Study of Effect of Coil Movement on Growth Conditions of SiC Crystal
Abstract
:1. Introduction
2. Modeling and Experiment
3. Results and Discussion
3.1. Temperature Evolution in Chamber
3.1.1. Interface Temperature Distribution
3.1.2. Heat Flux of Crucible
3.1.3. Temperature Difference between Powder and Seed Crystal
3.2. Source Material Evolution
3.3. Growth Rate and Morphology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huczko, A.; Dąbrowska, A.; Savchyn, V.; Popov, A.I.; Karbovnyk, I. Silicon Carbide Nanowires: Synthesis and Cathodoluminescence. Phys. Status Solidi B 2009, 246, 2806–2808. [Google Scholar] [CrossRef]
- Najafi, A.; Golestani-Fard, F.; Rezaie, H.R. Improvement of SiC Nanopowder Synthesis by Sol–Gel Method Via TEOS/resin Phenolic Precursors. J. Sol.-Gel. Sci. Technol. 2015, 75, 255–263. [Google Scholar] [CrossRef]
- Ning, G.; Zhang, L.; Zhong, W.; Wang, S.; Liu, J.; Zhang, C. Damage and Annealing Behavior in Neutron-Irradiated SiC Used as a Post-Irradiation Temperature Monitor. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2022, 512, 91–95. [Google Scholar] [CrossRef]
- Shi, S.; Yu, Y.; Wang, N.; Zhang, Y.; Shi, W.; Liao, X.; Duan, N. Investigation of the Anisotropy of 4H-SiC Materials in Nanoindentation and Scratch Experiments. Materials 2022, 15, 2496. [Google Scholar] [CrossRef]
- Masri, P. Silicon Carbide and Silicon Carbide Based Structures. Surf. Sci. Rep. 2002, 48, 1–51. [Google Scholar] [CrossRef]
- Goldberg, Y.; Levinshtein, M.E.; Rumyantsev, S.L. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe; John Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Powell, A.R.; Sumakeris, J.J.; Khlebnikov, Y.; Paisley, M.J.; Leonard, R.; Deyneka, E.; Gangwal, S.; Ambati, J.; Tsevtkov, V.; Seaman, J.; et al. Bulk Growth of Large Area SiC Crystals. Mater. Sci. Forum 2016, 858, 5–10. [Google Scholar] [CrossRef]
- Ha, M.-T.; Van Lich, L.; Shin, Y.-J.; Bae, S.-Y.; Lee, M.-H.; Jeong, S.-M. Improvement of SiC Crystal Growth Rate and Uniformity Via Top-Seeded Solution Growth Under External Static Magnetic Field: A Numerical Investigation. Materials 2020, 13, 651. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Gao, Y.; Meng, Z.; Gao, T. Effect of Cooling Rate on the Crystal Quality and Crystallization Rate of SiC During Rapid Solidification Based on the Solid—Liquid Model. Crystals 2022, 12, 1019. [Google Scholar] [CrossRef]
- Yang, X.L.; Yang, K.; Chen, X.F.; Peng, Y.; Hu, X.B.; Xu, X.G. Physical Vapor Transport Growth of 4H-SiC On {000-1} Vicinal Surfaces. Mater. Ence. Forum 2015, 821–823, 68–72. [Google Scholar] [CrossRef]
- Benamara, M.; Zhang, X.; Skowronski, M. Structure of the Carrot Defect in 4H-SiC Epitaxial Layers. Appl. Phys. Lett. 2005, 86, 21905. [Google Scholar] [CrossRef]
- Quast, J.; Hansen, D.; Loboda, M.; Manning, I.; Moeggenborg, K.; Mueller, S.; Parfeniuk, C.; Sanchez, E.; Whiteley, C. High Quality 150 Mm 4H SiC Wafers for Power Device Production. Mater. Sci. Forum 2015, 821–823, 56–59. [Google Scholar] [CrossRef]
- Kato, T.; Miura, T.; Nagai, I.; Taniguchi, H.; Kawashima, H.; Ozawa, T.; Arai, K.; Okumura, H. Enlargement Growth of Large 4H-SiC Bulk Single Crystal. Mater. Sci. Forum 2011, 679–680, 3–7. [Google Scholar] [CrossRef]
- Choi, J.W.; Kim, J.G.; Jang, B.K.; Ko, S.K.; Kyun, M.O.; Seo, J.D.; Ku, K.R.; Choi, J.M.; Lee, W.J. Modified Hot-Zone Design for Large Diameter 4H-SiC Single Crystal Growth. Mater. Sci. Forum 2019, 963, 18–21. [Google Scholar] [CrossRef]
- Ellefsen, O.M.; Arzig, M.; Steiner, J.; Wellmann, P.; Runde, P. Optimization of the SiC Powder Source Material for Improved Process Conditions During PVT Growth of SiC Boules. Materials 2019, 12, 3272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Chen, X.; Peng, T.; Wang, B.; Wang, W.; Wang, G. Step Flow and Polytype Transformation in Growth of 4H-SiC Crystals. J. Cryst. Growth 2014, 394, 126–131. [Google Scholar] [CrossRef]
- Fan, W.; Qu, H.; Chang, S.I.; Kozak, B.; Shaffer, G.; Galyukov, A.; Lee, W.J. Impacts of TaC Coating on SiC PVT Process Control and Crystal Quality. Mater. Sci. Forum 2018, 963, 22–25. [Google Scholar] [CrossRef]
- Steiner, J.; Wellmann, P.J. Impact of Mechanical Stress and Nitrogen Doping on the Defect Distribution in the Initial Stage of the 4H-SiC PVT Growth Process. Materials 2022, 15, 1897. [Google Scholar] [CrossRef]
- Pezoldt, J.; Cimalla, V. Imprinting the Polytype Structure of Silicon Carbide by Rapid Thermal Processing. Crystals 2020, 10, 523. [Google Scholar] [CrossRef]
- Yang, C.; Liu, G.; Chen, C.; Hou, Y.; Xu, M.; Zhang, Y. Numerical Simulation of Temperature Fields in a Three-Dimensional SiC Crystal Growth Furnace with Axisymmetric and Spiral Coils. Appl. Sci. 2018, 8, 705. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, Y.; Mitani, T.; Komatsu, N.; Kato, T.; Okumura, H. Control of Temperature Distribution to Suppress Macro-Defects in Solution Growth of 4H-SiC Crystals. J. Cryst. Growth 2019, 523, 125151. [Google Scholar] [CrossRef]
- Arzig, M.; Steiner, J.; Salamon, M.; Uhlmann, N.; Wellmann, P.J. Influence of Morphological Changes in a Source Material on the Growth Interface of 4h-Sic Single Crystals. Materials 2019, 12, 2591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshino, N.; Kamata, I.; Tokuda, Y.; Makino, E.; Kanda, T.; Sugiyama, N.; Kuno, H.; Kojima, J.; Tsuchida, H. Fast Growth of N-Type 4H-SiC Bulk Crystal by Gas-Source Method. J. Cryst. Growth 2017, 478, 9–16. [Google Scholar] [CrossRef]
- Gao, P.; Xin, J.; Yan, C.F.; Kong, H.K.; Chen, J.J.; Liu, X.C.; Shi, E.W. Research on the Key Problems in the Industrialization of SiC Substrate Materials. Mater. Sci. Forum 2019, 963, 56–59. [Google Scholar] [CrossRef]
- Herro, Z.G.; Epelbaum, B.M.; Bickermann, M.; Masri, P.; Winnacker, A. Effective Increase of Single-Crystalline Yield During PVT Growth of SiC by Tailoring of Temperature Gradient. J. Cryst. Growth 2004, 262, 105–112. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, G.; Li, T.; Zhao, L. Optimization of Thermal Field of 150 Mm SiC Crystal Growth by PVT Method. RSC Adv. 2022, 12, 19936–19945. [Google Scholar] [CrossRef]
- Hofmann, D.; Heinze, M.; Winnacker, A.; Durst, F.; Kadinski, L.; Kaufmann, P.; Makarov, Y.; Schäfer, M. On the Sublimation Growth of SiC Bulk Crystals: Development of a Numerical Process Model. J. Cryst. Growth 1995, 146, 214–219. [Google Scholar] [CrossRef]
- Bogdanov, M.V.; Ofengeim, D.K.; Kulik, A.V.; Zimina, D.V.; Ramm, M.S.; Zhmakin, A.I. Industrial Strength Software in Computer Based Engineering Education (CBEE): A Case Study. arXiv 2007, arXiv:physics/0612184. [Google Scholar]
- Bogdanov, M.V.; Galyukov, A.O.; Karpov, S.Y.; Kulik, A.V.; Kochuguev, S.K.; Ofengeim, D.K.; Tsiryulnikov, A.V.; Ramm, M.S.; Zhmakin, A.I.; Makarov, Y.N. Virtual Reactor: A New Tool for SiC Modling and Optimization. Mater. Sci. Forum 2001, 353–356, 57–60. [Google Scholar] [CrossRef]
- Arora, A.; Pandey, A.; Patel, A.; Dalal, S.; Yadav, B.S.; Goyal, A.; Raman, R.; Thakur, O.P.; Tyagi, R. Polytype Switching Identification in 4H-SiC Single Crystal Grown by PVT. J. Mater. Sci. Mater. Electron. 2020, 31, 16343–16351. [Google Scholar] [CrossRef]
- Zhiming, C.; Jian, W. Fundamentals of Material Physics for Semiconductor Devices; Science Press: Beijing, China, 1999; p. 131. [Google Scholar]
- Tairov, Y.M. Growth of Bulk SiC. Mater. Sci. Eng. B 1995, 29, 83–89. [Google Scholar] [CrossRef]
Parameter | Values | |
---|---|---|
Growth conditions | Monitor point temperature (°C) | 2250 |
Frequency (Hz) | 10,000 | |
Initial power (W) | 10,000 | |
Pressure (Pa) | 2000 | |
Electric conductivity (Ω−1·m−1) | Inductor | 5.5 × 107 |
Crucible | 1.065 × 105 (2250 °C) | |
Thermal conductivity (W·K−1·m−1) (2250 °C) | 4H-SiC | 18.4 |
Crucible | 29.5 | |
Side insulation layer | 1.13 | |
Bottom insulation layer | 1.37 | |
Residual | RF heating | 1 × 10−7 |
Temperature | 1 × 10−6 | |
Species | 1 × 10−5 | |
Velocity | 1 × 10−4 | |
Pressure | 1 × 10−4 | |
Growth rate | 1 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Fu, H.; Li, T.; Fan, G.; Zhao, L. Study of Effect of Coil Movement on Growth Conditions of SiC Crystal. Materials 2023, 16, 281. https://doi.org/10.3390/ma16010281
Zhang S, Fu H, Li T, Fan G, Zhao L. Study of Effect of Coil Movement on Growth Conditions of SiC Crystal. Materials. 2023; 16(1):281. https://doi.org/10.3390/ma16010281
Chicago/Turabian StyleZhang, Shengtao, Hao Fu, Tie Li, Guofeng Fan, and Lili Zhao. 2023. "Study of Effect of Coil Movement on Growth Conditions of SiC Crystal" Materials 16, no. 1: 281. https://doi.org/10.3390/ma16010281
APA StyleZhang, S., Fu, H., Li, T., Fan, G., & Zhao, L. (2023). Study of Effect of Coil Movement on Growth Conditions of SiC Crystal. Materials, 16(1), 281. https://doi.org/10.3390/ma16010281