STM Study of the Initial Stage of Gold Intercalation of Graphene on Ir(111)
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dedkov, Y.; Voloshina, E. Graphene growth and properties on metal substrates. J. Phys. Condens. Matter 2015, 27, 303002. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bartelt, N.C.; McCarty, K.F. Graphene growth on metal surfaces. MRS Bull. 2012, 37, 1158–1166. [Google Scholar] [CrossRef]
- Wintterlin, J.; Bocquet, M. Graphene on metal surfaces. Surf. Sci. 2009, 603, 1841–1852. [Google Scholar] [CrossRef]
- Vanin, M.; Mortensen, J.J.; Kelkkanen, A.K.; Thygesen, K.S.; Jacobsen, K.W. Graphene on metals: A van der Waals density functional study. Phys. Rev. B 2010, 81, 081408. [Google Scholar] [CrossRef][Green Version]
- Tesch, J.; Leicht, P.; Blumenschein, F.; Gragnaniello, L.; Fonin, M.; Steinkasserer, L.E.M.; Paulus, B.; Voloshina, E.; Dedkov, Y. Structural and electronic properties of graphene nanoflakes on Au(111) and Ag(111). Sci. Rep. 2016, 6, 23439. [Google Scholar] [CrossRef][Green Version]
- Sutter, P.; Sadowski, J.T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411. [Google Scholar] [CrossRef][Green Version]
- Mittendorfer, F.; Garhofer, A.; Redinger, J.; Klimeš, J.; Harl, J.; Kresse, G. Graphene on Ni(111): Strong interaction and weak adsorption. Phys. Rev. B 2011, 84, 201401. [Google Scholar] [CrossRef][Green Version]
- Voloshina, N.; Dedkov, Y.S.; Torbrügge, S.; Thissen, A.; Fonin, M.; Voloshina, E.N.; Dedkov, Y.S.; Torbru, S. Graphene on Rh(111): Scanning tunneling and atomic force microscopies studies. Appl. Phys. Lett. 2014, 100, 241606. [Google Scholar] [CrossRef][Green Version]
- Marchini, S.; Günther, S.; Wintterlin, J. Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 2007, 76, 75429. [Google Scholar] [CrossRef]
- Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30–35. [Google Scholar] [CrossRef]
- Daukiya, L.; Nair, M.N.; Cranney, M.; Vonau, F.; Hajjar-Garreau, S.; Aubel, D.; Simon, L. Functionalization of 2D materials by intercalation. Prog. Surf. Sci. 2019, 94, 1–20. [Google Scholar] [CrossRef]
- Starodubov, A.G.; Medvetskii, M.A.; Shikin, A.M.; Adamchuk, V.K. Intercalation of Silver Atoms under a Graphite Monolayer on Ni(111). Phys. Sol. State 2004, 46, 1340–1348. [Google Scholar] [CrossRef]
- Vita, H.; Böttcher, S.; Horn, K.; Voloshina, E.N.; Ovcharenko, R.E.; Kampen, T.; Thissen, A. Understanding the origin of band gap formation in graphene on metals: Graphene on Cu/Ir(111). Sci. Rep. 2014, 4, 5704. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shikin, A.M.; Adamchuk, V.K.; Rieder, K.H. Formation of quasi free graphene on the Ni(111) surface with intercalated Cu, Ag, and Au layers. Phys. Solid State 2009, 51, 2390–2400. [Google Scholar] [CrossRef]
- Silva, C.C.; Cai, J.; Jolie, W.; Dombrowski, D.; Hagen, F.H.F.Z.; Martínez-Galera, A.J.; Schlueter, C.; Lee, T.-L.; Busse, C. Lifting Epitaxial Graphene by Intercalation of Alkali Metals. J. Phys. Chem. C 2019, 123, 13712–13719. [Google Scholar] [CrossRef]
- Alattas, M.; Schwingenschlögl, U. Quasi-freestanding graphene on Ni(111) by Cs intercalation. Sci. Rep. 2016, 6, 26753. [Google Scholar] [CrossRef][Green Version]
- Varykhalov, A.; Scholz, M.R.; Kim, T.K.; Rader, O. Effect of noble-metal contacts on doping and band gap of graphene. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 82, 121101. [Google Scholar] [CrossRef]
- Wofford, J.M.; Starodub, E.; Walter, A.L.; Nie, S.; Bostwick, A.; Bartelt, N.C.; Thürmer, K.; Rotenberg, E.; McCarty, K.F.; Dubon, O.D. Extraordinary epitaxial alignment of graphene islands on Au(111). New J. Phys. 2012, 14, 053008. [Google Scholar] [CrossRef]
- Shikin, A.M.; Prudnikova, G.V.; Adamchuk, V.K. Surface intercalation of gold underneath a graphite monolayer on Ni(111) studied by angle-resolved photoemission and high-resolution electron-energy-loss spectroscopy. Phys. Rev. B 2000, 62, 13202. [Google Scholar] [CrossRef]
- Huang, Y.; Du, J.; Zhou, T.; Ling, C.; Wang, S.; Geng, B. Role of Au in graphene growth on a ni surface. ACS Catal. 2014, 4, 892–902. [Google Scholar] [CrossRef]
- Praveen, C.S.; Piccinin, S.; Fabris, S. Adsorption of alkali adatoms on graphene supported by the Au/Ni(111) surface. Phys. Rev. B 2015, 92, 75403. [Google Scholar] [CrossRef][Green Version]
- Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A.M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601. [Google Scholar] [CrossRef] [PubMed]
- Leicht, P.; Zielke, L.; Bouvron, S.; Moroni, R.; Voloshina, E.; Hammerschmidt, L.; Dedkov, Y.S.; Fonin, M. In Situ Fabrication Of Quasi- Free-Standing Epitaxial Graphene. ACS Nano 2014, 8, 3735–3742. [Google Scholar] [CrossRef] [PubMed]
- Van Hove, M.A.; Koestner, R.J.; Stair, P.C.; Bibérian, J.P.; Kesmodel, L.L.; Bartoš, I.; Somorjai, G.A. The surface reconstructions of the (100) crystal faces of iridium, platinum and gold. Surf. Sci. 1981, 103, 189–217. [Google Scholar] [CrossRef]
- Hattab, H.; N’Diaye, A.T.; Wall, D.; Jnawali, G.; Coraux, J.; Busse, C.; Van Gastel, R.; Poelsema, B.; Michely, T.; Heringdorf, F.J.M.Z.; et al. Growth temperature dependent graphene alignment on Ir(111). Appl. Phys. Lett. 2011, 98, 2013–2016. [Google Scholar] [CrossRef]
- Ogura, S.; Fukutani, K. Terrace diffusion of Au atoms on Ir(111). J. Phys. Conf. Ser. 2008, 100, 072003. [Google Scholar] [CrossRef][Green Version]
- Ogura, S.; Fukutani, K.; Okada, M. Structure of gold thin films grown on Ir(111). Top. Catal. 2007, 44, 65–71. [Google Scholar] [CrossRef]
- Bott, M.; Michely, T.; Comsa, G. The homoepitaxial growth of Pt on Pt(111) studied with STM. Surf. Sci. 1992, 272, 161–166. [Google Scholar] [CrossRef]
- Kalff, M.; Comsa, G.; Michely, T. How Sensitive is Epitaxial Growth to Adsorbates? Phys. Rev. Lett. 1998, 81, 1255–1258. [Google Scholar] [CrossRef]
- Varykhalov, A.; Marchenko, D.; Scholz, M.R.; Rienks, E.D.L.; Kim, T.K.; Bihlmayer, G.; Sánchez-Barriga, J.; Rader, O. Ir(111) surface state with giant Rashba splitting persists under graphene in air. Phys. Rev. Lett. 2012, 108, 066804. [Google Scholar] [CrossRef][Green Version]
- Barth, J.V.V.; Brune, H.; Ertl, G.; Behm, R.J. Scanning tunneling microscopy observations on the reconstructed Au(111) surface: Atomic structure, lon-range superstructure, rotational domains, and surface defects. Phys. Rev. B 1990, 42, 9307–9318. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xie, Z.-X.; Huang, Z.-F.; Xu, X. Influence of reconstruction on the structure of self-assembled normal-alkane monolayers on Au(111) surfaces. Phys. Chem. Chem. Phys. 2002, 4, 1486–1489. [Google Scholar] [CrossRef][Green Version]
- Narasimhan, S.; Vanderbilt, D. Elastic Stress Domains and the Herringbone Reconstruction on Au (111 ). Phys. Rev. Lett. 1992, 69, 1564. [Google Scholar] [CrossRef] [PubMed]
- Jolie, W.; Craes, F.; Busse, C. Graphene on weakly interacting metals: Dirac states versus surface states. Phys. Rev. B 2015, 91, 115419. [Google Scholar] [CrossRef]
- Halle, J.; Neel, N.; Kröger, J. Tailoring Intercalant Assemblies at the Graphene–Metal Interface. Langmuir 2019, 35, 2554–2560. [Google Scholar] [CrossRef][Green Version]
- Vlaic, S.; Rougemaille, N.; Artaud, A.; Renard, V.; Huder, L.; Rouvière, J.-L.; Kimouche, A.; Santos, B.; Locatelli, A.; Guisset, V.; et al. Graphene as a Mechanically Active, Deformable Two-Dimensional Surfactant. J. Phys. Chem. Lett. 2018, 9, 2523–2531. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Petrović, M.; Šrut Rakić, I.; Runte, S.; Busse, C.; Sadowski, J.T.; Lazić, P.; Pletikosić, I.; Pan, Z.-H.; Milun, M.; Pervan, P.; et al. The mechanism of caesium intercalation of graphene. Nat. Commun. 2013, 4, 2772. [Google Scholar] [CrossRef][Green Version]
- Kimouche, A.; Renault, O.; Samaddar, S.; Winkelmann, C.; Courtois, H.; Fruchart, O.; Coraux, J. Modulating charge density and inelastic optical response in graphene by atmospheric pressure localized intercalation through wrinkles. Carbon 2014, 68, 73–79. [Google Scholar] [CrossRef][Green Version]
- Ulstrup, S.; Andersen, M.; Bianchi, M.; Barreto, L.; Hammer, B.; Hornekær, L.; Hofmann, P. Sequential oxygen and alkali intercalation of epitaxial graphene on Ir(111): Enhanced manybody effects and formation of pn-interfaces. 2D Mater. 2014, 1, 025002. [Google Scholar] [CrossRef]
- Schumacher, S.; Huttmann, F.; Petrović, M.; Witt, C.; Förster, D.F.; Vo-Van, C.; Coraux, J.; Martínez-Galera, A.J.; Sessi, V.; Vergara, I.; et al. Europium Underneath Graphene on Ir(111): Intercalation Mechanism, Magnetism, and Band Structure. Phys. Rev. B 2014, 90, 235437. [Google Scholar] [CrossRef][Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikšić Trontl, V.; Jedovnicki, I.; Pervan, P. STM Study of the Initial Stage of Gold Intercalation of Graphene on Ir(111). Materials 2023, 16, 3833. https://doi.org/10.3390/ma16103833
Mikšić Trontl V, Jedovnicki I, Pervan P. STM Study of the Initial Stage of Gold Intercalation of Graphene on Ir(111). Materials. 2023; 16(10):3833. https://doi.org/10.3390/ma16103833
Chicago/Turabian StyleMikšić Trontl, Vesna, Ivan Jedovnicki, and Petar Pervan. 2023. "STM Study of the Initial Stage of Gold Intercalation of Graphene on Ir(111)" Materials 16, no. 10: 3833. https://doi.org/10.3390/ma16103833
APA StyleMikšić Trontl, V., Jedovnicki, I., & Pervan, P. (2023). STM Study of the Initial Stage of Gold Intercalation of Graphene on Ir(111). Materials, 16(10), 3833. https://doi.org/10.3390/ma16103833