebrahimi, N.G.; Hajalilou, A. Simultaneous effect of magnetic nanoparticles additive and noble metal coating on carbonyl iron-based magnetorheological fluid. J. Alloy. Compd. 2023, 961, 171012. [Google Scholar] [CrossRef]
- Ahn, W.J.; Jung, H.S.; Kwon, S.H.; Hong, C.H.; Choi, H.J. Effect of surface treatment on magnetorheological characteristics of core-shell structured soft magnetic carbonyl iron particles. Colloid Polym. Sci. 2015, 293, 2647–2654. [Google Scholar] [CrossRef]
- Dong, Y.Z.; Han, W.J.; Choi, H.J. Additive effect of rod-like magnetite/sepiolite composite particles on magnetorheology. J. Ind. Eng. Chem. 2021, 93, 210–215. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, Z.; Liang, Z.; Tao, M.; Li, D. Rheological properties and suspension stability of magnetorheological fluid based on Fe3O4 hollow spheres. J. Magn. Magn. Mater. 2023, 589, 171227. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, K.; Yang, Y.; Cheng, T.; Zhou, G. Enhanced Magnetorheological Behavior of a Carbonyl-Iron-Based Fluid via Addition of Fe3O4/Halloysite-Nanotube Composite Particles. Phys. Status Solidi A 2022, 219, 2100759. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, J.; Hong, G. Solvothermal synthesis of Fe3O4 micro-nanoparticles with different morphologies. Chem. J. Chin. Univ. 2011, 32, 552–559. [Google Scholar]
- Yan, A.; Liu, X.; Qiu, G.; Wu, H.; Yi, R.; Zhang, N.; Xu, J. Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles. J. Alloys Compd. 2008, 458, 487–491. [Google Scholar] [CrossRef]
- Han, W.J.; Piao, S.H.; Choi, H.J.; Seo, Y. Core–shell structured mesoporous magnetic nanoparticles and their magnetorheological response. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 524, 79–86. [Google Scholar] [CrossRef]
- Sedlacik, M.; Moucka, R.; Kozakova, Z.; Kazantseva, N.E.; Pavlínek, V.; Kuritka, I.; Kaman, O.; Peer, P. Correlation of structural and magnetic properties of Fe3O4 nanoparticles with their calorimetric and magnetorheological performance. J. Magn. Magn. Mater. 2013, 326, 7–13. [Google Scholar] [CrossRef]
- O’Neill, H.S.C.; Dollase, W. Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4. Phys. Chem. Miner. 1994, 20, 541–555. [Google Scholar] [CrossRef]
- Vereda, F.; Segovia-Gutiérrez, J.P.; de Vicente, J.; Hidalgo-Álvarez, R. Faceted particles: An approach for the enhancement of the elasticity and the yield-stress of magnetorheological fluids. Appl. Phys. Lett. 2016, 108, 211904. [Google Scholar] [CrossRef]
- Upadhyay, R.V.; Parekh, K.; Raj, K. Frictional contribution in nanomagnetic particles substituted magnetorheological fluid. J. Magn. Magn. Mater. 2023, 586, 171206. [Google Scholar] [CrossRef]
- Du, T.; Zhao, P.; Liu, Y.; Ma, N.; Dong, X.; Huang, H. Balanced Devil Triangle: A Satisfactory Comprehensive Performance Magnetorheological Fluids with Cross-Scale Particles. Adv. Funct. Mater. 2023, 34, 2311254. [Google Scholar] [CrossRef]
- Machovsky, M.; Mrlik, M.; Kuritka, I.; Pavlinek, V.; Babayan, V. Novel synthesis of core–shell urchin-like ZnO coated carbonyl iron microparticles and their magnetorheological activity. RSC Adv. 2014, 4, 996–1003. [Google Scholar] [CrossRef]
- Felicia, L.J.; John, R.; Philip, J. Rheological Properties of Magnetorheological Fluid with Silica Nanoparticles Stabilizers—A Comparison with Ferrofluid. J. Nanofluids 2013, 2, 75–84. [Google Scholar] [CrossRef]
- López-López, M.T.; Gómez-Ramírez, A.; Durán, J.D.; González-Caballero, F. Preparation and characterization of iron-based magnetorheological fluids stabilized by addition of organoclay particles. Langmuir 2008, 24, 7076–7084. [Google Scholar] [CrossRef]
- Rendos, A.; Yee, D.W.; Macfarlane, R.J.; Brown, K.A. Chemically-adhesive particles form stronger and stiffer magnetorheological fluids. Smart Mater. Struct. 2022, 31, 077001. [Google Scholar] [CrossRef]
- Xu, J.; Wang, P.; Pang, H.; Wang, Y.; Wu, J.; Xuan, S.; Gong, X. The dynamic mechanical properties of magnetorheological plastomers under high strain rate. Compos. Sci. Technol. 2018, 159, 50–58. [Google Scholar] [CrossRef]
- Ekwebelam, C.; See, H. Microstructural investigations of the yielding behaviour of bidisperse magnetorheological fluids. Rheol. Acta 2009, 48, 19–32. [Google Scholar] [CrossRef]
- Qiu, J.; Luo, Y.; Li, Y.; Luo, J.; Su, Z.; Wang, Y. Research on a mechanical model of magnetorheological fluid different diameter particles. Nanotechnol. Rev. 2021, 11, 158–166. [Google Scholar] [CrossRef]
- Raiskinmäki, P.; Shakib-Manesh, A.; Koponen, A.; Jäsberg, A.; Kataja, M.; Timonen, J. Simulations of non-spherical particles suspended in a shear flow. Comput. Phys. Commun. 2000, 129, 185–195. [Google Scholar] [CrossRef]
- Park, K.M.; Min, K.S.; Roh, Y.S. Design optimization of lattice structures under compression: Study of unit cell types and cell arrangements. Materials 2021, 15, 97. [Google Scholar] [CrossRef] [PubMed]
- Gulley, G.L.; Tao, R. Static shear stress of electrorheological fluids. Phys. Rev. E 1993, 48, 2744. [Google Scholar] [CrossRef] [PubMed]
- Maurya, C.S.; Sarkar, C. Dynamic and creep and recovery performance of Fe3O4 nanoparticle and carbonyl iron microparticle water-based magnetorheological fluid. J. Intell. Mater. Syst. Struct. 2022, 33, 743–755. [Google Scholar] [CrossRef]
- Han, J.K.; Lee, J.Y.; Choi, H.J. Rheological effect of Zn-doped ferrite nanoparticle additive with enhanced magnetism on micro-spherical carbonyl iron based magnetorheological suspension. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 571, 168–173. [Google Scholar] [CrossRef]
- Ashtiani, M.; Hashemabadi, S.; Ghaffari, A. A review on the magnetorheological fluid preparation and stabilization. J. Magn. Magn. Mater. 2015, 374, 716–730. [Google Scholar] [CrossRef]
Samples | Magnetic Field Strength | Herschel-Bulkley | Bingham | Casson | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
kA/m | K | ||||||||||
CI-MRF | 13.4 | 33 | 155 | 0.16 | 0.99 | 187 | 1.47 | 0.64 | 165 | 0.37 | 0.83 |
26.9 | 159 | 187 | 0.22 | 0.96 | 407 | 2.87 | 0.64 | 266 | 0.66 | 0.83 | |
67.2 | 1041 | 300 | 0.34 | 0.96 | 1330 | 16.19 | 0.76 | 1201 | 3.09 | 0.92 | |
134.3 | 3361 | 439 | 0.37 | 0.98 | 3918 | 16.67 | 0.81 | 3682 | 2.40 | 0.95 | |
268.5 | 9357 | 164 | 0.66 | 0.96 | 9553 | 28 | 0.91 | 9180 | 2.69 | 0.95 | |
CI-Fe3O4-MRF-10 nm | 13.4 | 52 | 161 | 0.15 | 0.99 | 206 | 1.41 | 0.63 | 185 | 0.32 | 0.82 |
26.9 | 229 | 231 | 0.18 | 0.98 | 454 | 2.62 | 0.62 | 414 | 0.53 | 0.83 | |
67.2 | 1295 | 258 | 0.31 | 0.97 | 1556 | 7.10 | 0.71 | 1456 | 1.17 | 0.91 | |
134.3 | 4043 | 273 | 0.43 | 0.98 | 4376 | 14.67 | 0.83 | 4145 | 1.79 | 0.97 | |
268.5 | 10,246 | 367 | 0.49 | 0.98 | 10,730 | 27.25 | 0.88 | 10,294 | 2.56 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Zhou, G. Enhancement of Magnetorheological Fluids with Size and Morphology—Optimized Fe3O4 Nanoparticles: Impacts on Rheological Properties and Stability. Materials 2024, 17, 2838. https://doi.org/10.3390/ma17122838
Xu L, Zhou G. Enhancement of Magnetorheological Fluids with Size and Morphology—Optimized Fe3O4 Nanoparticles: Impacts on Rheological Properties and Stability. Materials. 2024; 17(12):2838. https://doi.org/10.3390/ma17122838
Chicago/Turabian StyleXu, Liwei, and Guangdong Zhou. 2024. "Enhancement of Magnetorheological Fluids with Size and Morphology—Optimized Fe3O4 Nanoparticles: Impacts on Rheological Properties and Stability" Materials 17, no. 12: 2838. https://doi.org/10.3390/ma17122838
APA StyleXu, L., & Zhou, G. (2024). Enhancement of Magnetorheological Fluids with Size and Morphology—Optimized Fe3O4 Nanoparticles: Impacts on Rheological Properties and Stability. Materials, 17(12), 2838. https://doi.org/10.3390/ma17122838