Influence of Additives on Microstructure and Mechanical Properties of Alumina Ceramics
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ighodaro, O.L.; Okoli, O.I. Fracture toughness enhancement for alumina systems: A review. Int. J. Appl. Ceram. Technol. 2008, 5, 313–323. [Google Scholar] [CrossRef]
- Zemtsova, E.G.; Monin, A.V.; Smirnov, V.M.; Semenov, B.N.; Morozov, N.F. Formation and mechanical properties of alumina ceramics based on Al2O3 micro- and nanoparticles. Phys. Mesomech. 2015, 18, 134–138. [Google Scholar] [CrossRef]
- Steinbrech, R.W. Toughening mechanisms for ceramic materials. J. Eur. Ceram. Soc. 1992, 10, 131–142. [Google Scholar] [CrossRef]
- Wang, L.; Shi, J.; Hua, Z.; Gao, J.; Yan, D. The influence of addition of WC particles on mechanical properties of alumina-matrix composite. Mater. Lett. 2001, 50, 179–182. [Google Scholar] [CrossRef]
- Val’yano, G.E.; Ivanov, D.A.; Krylov, A.V.; Mindlina, N.A. Mechanical properties and recrystallization of alumina ceramics reinforced by silicon carbide whisker. Refractories 1995, 36, 135–138. [Google Scholar] [CrossRef]
- Chen, R.Z.; Tuan, W.H. Pressureless sintering of Al2O3/Ni nanocomposites. J. Eur. Ceram. Soc. 1999, 19, 463–468. [Google Scholar] [CrossRef]
- Fan, C.; Ma, Q.; Zeng, K. Microstructure and mechanical properties of carbon fibre-reinforced alumina composites fabricated from sol. Bull. Mater. Sci. 2018, 41, 68. [Google Scholar] [CrossRef]
- Vishista, K.; Gnanam, F.D. Effect of strontia on the densification and mechanical properties of sol-gel alumina. Ceram. Int. 2006, 32, 917–922. [Google Scholar] [CrossRef]
- Riu, D.H.; Kong, Y.M.; Kim, H.E. Effect of Cr2O3 addition on microstructural evolution and mechanical properties of Al2O3. J. Eur. Ceram. Soc. 2000, 32, 1475–1481. [Google Scholar] [CrossRef]
- Kaygorodov, A.S.; Krutikov, V.I.; Paranin, S.N. Influence of the dopants on the mechanical properties of alumina-based ceramics. J. Ceram. 2013, 2013, 430408. [Google Scholar] [CrossRef][Green Version]
- Sathiyakumar, M.; Gnanam, F.D. Influence of additives on density, microstructure and mechanical properties of alumina. J. Mater. Process. Technol. 2003, 133, 282–286. [Google Scholar] [CrossRef]
- Kulyk, V.V.; Duriagina, Z.A.; Vasyliv, B.D.; Vavrukh, V.I.; Lyutyy, P.Y.; Kovbasiuk, T.M.; Holovchuk, M.Y. Effects of yttria content and sintering temperature on the microstructure and tendency to brittle fracture of yttria-stabilized zirconia. Arch. Mater. Sci. Eng. 2021, 109, 65–79. [Google Scholar] [CrossRef]
- Xia, Z.; Curtin, W.A.; Li, H.; Sheldon, B.W.; Liang, J.; Chang, B.; Xu, J.M. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 2007, 52, 931–944. [Google Scholar] [CrossRef]
- Zhang, S.C.; Fahrenholtz, W.G.; Hilmas, G.E.; Yadlowsky, E.J. Pressureless sintering of carbon nanotube-Al2O3 composites. J. Eur. Ceram. Soc. 2010, 30, 1373–1380. [Google Scholar] [CrossRef]
- Akatsu, T.; Umehara, Y.; Shinoda, Y.; Wakai, F.; Muto, H. Mechanical properties of alumina matrix composite reinforced with carbon nanofibers affected by small interfacial sliding shear stress. Ceram. Int. 2022, 48, 8466–8472. [Google Scholar] [CrossRef]
- Ahmad, K.; Pan, W. Microstructure-toughening relation in alumina based multiwall carbon nanotube ceramic composites. J. Eur. Ceram. Soc. 2015, 35, 663–671. [Google Scholar] [CrossRef]
- Centeno, A.; Rocha, V.G.; Alonso, B.; Fernández, A.; Gutierrez-Gonzalez, C.F.; Torrecillas, R.; Zurutuza, A. Graphene for tough and electroconductive alumina ceramics. J. Eur. Ceram. Soc. 2013, 33, 3201–3210. [Google Scholar] [CrossRef]
- Liang, L.; Huang, C.; Wang, C.; Sun, X.; Yang, M.; Wang, S.; Cheng, Y.; Ning, Y.; Li, J.; Yin, W.; et al. Ultratough conductive graphene/alumina nanocomposites. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106871. [Google Scholar] [CrossRef]
- Liu, J.; Yan, H.; Jiang, K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram. Int. 2013, 39, 6215–6621. [Google Scholar] [CrossRef]
- Cygan, T.; Wozniak, J.; Kostecki, M.; Petrus, M.; Jastrzębska, A.; Ziemkowska, W.; Olszyna, A. Mechanical properties of graphene oxide reinforced alumina matrix composites. Ceram. Int. 2017, 43, 6180–6186. [Google Scholar] [CrossRef]
- Wang, W.L.; Bi, J.Q.; Sun, K.N.; Du, M.; Long, N.N.; Bai, Y.J. Fabrication of alumina ceramic reinforced with boron nitride nanotubes with improved mechanical properties. J. Am. Ceram. Soc. 2011, 94, 3636–3640. [Google Scholar] [CrossRef]
- Wang, W.; Sun, G.; Chen, Y.; Sun, X.; Bi, J. Preparation and mechanical properties of boron nitride nanosheets/alumina composites. Ceram. Int. 2018, 44, 21993–21997. [Google Scholar] [CrossRef]
- Fu, Z.; Wang, N.; Legut, D.; Si, C.; Zhang, Q.; Du, S.; Germann, T.C.; Francisco, J.S.; Zhang, R. Rational design of flexible two-dimensional MXenes with multiple functionalities. Chem. Rev. 2019, 119, 11980–12031. [Google Scholar] [CrossRef]
- Pang, J.; Mendes, R.G.; Bachmatiuk, A.; Zhao, L.; Ta, H.Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M.H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, X.; Jia, D.; Zhou, Y.; van der Zwaag, S. On the formation mechanisms and properties of MAX phases: A review. J. Eur. Ceram. Soc. 2021, 41, 3851–3878. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Wang, H.; Zhang, J.; Yan, H.; Pan, B.; Zhou, J.; Xie, Y. Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al0.25C2. Angew. Chem. 2013, 125, 4457–4461. [Google Scholar] [CrossRef]
- Fei, M.; Lin, R.; Lu, Y.; Zhang, X.; Bian, R.; Chen, J.; Luo, P.; Xu, C.; Cai, D. MXene-reinforced alumina ceramic composites. Ceram. Int. 2017, 43, 17206–17210. [Google Scholar] [CrossRef]
- Cygan, T.; Wozniak, J.; Petrus, M.; Lachowski, A.; Pawlak, W.; Adamczyk-Cieślak, B.; Jastrzębska, A.; Rozmysłowska-Wojciechowska, A.; Wojciechowski, T.; Ziemkowska, W.; et al. Microstructure and mechanical properties of alumina composites with addition of structurally modified 2D Ti3C2 (MXene) phase. Materials 2021, 14, 829. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, C.; Tang, Y.; Luo, Y.; Lou, X.; Que, W. Ti3C2Tx//AC dual-ions hybrid aqueous supercapacitors with high volumetric energy density. Chem. Eng. J. 2020, 393, 124790. [Google Scholar] [CrossRef]
- Yuan, W.; Panigrahi, S.K.; Su, J.Q.; Mishra, R.S. Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy. Scr. Mater. 2011, 65, 994–997. [Google Scholar] [CrossRef]
- Yamamoto, G.; Shirasu, K.; Nozaka, Y.; Wang, W.; Hashida, T. Microstructure-property relationships in pressureless-sintered carbon nanotube/alumina composites. Mater. Sci. Eng. A 2014, 617, 179–186. [Google Scholar] [CrossRef]
- Seidel, J.; Claussen, N.; Rödel, J. Reliability of alumina ceramics: Effect of grain size. J. Eur. Ceram. Soc. 1995, 15, 395–404. [Google Scholar] [CrossRef]
- Zimmermann, A.; Hoffman, M.; Flinn, B.D.; Bordia, R.K.; Chuang, T.J.; Fuller, E.R., Jr.; Rödel, J. Fracture of alumina with controlled pores. J. Am. Ceram. Soc. 1998, 81, 2449–2457. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Zhang, Y.F.; Huang, X.X.; Guo, J.K. Microstructural development and mechanical properties of self-reinforced alumina with CAS addition. J. Eur. Ceram. Soc. 2001, 21, 581–587. [Google Scholar] [CrossRef]
- Xu, L.; Xie, Z.; Gao, L.; Wang, X.; Lian, F.; Liu, T.; Li, W. Synthesis, evaluation and characterization of alumina ceramics with elongated grains. Ceram. Int. 2005, 31, 953–958. [Google Scholar] [CrossRef]
- Lee, K.T.; Cha, S.L.; Kim, K.T.; Lee, K.H.; Hong, S.H. Sintering behavior, microstructural evolution, and mechanical properties of ultra-fine grained alumina synthesized via in-situ spark plasma sintering. Ceram. Int. 2016, 42, 4290–4297. [Google Scholar] [CrossRef]
No. | 3Y-ZrO2 Content (wt%) | Al2O3 Platelet Content (wt%) | MXene Content (wt%) |
---|---|---|---|
A1 | — | — | — |
A2 | 5.0 | — | — |
A3 | 5.0 | — | 1.0 |
A4 | — | 20.0 | — |
A5 | — | 20.0 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Chen, J.; Sun, X.; Sun, G.; Liang, Y.; Bi, J. Influence of Additives on Microstructure and Mechanical Properties of Alumina Ceramics. Materials 2022, 15, 2956. https://doi.org/10.3390/ma15082956
Wang W, Chen J, Sun X, Sun G, Liang Y, Bi J. Influence of Additives on Microstructure and Mechanical Properties of Alumina Ceramics. Materials. 2022; 15(8):2956. https://doi.org/10.3390/ma15082956
Chicago/Turabian StyleWang, Weili, Jianqi Chen, Xiaoning Sun, Guoxun Sun, Yanjie Liang, and Jianqiang Bi. 2022. "Influence of Additives on Microstructure and Mechanical Properties of Alumina Ceramics" Materials 15, no. 8: 2956. https://doi.org/10.3390/ma15082956
APA StyleWang, W., Chen, J., Sun, X., Sun, G., Liang, Y., & Bi, J. (2022). Influence of Additives on Microstructure and Mechanical Properties of Alumina Ceramics. Materials, 15(8), 2956. https://doi.org/10.3390/ma15082956