Fatigue Fracture Analysis on 2524 Aluminum Alloy with the Influence of Creep-Aging Forming Processes
Abstract
:1. Introduction
2. Experimental Processes
2.1. Materials
2.2. Creep-Aging Forming
2.3. Fatigue Experiment
3. Result and Discussion
3.1. Effect of Creep-Aging Temperature on Fatigue-Crack Propagation
3.1.1. Effect of Creep-Aging Temperature on Fatigue-Crack Growth Rate
3.1.2. Fracture Morphologies at Different Creep-Aging Temperatures
3.2. Effect of Creep-Aging Stress on Fatigue-Crack Propagation
3.2.1. Effect of Creep Stress on Fatigue-Crack Propagation Rate
3.2.2. Fracture Morphologies at Different Creep Stresses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.B.; Li, X.; Liang, W.; Liu, Y.L.; Yan, H.Z.; Liu, C. Effects of laser shock peening on fatigue crack growth rate and fracture properties of AA2524 aluminum alloy. J. Cent. South Univ. 2022, 29, 848–859. [Google Scholar] [CrossRef]
- Song, M.; Wu, L.; Liu, J.; Hu, Y. Effects of laser cladding on crack resistance improvement for aluminum alloy used in aircraft skin. Opt. Laser Technol. 2021, 133, 106531. [Google Scholar] [CrossRef]
- Mason, C.J.T.; Avery, D.Z.; Phillips, B.J.; Jordon, J.B.; Allison, P.G. Strain Rate Dependent Plasticity Model for Precipitate Hardened Aerospace Aluminum Alloy Produced with Solid-State Additive Manufacturing. J. Dyn. Behav. Mater. 2021. [Google Scholar] [CrossRef]
- Song, B.; Liu, Z.; Gu, Y.; Zhou, X.; Zeng, S. Microstructures and fatigue fracture behavior of an Al–Cu–Mg–Ag alloy with a low Cu/Mg ratio. Mater. Sci. Eng. A 2011, 530, 473–480. [Google Scholar]
- Hu, Y.-J.; Sun, Y.-P.; Zhou, S.-P.; He, J.-M.; Yang, C.-Y. Effect of a cooling method on the structural and mechanical properties of friction stir spot welding with a 2524 aluminum alloy. Mater. Res. Express 2021, 8, 026517. [Google Scholar] [CrossRef]
- Srivatsan, T.S.; Kolar, D.; Magnusen, P. Influence of temperature on cyclic stress response, strain resistance, and fracture behavior of aluminum alloy 2524. Mater. Sci. Eng. A 2001, 314, 118–130. [Google Scholar] [CrossRef]
- Zheng, Z.Q.; Cai, B.; Zhai, T.; Li, S.C. The behavior of fatigue crack initiation and propagation in AA2524-T34 alloy. Mater. Sci. Eng. A 2011, 528, 2017–2022. [Google Scholar] [CrossRef]
- Srivatsan, T.S.; Kolar, D.; Magnusen, P. The cyclic fatigue and final fracture behavior of aluminum alloy 2524. Key Eng. Mater. 2008, 378–379, 207–230. [Google Scholar] [CrossRef]
- Liu, C.; Ma, L.; Zhang, Z.; Fu, Z.; Liu, L. Research on the Corrosion Fatigue Property of 2524-T3 Aluminum Alloy. Metals 2021, 11, 1754. [Google Scholar] [CrossRef]
- Pitcher, P.D.; Styles, C.M. Creep Age Forming of 2024A, 8090 and 7449 Alloys. Mater. Sci. Forum 2000, 331–337, 455–460. [Google Scholar] [CrossRef]
- Siddiqui, R.A.; Abdullah, H.A.; Al-Belushi, K.R. Influence of aging parameters on the mechanical properties of 6063 aluminium alloy. J. Mater. Processing Technol. 2000, 102, 234–240. [Google Scholar] [CrossRef]
- Bray, G.H.; Glazov, M.; Rioj, R.J.; Lib, D.; Gangloffb, R.P. Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys. Int. J. Fatigue 2001, 23, 265–276. [Google Scholar] [CrossRef]
- Sarioğlu, F.; Orhaner, F.Ö. Effect of prolonged heating at 130°C on fatigue crack propagation of 2024 Al alloy in three orientations. Mater. Sci. Eng. A 1998, 248, 115–119. [Google Scholar] [CrossRef]
- Burba, M.E.; Caton, M.J.; Jha, S.K.; Szczepanski, C.J. Effect of Aging Treatment on Fatigue Behavior of an Al-Cu-Mg-Ag Alloy. Metall. Mater. Trans. A 2013, 44, 4954–4967. [Google Scholar] [CrossRef]
- Songbai, L.I.; Liyong, M.A.; Chi, L.; Jiuhuo, Y.I. Effects of Aging Temperature on Microstructure and High Cycle Fatigue Performance of 7075 Aluminum Alloy. J. Wuhan Univ. Technol. (Mater. Sci.) 2017, 32, 677–684. [Google Scholar]
- Xu, Y.; Zhan, L.; Li, W. Effect of pre-strain on creep aging behavior of 2524 aluminum alloy. J. Alloys Compd. 2017, 691, 564–571. [Google Scholar] [CrossRef]
- Xu, Y.; Zhan, L.; Xu, L.; Huang, M. Experimental research on creep aging behavior of Al-Cu-Mg alloy with tensile and compressive stresses. Mater. Sci. Eng. A 2017, 682, 54–62. [Google Scholar] [CrossRef]
- Liu, Y.L.; Wang, Q.; Liu, C.; Song-Bai, L.I.; Jun, H.; Zhao, X.Q. Effect of creep and artificial aging on fatigue crack growth performance of 2524 aluminum alloy. J. Jilin Univ. (Eng. Ed.) 2019, 49, 1636–1643. [Google Scholar]
- Liu, C.; Liu, Y.; Li, S.; Ma, L.; Zhao, X.; Wang, Q. Effect of creep aging forming on the fatigue crack growth of an AA2524 alloy. Mater. Sci. Eng. A 2018, 725, 375–381. [Google Scholar] [CrossRef]
- ASTM E647-08. Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International: West Conshohocken, PA, USA, 2008.
- Khan, I.N.; Starink, M.J.; Yan, J.L. A model for precipitation kinetics and strengthening in Al–Cu–Mg alloys. Mater. Sci. Eng. A 2008, 472, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Quan, L.W.; Zhao, G.; Tian, N.; Huang, M.L. Effect of stress on microstructures of creep-aged 2524 alloy. Chin. J. Nonferrous Met. 2013, 23, 2209–2214. [Google Scholar] [CrossRef]
- Zhang, H.; Qiu, X.; Xu, D.; Liu, Y.; Zhao, X. Effect of precipitated phase on dislocation activity under high-frequency impacting and rolling. Micro Nano Lett. 2018, 13, 1542–1544. [Google Scholar] [CrossRef]
- Benachour, M.; Hadjoui, A.; Benguediab, M.; Benachour, N. Stress Ratio Effect on Fatigue Behavior of Aircraft Aluminum Alloy 2024 T351. MRS Proc. 2011, 1276. [Google Scholar] [CrossRef]
- Masoudi Nejad, R.; Berto, F.; Tohidi, M.; Jalayerian Darbandi, A.; Sina, N. An investigation on fatigue behavior of AA2024 aluminum alloy sheets in fuselage lap joints. Eng. Fail. Anal. 2021, 126, 105457. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, L.; Zhan, L.; Yu, H.; Huang, M.J.M. Creep Mechanisms of an Al–Cu–Mg Alloy at the Macro- and Micro-Scale: Effect of the S′/S Precipitate. Materials 2019, 12, 2907. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhan, L.; Ma, Z.; Huang, M.; Wang, K.; Sun, Z. Effect of heating rate on creep aging behavior of Al-Cu-Mg alloy. Mater. Sci. Eng. A 2017, 688, 488–497. [Google Scholar] [CrossRef]
- Zhan, L.H.; Tan, S.G.; Yang, Y.L.; Huang, M.H.; Shen, W.Q.; Xing, Z. A Research on the Creep Age Forming of 2524 Aluminum Alloy: Springback, Mechanical Properties, and Microstructures. Adv. Mech. Eng. 2014, 6, 707628. [Google Scholar] [CrossRef]
- Lin, Y.C.; Jiang, Y.Q.; Zhang, X.C.; Deng, J.; Chen, X.M. Effect of creep-aging processing on corrosion resistance of an Al–Zn–Mg–Cu alloy. Mater. Des. 2014, 61, 228–238. [Google Scholar] [CrossRef]
- Gouma, P.I.; Lloyd, D.J.; Mills, M.J. Precipitation processes in Al–Mg–Cu alloys. Mater. Sci. Eng. A 2001, 319–321, 439–442. [Google Scholar] [CrossRef]
- Kurguzov, V.D.; Kornev, V.M.; Moskvichev, V.V.; Kozlov, A.A. Influence of periodic change in the yield strength in a plate on the development of plastic zones near a crack tip. J. Appl. Mech. Tech. Phys. 2014, 55, 1037–1044. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Pan, S.P.; Zhou, M.Z.; Yi, D.Q.; Xu, D.Z.; Xu, Y.F. Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy. Mater. Sci. Eng. A 2013, 580, 150–158. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Ma, L.; Li, S.; Zhao, X.; Wang, Q. Precipitate Evolution and Fatigue Crack Growth in Creep and Artificially Aged Aluminum Alloy. Metals 2018, 8, 1039. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Xia, Y.C.; Jiang, Y.Q.; Zhou, H.M.; Li, L.T. Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater. Sci. Eng. A 2013, 565, 420–429. [Google Scholar] [CrossRef]
- Ungár, T.; Victoria, M.; Marmy, P.; Hanák, P.; Szenes, G. A new procedure of X-ray line profile analysis applied to study the dislocation structure and subgrain size-distributions in fatigued MANET steel. J. Nucl. Mater. 2000, 276, 278–282. [Google Scholar] [CrossRef]
Cu | Mg | Mn | Fe | Zn | Si | Ti | Cr | Al |
---|---|---|---|---|---|---|---|---|
4.62 | 1.32 | 0.57 | 0.035 | 0.004 | 0.025 | 0.02 | 0.001 | Bal. |
Aging Status | C | n | da/dN = CΔKn/(mm∙cycle−1) | ||
---|---|---|---|---|---|
ΔK = 8 | ΔK = 12 | ΔK = 16 (MPa·m1/2) | |||
100 °C/9 h | 1.77 × 10−7 | 2.99 | 3.51 × 10−5 | 1.52 × 10−4 | 4.31 × 10−4 |
130 °C/9 h | 1.77 × 10−7 | 2.99 | 4.15 × 10−5 | 1.75 × 10−4 | 3.97 × 10−4 |
160 °C/9 h | 4.32 × 10−7 | 2.67 | 4.52 × 10−5 | 2.25 × 10−4 | 4.78 × 10−4 |
180 °C/9 h | 2.81 × 10−7 | 2.80 | 5.02 × 10−5 | 2.13 × 10−4 | 5.74 × 10−4 |
ρ | C | n | da/dN = CΔKn/(mm·cycle−1) | |||
---|---|---|---|---|---|---|
ΔK = 7 | ΔK = 12 | ΔK = 16 | ΔK = 21 (MPa·m1/2) | |||
1000 mm | 1.77 × 10−7 | 2.99 | 2.90 × 10−5 | 2.25 × 10−4 | 4.75 × 10−4 | 1.12 × 10−3 |
1500 mm | 4.32 × 10−7 | 2.67 | 2.24 × 10−5 | 2.23 × 10−4 | 4.78 × 10−4 | 9.67 × 10−4 |
1800 mm | 2.81 × 10−7 | 2.80 | 1.21 × 10−5 | 2.95 × 10−4 | 4.10 × 10−4 | 6.83 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Liu, C.; Ma, M.; Wang, Z.; Wu, D.; Liu, L.; Song, M. Fatigue Fracture Analysis on 2524 Aluminum Alloy with the Influence of Creep-Aging Forming Processes. Materials 2022, 15, 3244. https://doi.org/10.3390/ma15093244
Ma L, Liu C, Ma M, Wang Z, Wu D, Liu L, Song M. Fatigue Fracture Analysis on 2524 Aluminum Alloy with the Influence of Creep-Aging Forming Processes. Materials. 2022; 15(9):3244. https://doi.org/10.3390/ma15093244
Chicago/Turabian StyleMa, Liyong, Chi Liu, Minglei Ma, Zhanying Wang, Donghao Wu, Lijuan Liu, and Mingxing Song. 2022. "Fatigue Fracture Analysis on 2524 Aluminum Alloy with the Influence of Creep-Aging Forming Processes" Materials 15, no. 9: 3244. https://doi.org/10.3390/ma15093244
APA StyleMa, L., Liu, C., Ma, M., Wang, Z., Wu, D., Liu, L., & Song, M. (2022). Fatigue Fracture Analysis on 2524 Aluminum Alloy with the Influence of Creep-Aging Forming Processes. Materials, 15(9), 3244. https://doi.org/10.3390/ma15093244