Study on the Preparation and Properties of Vegetation Lightweight Porous Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Design
- (1)
- Calculation of the amount of coarse aggregate per unit cubic meter.
- (2)
- Calculation of slurry volume of cementitious materials.
- (3)
- Calculation of cement and water consumption per cubic meter.
2.3. Specimen Preparation and Maintenance
2.4. Test Methods and Procedures
2.4.1. Volumetric Weight of Vegetated Lightweight Porous Concrete
2.4.2. Porosity and Permeability Coefficient
2.4.3. Mechanical Properties
2.4.4. Alkalinity
3. Results
3.1. Bulk Weight of Concrete
3.2. Porosity and Permeability Coefficient
3.3. Mechanical Properties
3.3.1. Effect of Porosity on Mechanical Properties
3.3.2. Effect of Mineral Admixtures on Mechanical Properties
3.4. Alkalinity
4. Discussion
5. Limitations and Prospects
5.1. Limitations
5.2. Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, F.; Sun, C.; Ding, X.; Kang, T.; Nie, X. Experimental Study on the Vegetation Growing Recycled Concrete and Synergistic Effect with Plant Roots. Materials 2019, 12, 1855. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, G.P.; Alagu, A.; Ramachandran, S.; Panneerselvam, A.S.; Vimal Arokiaraj, G.G.; Panneerselvam, M.; Panneerselvam, B.; Sivakumar, V.; Bidorn, B. Effects of fly ash and silica fume on alkalinity, strength and planting characteristics of vegetation porous concrete. J. Mater. Res. Technol. 2023, 24, 5347–5360. [Google Scholar] [CrossRef]
- Sheng, Y.P.; Li, H.B.; Guan, B.W. Mix Design of Compaction-Free Porous Concrete Permeable Base. Adv. Mater. Res. 2012, 368–373, 1416–1419. [Google Scholar] [CrossRef]
- Qu, H.; Wang, C.; Huang, X.; Ding, Y.; Huang, X. Seismic Performance of Substrate for Vegetation Concrete from Large-Scale Shaking Table Test. Shock Vib. 2020, 2020, 6670726. [Google Scholar] [CrossRef]
- Shen, W.; Liu, Y.; Wu, M.; Zhang, D.; Du, X.; Zhao, D.; Xu, G.; Zhang, B.; Xiong, X. Ecological carbonated steel slag pervious concrete prepared as a key material of sponge city. J. Clean. Prod. 2020, 256, 120244. [Google Scholar] [CrossRef]
- Ge, P.; Huang, W.; Zhang, J.; Quan, W.; Guo, Y. Mix proportion design method of recycled brick aggregate concrete based on aggregate skeleton theory. Constr. Build. Mater. 2021, 304, 124584. [Google Scholar] [CrossRef]
- Endawati, J.; Rochaeti, R.; Utami, R. Optimization of Concrete Porous Mix Using Slag as Substitute Material for Cement and Aggregates. Appl. Mech. Mater. 2017, 865, 282–288. [Google Scholar] [CrossRef]
- Bao, X.; Liao, W.; Dong, Z.; Wang, S.; Tang, W. Development of Vegetation-Pervious Concrete in Grid Beam System for Soil Slope Protection. Materials 2017, 10, 96. [Google Scholar] [CrossRef]
- Lee, K.-H.; Yang, K.-H. Development of a neutral cementitious material to promote vegetation concrete. Constr. Build. Mater. 2016, 127, 442–449. [Google Scholar] [CrossRef]
- Kim, H.-H.; Park, C.-G. Performance Evaluation and Field Application of Porous Vegetation Concrete Made with By-Product Materials for Ecological Restoration Projects. Sustainability 2016, 8, 294. [Google Scholar] [CrossRef]
- Kim, H.-H.; Lee, S.-K.; Park, C.-G. Carbon Dioxide Emission Evaluation of Porous Vegetation Concrete Blocks for Ecological Restoration Projects. Sustainability 2017, 9, 318. [Google Scholar] [CrossRef]
- Xu, J.H.; Chen, S.L.; Wang, Y.; Li, G. Research on Mixture Design and Mechanical Performance of Porous Asphalt Concrete in Cold Regions. Adv. Mater. Res. 2011, 299–300, 770–773. [Google Scholar] [CrossRef]
- Cheng, J.; Luo, X.; Shen, Z.; Guo, X. Study on Vegetation Concrete Technology for Slope Protection and Greening Engineering. Pol. J. Environ. Stud. 2020, 29, 4017–4028. [Google Scholar] [CrossRef] [PubMed]
- Kug, J.Y. A Study on the pH Reduction of Cement Concrete with Various Mixing Conditions. J. Korea Inst. Build. Constr. 2008, 8, 79–85. [Google Scholar]
- Zhao, S.; Zhang, D.; Li, Y.; Gao, H.; Meng, X. Physical and Mechanical Properties of Novel Porous Ecological Concrete Based on Magnesium Phosphate Cement. Materials 2022, 15, 7521. [Google Scholar] [CrossRef]
- Rattanashotinunt, C.; Tangchirapat, W.; Jaturapitakkul, C.; Cheewaket, T.; Chindaprasirt, P. Investigation on the strength, chloride migration, and water permeability of eco-friendly concretes from industrial by-product materials. J. Clean. Prod. 2018, 172, 1691–1698. [Google Scholar] [CrossRef]
- Kong, J.; Cong, G.; Ni, S.; Sun, J.; Guo, C.; Chen, M.; Quan, H. Recycling of waste oyster shell and recycled aggregate in the porous ecological concrete used for artificial reefs. Constr. Build. Mater. 2022, 323, 126447. [Google Scholar] [CrossRef]
- Su, R.; Qiao, H.; Li, Q.; Su, L. Study on the performance of vegetation concrete prepared based on different cements. Constr. Build. Mater. 2023, 409, 133793. [Google Scholar] [CrossRef]
- Li, S.; Yin, J.; Zhang, G. Experimental investigation on optimization of vegetation performance of porous sea sand concrete mixtures by pH adjustment. Constr. Build. Mater. 2020, 249, 118775. [Google Scholar] [CrossRef]
- Peng, H.; Yin, J.; Song, W. Mechanical and Hydraulic Behaviors of Eco-Friendly Pervious Concrete Incorporating Fly Ash and Blast Furnace Slag. Appl. Sci. 2018, 8, 859. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.; Zhou, T.; Liu, D.; Yang, Q.; Xiao, H.; Liu, D.; Chen, J.; Xia, Z.; Xu, W. Effects of freeze-thaw cycling on the engineering properties of vegetation concrete. J. Environ. Manag. 2023, 345, 118810. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-H.; Park, C.-G. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex. Sustainability 2016, 8, 386. [Google Scholar] [CrossRef]
- GB 175-2007; General-Purpose Silicate Cement. China Standard Publishing House: Beijing, China, 2007.
- GB/T 20472-2006; Sulphate Aluminate Cement. Beijing University of Technology Press: Beijing, China, 2006.
- GJJ/T 253-2016; Technical Specification for Application of Pervious Recycled Aggregate Concrete. Industry Standards of the People’s Republic of China: Beijing, China, 2009.
- CJJ/T 135-2009; Technical Specifications for Pervious Concrete Pavement. Industry Standards of the People’s Republic of China: Beijing, China, 2009.
- GB/T 50081-2019; Standard for Mechanical Properties of Concrete Test Methods. China Standard Press: Beijing, China, 2019.
- Loh, P.Y.; Shafigh, P.; Katman, H.Y.B.; Ibrahim, Z.; Yousuf, S. pH Measurement of Cement-Based Materials: The Effect of Particle Size. Appl. Sci. 2021, 11, 8000. [Google Scholar] [CrossRef]
- Doussang, L.; Samson, G.; Deby, F.; Huet, B.; Guillon, E.; Cyr, M. Durability parameters of three low-carbon concretes (low clinker, alkali-activated slag and supersulfated cement). Constr. Build. Mater. 2023, 407, 133511. [Google Scholar] [CrossRef]
- Li, L.; Nam, J.; Hartt, W.H. Ex situ leaching measurement of concrete alkalinity. Cem. Concr. Res. 2005, 35, 277–283. [Google Scholar] [CrossRef]
- Al-Amoudi, O.S.B.; Maslehuddin, M.; Shameem, M.; Ibrahim, M. Shrinkage of plain and silica fume cement concrete under hot weather. Cem. Concr. Compos. 2007, 29, 690–699. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, Z.; Wang, Z.; He, J.; Niu, D. Erosion behavior of ions in lining concrete incorporating fly ash and silica fume under the combined action of load and flowing groundwater containing composite salt. Case Stud. Constr. Mater. 2022, 17, e01659. [Google Scholar] [CrossRef]
- Seifan, M.; Mendoza, S.; Berenjian, A. Mechanical properties and durability performance of fly ash based mortar containing nano- and micro-silica additives. Constr. Build. Mater. 2020, 252, 119121. [Google Scholar] [CrossRef]
- Nochaiya, T.; Suriwong, T.; Julphunthong, P. Acidic corrosion-abrasion resistance of concrete containing fly ash and silica fume for use as concrete floors in pig farm. Case Stud. Constr. Mater. 2022, 16, e01010. [Google Scholar] [CrossRef]
- Ibrahim, K.I.M. Recycled waste glass powder as a partial replacement of cement in concrete containing silica fume and fly ash. Case Stud. Constr. Mater. 2021, 15, e00630. [Google Scholar] [CrossRef]
- Feng, W.; Tang, Y.; Zhang, Y.; Qi, C.; Ma, L.; Li, L. Partially fly ash and nano-silica incorporated recycled coarse aggregate based concrete: Constitutive model and enhancement mechanism. J. Mater. Res. Technol.-JMRT 2022, 17, 192–210. [Google Scholar] [CrossRef]
- Ma, X.; He, T.; Xu, Y.; Yang, R.; Sun, Y. Hydration reaction and compressive strength of small amount of silica fume on cement-fly ash matrix. Case Stud. Constr. Mater. 2022, 16, e00989. [Google Scholar] [CrossRef]
- Natkunarajah, K.; Masilamani, K.; Maheswaran, S.; Lothenbach, B.; Amarasinghe, D.A.S.; Attygalle, D. Analysis of the trend of pH changes of concrete pore solution during the hydration by various analytical methods. Cem. Concr. Res. 2022, 156, 106780. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kwon, S.; Choi, J.-W.; Cho, G.-C. Properties of low-PH cement grout as a sealing material for the geological disposal of radioactive waste. Nucl. Eng. Technol. 2011, 43, 459–468. [Google Scholar] [CrossRef]
Oxides% | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | TiO2 | LOI |
---|---|---|---|---|---|---|---|---|
P.II 52. 5 | 64.50 | 22.04 | 4.76 | 3.10 | 0.92 | 1.90 | / | 1.01 |
SSC52.5 | 39.25 | 26.95 | 13.21 | 0.41 | 8.51 | 7.84 | 0.53 | 0.31 |
FA | 3.36 | 57.74 | 27.08 | 6.34 | 1.11 | 0.18 | / | 3.61 |
SF | 0.4 | 91.05 | 1.73 | 0.91 | 0.78 | 0.27 | / | 1.02 |
GBFS | 37.19 | 31.77 | 15.36 | 0.63 | 10.15 | 1.16 | / | 1.02 |
Number | Design Porosity (%) | Cement | Aggregate | Water | FA | GBFS | SF | JM-2 | Water-Cement Ratio |
---|---|---|---|---|---|---|---|---|---|
C1 | 20 | 406 | 524 | 105.6 | 2.18 | 0.26 | |||
C2 | 23 | 356 | 524 | 92.6 | 1.79 | 0.26 | |||
C3 | 25 | 322 | 524 | 83.7 | 1.73 | 0.26 | |||
C4 | 27 | 288 | 524 | 74.9 | 1.42 | 0.26 | |||
C5 | 30 | 234 | 524 | 60.8 | 1.05 | 0.26 | |||
CF | 25 | 170 | 513 | 79.2 | 113.0 | 1.42 | 0.28 | ||
CG | 25 | 182 | 513 | 88.2 | 122.0 | 1.52 | 0.29 | ||
CS | 25 | 325 | 513 | 79.7 | 6.6 | 1.66 | 0.24 | ||
CD | 25 | 177 | 513 | 82.6 | 59.0 | 59.0 | 1.48 | 0.28 | |
S | 25 | 335 | 524 | 83.7 | 1.73 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Zhou, J.; Xu, W.; Yuan, X. Study on the Preparation and Properties of Vegetation Lightweight Porous Concrete. Materials 2024, 17, 251. https://doi.org/10.3390/ma17010251
Cao Q, Zhou J, Xu W, Yuan X. Study on the Preparation and Properties of Vegetation Lightweight Porous Concrete. Materials. 2024; 17(1):251. https://doi.org/10.3390/ma17010251
Chicago/Turabian StyleCao, Qingyu, Juncheng Zhou, Weiting Xu, and Xiongzhou Yuan. 2024. "Study on the Preparation and Properties of Vegetation Lightweight Porous Concrete" Materials 17, no. 1: 251. https://doi.org/10.3390/ma17010251
APA StyleCao, Q., Zhou, J., Xu, W., & Yuan, X. (2024). Study on the Preparation and Properties of Vegetation Lightweight Porous Concrete. Materials, 17(1), 251. https://doi.org/10.3390/ma17010251