Effects of 3d Transition Metal Substitutions on the Phase Stability and Mechanical Properties of Ti–5.5Al–11.8[Mo]eq Alloys
Abstract
1. Introduction
2. Experimental Section
2.1. Specimen Fabrications
2.2. Analysis
3. Results and Discussion
3.1. Workability
3.2. Phase Constitutions
3.3. Microstructures
3.4. Vickers Hardness
3.5. Tensile Tests
4. Conclusions
- Good workability, except for the Ti–Al–V alloy, was achieved in the Ti–Al–X (X = Cr, Co, and Ni) alloys.
- Via the phase identification by using X-ray measurements, the Ti–Al–V alloy showed a triple phase of β+α+Ti3Al, while other alloys were composed of the single parent β phase.
- In agreement with the phase identification, the microstructures also displayed a single β phase in the Ti–Al–X (X = Cr, Co, and Ni) alloys, while a multi-phase was found in the Ti–Al–V alloy.
- High Vickers hardness with a relatively large deviation was found in the triple-phase-composed Ti–Al–V alloy, while that of other alloys was comparatively low.
- Superelastic behavior at room temperature was successfully imposed on the Ti–5.5Al–9.5Ni alloy (mass%), which showed a shape recovery of about 3.6% and a superelastic recovery of 1.9%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biesiekierski, A.; Wang, J.; Abdel-Hady Gepreel, M.; Wen, C. A New Look at Biomedical Ti-Based Shape Memory Alloys. Acta Biomater. 2012, 8, 1661–1669. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New Developments of Ti-Based Alloys for Biomedical Applications. Materials 2014, 7, 1709–1800. [Google Scholar] [CrossRef]
- Weiss, I.; Semiatin, S.L. Thermomechanical Processing of Beta Titanium Alloys—An Overview. Mater. Sci. Eng. A 1998, 243, 46–65. [Google Scholar] [CrossRef]
- Boyer, R.R. An Overview on the Use of Titanium in the Aerospace Industry. Mater. Sci. Eng. A 1996, 213, 103–114. [Google Scholar] [CrossRef]
- Pan, Y. The Structural, Mechanical and Thermodynamic Properties of the Orthorhombic TMAl (TM=Ti, Y, Zr and Hf) Aluminides from First-Principles Calculations. Vacuum 2020, 181, 109742. [Google Scholar] [CrossRef]
- Farooq, M.U.; Khalid, F.A.; Zaigham, H.; Abidi, I.H. Superelastic Behaviour of Ti–Nb–Al Ternary Shape Memory Alloys for Biomedical Applications. Mater. Lett. 2014, 121, 58–61. [Google Scholar] [CrossRef]
- Yang, Y.; Castany, P.; Cornen, M.; Prima, F.; Li, S.J.; Hao, Y.L.; Gloriant, T. Characterization of the Martensitic Transformation in the Superelastic Ti–24Nb–4Zr–8Sn Alloy by in Situ Synchrotron X-Ray Diffraction and Dynamic Mechanical Analysis. Acta Mater. 2015, 88, 25–33. [Google Scholar] [CrossRef]
- Li, S.; Nam, T.H. Superelasticity and Tensile Strength of Ti-Zr-Nb-Sn Alloys with High Zr Content for Biomedical Applications. Intermetallics 2019, 112, 106545. [Google Scholar] [CrossRef]
- Li, S.; Kim, J.H.; Kang, S.W.; Kim, J.H.; Nam, T.H.; Yeom, J.T. Superelastic Metastable Ti-Mo-Sn Alloys with High Elastic Admissible Strain for Potential Bio-Implant Applications. J. Mater. Sci. Technol. 2023, 163, 45–58. [Google Scholar] [CrossRef]
- Nohira, N.; Oshita, Y.; Chiu, W.-T.; Umise, A.; Tahara, M.; Hosoda, H. Investigations of Deformation Behavior and Microstructure of Al Tailored Ti–Mo High Temperature Shape Memory Alloys during Isothermal Holding at 393 K. Micro 2022, 2, 113–122. [Google Scholar] [CrossRef]
- Nohira, N.; Oshita, Y.; Chiu, W.-T.; Umise, A.; Tahara, M.; Hosoda, H. Effect of Aging on Isothermal ω/α″ Growth and Resulting Mechanical Behaviors of the Ti–Mo–Al High Temperature Shape Memory Alloys. Mater. Charact. 2023, 199, 112850. [Google Scholar] [CrossRef]
- Kim, K.M.; Kim, H.Y.; Miyazaki, S. Effect of Zr Content on Phase Stability, Deformation Behavior, and Young’s Modulus in Ti–Nb–Zr Alloys. Materials 2020, 13, 476. [Google Scholar] [CrossRef] [PubMed]
- Chiu, W.-T.; Ishigaki, T.; Nohira, N.; Umise, A.; Tahara, M.; Hosoda, H. Effect of 3d Transition Metal Additions on the Phase Constituent, Mechanical Properties, and Shape Memory Effect of near–Eutectoid Ti–4Au Biomedical Alloys. J. Alloys Compd. 2021, 857, 157599. [Google Scholar] [CrossRef]
- Lieberman, D.S.; Wechsler, M.S.; Read, T.A. Cubic to Orthorhombic Diffusionless Phase Change—Experimental and Theoretical Studies of AuCd. J. Appl. Phys. 1955, 26, 473–484. [Google Scholar] [CrossRef]
- Sabeena, M.; Murugesan, S.; Anees, P.; Mohandas, E.; Vijayalakshmi, M. Crystal Structure and Bonding Characteristics of Transformation Products of Bcc β in Ti-Mo Alloys. J. Alloys Compd. 2017, 705, 769–781. [Google Scholar] [CrossRef]
- Yi, X.-Y.; Liu, W.; Wang, Y.-F.; Huang, B.-W.; Cao, X.-J.; Sun, K.-S.; Liu, X.; Meng, X.-L.; Gao, Z.-Y.; Wang, H.-Z. Effect of Sn Content on the Microstructural Features, Martensitic Transformation and Mechanical Properties in Ti-V-Al-Based Shape Memory Alloys. Acta Metall. Sin. 2023, 1, 1–14. [Google Scholar] [CrossRef]
- Williams, J.C.; Hickman, B.S.; Marcus, H.L. The Effect of Omega Phase on the Mechanical Properties of Titanium Alloys. Metall. Trans. 1971, 2, 1913–1919. [Google Scholar] [CrossRef]
- Gysler, A.; Lütjering, G.; Gerold, V. Deformation Behavior of Age-Hardened Ti-Mo Alloys. Acta Metall. 1974, 22, 901–909. [Google Scholar] [CrossRef]
- Lai, M.J.; Li, T.; Raabe, D. ω Phase Acts as a Switch between Dislocation Channeling and Joint Twinning- and Transformation-Induced Plasticity in a Metastable β Titanium Alloy. Acta Mater. 2018, 151, 67–77. [Google Scholar] [CrossRef]
- Williams, J.C.; Hickman, B.S.; Leslie, D.H. The Effect of Ternary Additions on the Decompositon of Metastable Beta-Phase Titanium Alloys. Metall. Trans. 1971, 2, 477–484. [Google Scholar] [CrossRef]
- Ishiyama, S.; Hanada, S.; Izumi, O. Effect of Zr, Sn and Al Additions on Deformation Mode and Beta Phase Stability of Metastable Beta Ti Alloys. ISIJ Int. 1991, 31, 807–813. [Google Scholar] [CrossRef]
- Sugano, D.; Ikeda, M. The Effect of Aluminum Content on Phase Constitution and Heat Treatment Behavior of Ti–Cr–Al Alloys for Healthcare Application. Mater. Sci. Eng. C 2005, 25, 377–381. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Sun, J. Phase Stability and Tensile Behavior of Metastable β Ti-V-Fe and Ti-V-Fe-Al Alloys. Mater. Charact. 2018, 142, 398–405. [Google Scholar] [CrossRef]
- Park, M.; Chiu, W.-T.; Nohira, N.; Iwasaki, M.; Tahara, M.; Hosoda, H. Microstructure Characteristics and Superelastic Properties of Novel Ti–Cr–Sn Superelastic Alloys. Mater. Sci. Eng. A 2023, 869, 144790. [Google Scholar] [CrossRef]
- Nohira, N.; Chiu, W.-T.; Umise, A.; Tahara, M.; Hosoda, H. Achievement of Room Temperature Superelasticity in Ti-Mo-Al Alloy System via Manipulation of ω Phase Stability. Materials 2022, 15, 861. [Google Scholar] [CrossRef] [PubMed]
- Duwez, P. The Martensite Transformation Temperature in Titanium Binary Alloys. J. Inst. Metals 1952, 80, 525–527. [Google Scholar] [CrossRef]
- Boyer, R.; Welsch, G.; Collings, E.W. Materials Properties Handbook: Titanium Alloys; ASM International: Materials Park, OH, USA, 1994. [Google Scholar]
- Tsujimoto, T. The Titanium-Rich Corner of the Ternary Ti-Al-V System. Trans. JIM 1969, 10, 281–286. [Google Scholar] [CrossRef]
- Lipsitt, H.A.; Shechtman, D.; Schafrik, R.E. The Deformation and Fracture of Ti3Al at Elevated Temperatures. Metall. Trans. A 1980, 11, 1369–1375. [Google Scholar] [CrossRef]
- Davis, R.; Flower, H.M.; West, D.R.F. Martensitic Transformations in Ti-Mo Alloys. J. Mater. Sci. 1979, 14, 712–722. [Google Scholar] [CrossRef]
- Li, Y.; Ru, Z.; Cui, Y.; Luo, K. Phase Stability and Hardness of Some Ternary Ti–Zr Based Shape Memory Alloys. Int. J. Smart Nano Mater. 2011, 2, 272–282. [Google Scholar] [CrossRef]
Ti–5.5Al–X Alloy | Mo [25] | (a) V | (b) Cr | (c) Co | (d) Ni |
---|---|---|---|---|---|
mass% X | 11.8 | 17.7 | 9.5 | 7.0 | 9.5 |
mol% X | 6.0 | 16.1 | 8.4 | 5.5 | 7.5 |
Alloy | Hot-Rolling (RH) | Cold-Rolling (RC) | Condition |
---|---|---|---|
(a) Ti–Al–V | 76% | × | Fractured |
(b) Ti–Al–Cr | 94% | 29% | Good |
(c) Ti–Al–Co | 91% | 52% | Good |
(d) Ti–Al–Ni | 91% | 34% | Partially cracked |
Alloy | Lattice Parameter, aβ (nm) | Standard Deviation |
---|---|---|
(a) Ti–Al–V | 0.3226 | 0.00579 |
(b) Ti–Al–Cr | 0.3234 | 0.00037 |
(c) Ti–Al–Co | 0.3233 | 0.00157 |
(d) Ti–Al–Ni | 0.3239 | 0.00087 |
(e) Ti–Al–Mo [25] | 0.3252 | 0.00087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nohira, N.; Widyanisa, K.; Chiu, W.-T.; Umise, A.; Tahara, M.; Hosoda, H. Effects of 3d Transition Metal Substitutions on the Phase Stability and Mechanical Properties of Ti–5.5Al–11.8[Mo]eq Alloys. Materials 2023, 16, 4526. https://doi.org/10.3390/ma16134526
Nohira N, Widyanisa K, Chiu W-T, Umise A, Tahara M, Hosoda H. Effects of 3d Transition Metal Substitutions on the Phase Stability and Mechanical Properties of Ti–5.5Al–11.8[Mo]eq Alloys. Materials. 2023; 16(13):4526. https://doi.org/10.3390/ma16134526
Chicago/Turabian StyleNohira, Naoki, Keiko Widyanisa, Wan-Ting Chiu, Akira Umise, Masaki Tahara, and Hideki Hosoda. 2023. "Effects of 3d Transition Metal Substitutions on the Phase Stability and Mechanical Properties of Ti–5.5Al–11.8[Mo]eq Alloys" Materials 16, no. 13: 4526. https://doi.org/10.3390/ma16134526
APA StyleNohira, N., Widyanisa, K., Chiu, W.-T., Umise, A., Tahara, M., & Hosoda, H. (2023). Effects of 3d Transition Metal Substitutions on the Phase Stability and Mechanical Properties of Ti–5.5Al–11.8[Mo]eq Alloys. Materials, 16(13), 4526. https://doi.org/10.3390/ma16134526