Bending Stability of Ferroelectric Gated Graphene Field Effect Transistor for Flexible Electronics
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Fabrication
2.2. Material Characterization
3. Results and Discussion
3.1. Polarization Characteristics of PLZT(8/30/70)
3.2. Electrical Transport Properties of PLZT(8/30/70) Gated GFET
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, X.; Guo, R.; Tay, B.K.; Yan, X. Flexible Ferroelectric Devices: Status and Applications. Adv. Funct. Mater. 2022, 32, 2205933. [Google Scholar] [CrossRef]
- Wu, J.; Liang, Z.; Ma, C.; Hu, G.; Shen, L.; Sun, Z.; Zhang, Y.; Lu, L.; Liu, M.; Jia, C.-L. Flexible Lead-Free BaTiO3 Ferroelectric Elements With High Performance. IEEE Electron. Device Lett. 2019, 40, 889–892. [Google Scholar] [CrossRef]
- Weiss, N.O.; Zhou, H.L.; Liao, L.; Liu, Y.; Jiang, S.; Huang, Y.; Duan, X.F. Graphene: An Emerging Electronic Material. Adv. Mater. 2012, 24, 5782–5825. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef][Green Version]
- Neumann, C.; Volk, C.; Engels, S.; Stampfer, C. Graphene-based charge sensors. Nanotechnology 2013, 24, 444001. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.T.; Christianson, C.; Kirkeminde, A.; Ren, S.Q.; Wu, J.D. Extraordinary Photocurrent Harvesting at Type-II Heterojunction Interfaces: Toward High Detectivity Carbon Nanotube Infrared Detectors. Nano Lett. 2012, 12, 6244–6249. [Google Scholar] [CrossRef] [PubMed]
- Cabral, P.D.; Domingues, T.; Machado, G.; Chicharo, A.; Cerqueira, F.; Fernandes, E.; Athayde, E.; Alpuim, P.; Borme, J. Clean-Room Lithographical Processes for the Fabrication of Graphene Biosensors. Materials 2020, 13, 5728. [Google Scholar] [CrossRef] [PubMed]
- Hui, Y.Y.; Liu, X.F.; Jie, W.J.; Chan, N.Y.; Hao, J.H.; Hsu, Y.T.; Li, L.J.; Guo, W.L.; Lau, S.P. Exceptional Tunability of Band Energy in a Compressively Strained Trilayer MoS2 Sheet. ACS Nano 2013, 7, 7126–7131. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.R.; Gong, Y.P.; Lu, R.T.; Brown, E.; Ma, B.H.; Li, J.; Wu, J. Detangling extrinsic and intrinsic hysteresis for detecting dynamic switch of electric dipoles using graphene field-effect transistors on ferroelectric gates. Nanoscale 2015, 7, 18489–18497. [Google Scholar] [CrossRef][Green Version]
- Van, N.H.; Lee, J.H.; Whang, D.; Kang, D. Low-Programmable-Voltage Nonvolatile Memory Devices Based on Omega-shaped Gate Organic Ferroelectric P(VDF-TrFE) Field Effect Transistors Using p-type Silicon Nanowire Channels. Nano-Micro Lett. 2015, 7, 35–41. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, X.D.; Tang, M.H.; Chen, Y.; Wu, G.J.; Huang, H.; Zhao, X.L.; Tian, B.B.; Wang, J.L.; Sun, S.; Shen, H.; et al. Flexible graphene field effect transistor with ferroelectric polymer gate. Opt. Quantum Electron. 2016, 48, 345. [Google Scholar] [CrossRef]
- Liu, W.L.; Liu, M.; Ma, R.; Zhang, R.Y.; Zhang, W.Q.; Yu, D.P.; Wang, Q.; Wang, J.N.; Wang, H. Mechanical Strain-Tunable Microwave Magnetism in Flexible CuFe2O4 Epitaxial Thin Film for Wearable Sensors. Adv. Funct. Mater. 2018, 28, 1705928. [Google Scholar] [CrossRef]
- Shen, L.K.; Wu, L.; Sheng, Q.; Ma, C.R.; Zhang, Y.; Lu, L.; Ma, J.; Ma, J.; Bian, J.H.; Yang, Y.D.; et al. Epitaxial Lift-Off of Centimeter-Scaled Spinel Ferrite Oxide Thin Films for Flexible Electronics. Adv. Mater. 2017, 29, 1702411. [Google Scholar] [CrossRef]
- He, J.; Zhang, J.; Qian, S.; Chen, X.; Qian, J.; Hou, X.; Mu, J.; Geng, W.; Cho, J.; Chou, X. Flexible Heterogeneous Integration of PZT Film by Controlled Spalling Technology. J. Alloys Compd. 2019, 807, 151696. [Google Scholar] [CrossRef]
- Kang, M.-G.; Noh, M.-S.; Pyeon, J.J.; Jung, W.-S.; Moon, H.G.; Baek, S.-H.; Nahm, S.; Yoon, S.-J.; Kang, C.-Y. Direct Growth of Ferroelectric Oxide Thin Films on Polymers through Laser-Induced Low-Temperature Liquid-Phase Crystallization. Chem. Mater. 2020, 32, 6483–6493. [Google Scholar] [CrossRef]
- Mo, S.-T.; Feng, K.-M.; Pang, J.-L.; Ouyang, K.; Jiang, L.-M.; Yang, Q.; Zhang, B.; Jiang, J. All-Inorganic Transparent Hf0.85Ce0.15O2 Ferroelectric Thin Films with High Flexibility and Stability. Nano Res. 2022, 1–8. [Google Scholar] [CrossRef]
- Baeumer, C.; Rogers, S.P.; Xu, R.J.; Martin, L.W.; Shim, M. Tunable Carrier Type and Density in Graphene/PbZr0.2Ti0.8O3 Hybrid Structures through Ferroelectric Switching. Nano Lett. 2013, 13, 1693–1698. [Google Scholar] [CrossRef][Green Version]
- Hu, G.; Wu, J.; Ma, C.; Liang, Z.; Liu, W.; Liu, M.; Wu, J.Z.; Jia, C.L. Controlling the Dirac point voltage of graphene by mechanically bending the ferroelectric gate of a graphene field effect transistor. Mater. Horiz. 2019, 6, 302–310. [Google Scholar] [CrossRef]
- Abe, K.; Yanase, N.; Yasumoto, T.; Kawakubo, T. Voltage shift phenomena in a heteroepitaxial BaTiO3 thin film capacitor. J. Appl. Phys. 2002, 91, 323–330. [Google Scholar] [CrossRef]
- Zubko, P.; Catalan, G.; Tagantsev, A.K. Flexoelectric Effect in Solids. Annu. Rev. Mater. Res. 2013, 43, 387–421. [Google Scholar] [CrossRef][Green Version]
- Di Bartolomeo, A.; Giubileo, F.; Romeo, F.; Sabatino, P.; Carapella, G.; Iemmo, L.; Schroeder, T.; Lupina, G. Graphene field effect transistors with niobium contacts and asymmetric transfer characteristics. Nanotechnology 2015, 26, 475202. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kundalwal, S.I.; Meguid, S.A.; Weng, G.J. Strain gradient polarization in graphene. Carbon 2017, 117, 462–472. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, G.; Shen, Y.; Shen, L.; Ma, C.; Liu, M. Bending Stability of Ferroelectric Gated Graphene Field Effect Transistor for Flexible Electronics. Materials 2023, 16, 3798. https://doi.org/10.3390/ma16103798
Hu G, Shen Y, Shen L, Ma C, Liu M. Bending Stability of Ferroelectric Gated Graphene Field Effect Transistor for Flexible Electronics. Materials. 2023; 16(10):3798. https://doi.org/10.3390/ma16103798
Chicago/Turabian StyleHu, Guangliang, Yinchang Shen, Lvkang Shen, Chunrui Ma, and Ming Liu. 2023. "Bending Stability of Ferroelectric Gated Graphene Field Effect Transistor for Flexible Electronics" Materials 16, no. 10: 3798. https://doi.org/10.3390/ma16103798
APA StyleHu, G., Shen, Y., Shen, L., Ma, C., & Liu, M. (2023). Bending Stability of Ferroelectric Gated Graphene Field Effect Transistor for Flexible Electronics. Materials, 16(10), 3798. https://doi.org/10.3390/ma16103798