Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field
Abstract
1. Introduction
2. Approaches to the Fabrication and Control of Magnetic Microrobots
2.1. Main Methods of the Prototyping and Fabrication
2.2. Magnetic Actuation Methods
2.3. Hydrodynamic Performance of the Micro-Objects
3. Fabrication of Magnetic Micro- and Nanoswimmers
3.1. Flexible Polymer Swimmers
3.2. Chains of Magnetic Micro- and Nanoparticles
3.3. Rigid Helical Swimmers
4. Synthesis of Magnetic Biohybrid Robots
5. Bioinspired Elastic Magnetic Limbs
6. Functional Magnetic Cilia and Tactile Sensors
- Moving cilia, which produce movement as they permanently pulsate in a certain direction;
- Non-moving cilia, which usually play the role of sensitive organelles.
7. Conclusions and Prospects for the Future
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Soto, F.; Wang, J.; Ahmed, R.; Demirci, U. Medical micro/nanorobots in precision medicine. Adv. Sci. 2020, 21, 2002203. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, Y.; Mukasa, D.; Pak, O.S.; Gao, W. Medical micro/nanorobots in complex media. Chem. Soc. Rev. 2020, 49, 8088. [Google Scholar] [CrossRef] [PubMed]
- Ummat, A.; Dubey, A.; Mavroidis, C. Biomimetics: Biologically Inspired Technologies; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Stroble, J.K.; Stone, R.B.; Watkins, S.E. An overview of biomimetic sensor technology. Sens. Rev. 2009, 29, 112. [Google Scholar] [CrossRef]
- Lu, L.; Hu, X.; Zhu, Z. Biomimetic sensors and biosensors for qualitative and quantitative analyses of five basic tastes. Trend. Anal. Chem. 2017, 87, 58. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, C.; Wang, X.; Wang, W.; Xi, N.; Liu, L. Development of micro-and nanorobotics: A review. Sci. China Technol. Sci. 2019, 62, 1–20. [Google Scholar] [CrossRef]
- Giri, G.; Maddahi, Y.; Zareinia, K. A Brief Review on Challenges in Design and Development of Nanorobots for Medical Applications. Appl. Sci. 2021, 11, 10385. [Google Scholar] [CrossRef]
- Soler, L.; Sánchez, S. Catalytic nanomotors for environmental monitoring and water remediation. Nanoscale 2014, 6, 7175. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.J.; Kaliakatsos, I.K.; Abbott, J.J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 2010, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Kostarelos, K.; Nelson, B.J.; Zhang, L. Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Adv. Mater. 2021, 33, 2002047. [Google Scholar] [CrossRef]
- Hamdi, M.; Ferreira, A. Desing, Modeling and Characterization of Bio-Nanorobotic Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; p. 158. [Google Scholar]
- Palagi, S.; Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 2018, 3, 113. [Google Scholar] [CrossRef]
- Prinz, V.Y. Three-Dimensional Systems and Nanostructures: Technology, Physics and Applications. Adv. Semicond. Nanostruct. 2017, 463. [Google Scholar] [CrossRef]
- Fritzler, K.B.; Ya, P.V. 3D printing methods for micro-and nanostructures. Phys.-Usp. 2019, 62, 54. [Google Scholar] [CrossRef]
- Seleznev, V.; Prinz, V.Y. Hybrid 3D–2D printing for bone scaffolds fabrication. Nanotechnology 2017, 28, 064004. [Google Scholar] [CrossRef] [PubMed]
- Korneev, I.; Seleznev, V.; Prinz, V.Y. Fabrication and Study of Micro-and Nanostructured Superhydrophobic and Anti-Icing Surfaces. Nanotechnol. Russ. 2017, 12, 485. [Google Scholar] [CrossRef]
- Jang, B.; Wang, W.; Wiget, S.; Petruska, A.J.; Chen, X.; Hu, C.; Hong, A.; Folio, D.; Ferreira, A.; Pané, S. Catalytic locomotion of core–shell nanowire motors. ACS Nano 2016, 10, 9983. [Google Scholar] [CrossRef]
- Hilber, W. Stimulus-active polymer actuators for next-generation microfluidic devices. Appl. Phys. A 2016, 122, 8. [Google Scholar] [CrossRef]
- de Ávila, B.E.-F.; Gao, W.; Karshalev, E.; Zhang, L.; Wang, J. Cell-like micromotors. Acc. Chem. Res. 2018, 51, 1901. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, K.; Zhang, L. Micro/Nanomachines: From Functionalization to Sensing and Removal. Adv. Mater. Technol. 2019, 4, 4. [Google Scholar] [CrossRef]
- Li, J.; de Ávila, B.E.-F.; Gao, W.; Zhang, L.; Wang, J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci. Robot. 2017, 2, 4. [Google Scholar] [CrossRef]
- Xu, K.; Liu, B. Recent progress in actuation technologies of micro/nanorobots. Beilstein J. Nanotechnol. 2021, 12, 756. [Google Scholar] [CrossRef]
- Schmidt, C.K.; Medina-Sánchez, M.; Edmondson, R.J.; Schmidt, O.G. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 2020, 11, 5618. [Google Scholar] [CrossRef] [PubMed]
- Bira, N.; Dhagat, P.; Davidson, J.R. A Review of Magnetic Elastomers and Their Role in Soft Robotics. Front. Robot. AI 2020, 7, 588391. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Tang, W.; Mu, G.; Wang, H.; Chang, X.; Dong, H.; Qi, L.; Zhang, G.; Li, T. Micro-/Nanorobots Propelled by Oscillating Magnetic Fields. Micromachines 2018, 9, 540. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Xu, S.; Wei, F. Recent progress in magnetic applications for micro-and nanorobots. Beilstein J. Nanotechnol. 2021, 12, 744. [Google Scholar] [CrossRef]
- He, Y.; Wang, L.; Zhong, L.; Liu, Y.; Rong, W. Transporting microobjects using a magnetic microrobot at water surfaces. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 108–112. [Google Scholar]
- Schürle, S.; Kratochvil, B.E.; Pane, S.; Arif Zeeshan, M.; Nelson, B.J. Generating Magnetic Fields for Controlling Nanorobots in Medical Applications. In Nanorobotics; Springer: New York, NY, USA, 2013; p. 275. [Google Scholar]
- Mazumder, S.B.G.; Majee, S.B. Applications of nanorobots in medical techniques. IJPSR 2020, 11, 3150. [Google Scholar]
- Wang, Z.; Xu, Z.; Zhu, B.; Zhang, Y.; Lin, J.; Wu, Y.; Wu, D. Design, fabrication and application of magnetically actuated micro/nanorobots: A review. Nanotechnology 2021, 33, 152001. [Google Scholar]
- Chowdhury, S.; Jing, W.; Cappelleri, D.J. Towards Independent Control of Multiple Magnetic Mobile Microrobots. Micromachines 2015, 7, 3. [Google Scholar] [CrossRef]
- Adam, G.; Chowdhury, S.; Guix, M.; Johnson, B.V.; Bi, C.; Cappelleri, D. Towards Functional Mobile Microrobotic Systems. Robotics 2019, 8, 3. [Google Scholar]
- Dzhezherya, Y.I.; Kalita, V.; Cherepov, S.; Skirta, Y.B.; Berezhnaya, L.; Levchenko, G. Anomalous behavior of bending deformation induced by a magnetic field in a system of ferromagnetic stripes located on an elastomer. Smart Mater. Struct. 2019, 28, 125013. [Google Scholar] [CrossRef]
- Rikken, R.S.; Nolte, R.J.; Maan, J.C.; van Hest, J.C.; Wilson, D.A.; Christianen, P.C. Manipulation of micro- and nanostructure motion with magnetic fields. Soft. Matter. 2014, 10, 1295. [Google Scholar]
- Yu, J.; Jin, D.; Chan, K.F.; Wang, Q.; Yuan, K.; Zhang, L. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat. Commun. 2019, 10, 5631. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Hashi, S.; Ishiyama, K. Methodology of dynamic actuation for flexible magnetic actuator and biomimetic robotics application. IEEE Trans. Magn. 2010, 46, 1366. [Google Scholar] [CrossRef]
- Kim, S.H.; Shin, K.; Hashi, S.; Ishiyama, K. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator. Bioinspir. Biomim. 2012, 7, 036007. [Google Scholar] [CrossRef]
- Belharet, K.; Folio, D.; Ferreira, A. Three-dimensional controlled motion of a microrobot using magnetic gradients. Adv. Robot. 2011, 25, 1069. [Google Scholar] [CrossRef]
- Mellal, L.; Folio, D.; Belharet, K.; Ferreira, A. Modeling of optimal targeted therapies using drug-loaded magnetic nanoparticles for liver cancer. IEEE Trans. Nanobiosci. 2016, 15, 265. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.; Wang, J.; Steager, E.; Kumar, V. Control of Multiple Magnetic Micro Robots. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015. [Google Scholar]
- Kantaros, Y.; Johnson, B.V.; Chowdhury, S.; Cappelleri, D.J.; Zavlanos, M.M. Control of Magnetic Microrobot Teams for Temporal Micromanipulation Tasks. IEEE Trans.Robot. 2018, 34, 1472. [Google Scholar] [CrossRef]
- Lee, H.; Liu, Y.; Westervelt, R.M.; Ham, D. IC/Microfluidic Hybrid System for Magnetic Manipulation of Biological Cells. IEEE J. Solid-State Circuits 2006, 41, 14710. [Google Scholar] [CrossRef]
- Choi, H.; Jeong, S.; Lee, C.; Park, B.J.; Ko, S.Y.; Park, J.-O.; Park, S. Three-dimensional swimming tadpole mini-robot using three-axis Helmholtz coils. Int. J. F Control. Autom. Syst. 2014, 12, 662. [Google Scholar] [CrossRef]
- Chen, R.; Folio, D.; Ferreira, A. Mathematical approach for the design configuration of magnetic system with multiple electromagnets. Rob. Auton. Syst. 2021, 135, 103674. [Google Scholar] [CrossRef]
- Koleoso, M.; Feng, X.; Xue, Y.; Li, Q.; Munshi, T.; Chen, X. Micro/Nano-scale magnetic robots for biomedical applications. Mater. Today Bio 2020, 8, 100085. [Google Scholar] [CrossRef]
- Kasimoglu, Y.; Tabakcilar, D.; Guclu, Z.A.; Yamamoto-Nemoto, S.; Tuna, E.B.; Ozen, B.; Tuzuner, T.; Ince, G. Nanomaterials and nanorobotics in dentistry: A review. J. Dent. Indones. 2020, 27, 77. [Google Scholar] [CrossRef]
- Wang, L.; Meng, Z.; Chen, Y.; Zheng, Y. Engineering Magnetic Micro/Nanorobots for Versatile Biomedical Applications. Adv. Intell Syst. 2021, 3, 2000267. [Google Scholar] [CrossRef]
- Chen, R.; Folio, D.; Ferreira, A. Analysis and Comparison of Electromagnetic Microrobotic Platforms for Biomedical Applications. Appl. Sci. 2022, 12, 456. [Google Scholar] [CrossRef]
- Folio, D. Magnetic Microrobotics for Biomedical Applications. Doctoral Dissertation, Université d’Orléans, Orléans, France, 2021. Available online: https://hal.archives-ouvertes.fr/tel-03483203/file/hdr-dfolio-partI.pdf (accessed on 30 October 2022).
- Leon-Rodriguez, H.; Park, S.; Park, J.-O. Assistive Robotics. In Proceedings of the 18th International Conference on CLAWAR, Hangzhou, China, 6–9 September 2015. [Google Scholar]
- Gao, W.; Wang, X. Conceptual design and multifield coupling behavior of magnetically propelled fish-like swimmers. Smart Mater. Struct. 2020, 29, 114007. [Google Scholar] [CrossRef]
- Ilami, M.; Bagheri, H.; Ahmed, R.; Skowronek, E.O.; Marvi, H. Materials, actuators, and sensors for soft bioinspired robots. Adv. Mater. 2021, 33, 2003139. [Google Scholar] [CrossRef] [PubMed]
- Thevenot, J.; Oliveira, H.; Sandre, O.; Lecommandoux, S. Magnetic responsive polymer composite materials. Chem. Soc. Rev. 2013, 42, 7099. [Google Scholar] [CrossRef]
- Wu, S.; Hu, W.; Ze, Q.; Sitti, M.; Zhao, R. Multifunctional magnetic soft composites: A review. Multifunct. Mater. 2020, 3, 4. [Google Scholar] [CrossRef]
- Purkait, M.K.; Sinha, M.K.; Mondal, P.; Singh, R. Stimuli Responsive Polymeric Membranes—Smart Polymeric Membranes; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Song, H.; Spencer, J.; Jander, A.; Nielsen, J.; Stasiak, J.; Kasperchik, V.; Dhagat, P. Inkjet printing of magnetic materials with aligned anisotropy. J. Appl. Phys. 2014, 115, 17. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, J.; Salehizadeh, M.; Onaizah, O.; Diller, E.D. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Sci. Robot. 2019, 4, 12. [Google Scholar]
- Galera, A.C.; San Miguel, V.; Baselga, J. Magneto-Mechanical Surfaces Design. Chem. Rec. 2018, 18, 1010. [Google Scholar] [CrossRef]
- Cho, K.-J.; Koh, J.-S.; Kim, S.; Chu, W.-S.; Hong, Y.; Ahn, S.-H. Review of manufacturing processes for soft biomimetic robots. Int. J. Precis. Eng. Manuf. 2009, 10, 171. [Google Scholar] [CrossRef]
- Wu, S.; Hamel, C.M.; Ze, Q.; Yang, F.; Qi, H.J.; Zhao, R. Evolutionary Algorithm-Guided Voxel-Encoding Printing of Functional Hard-Magnetic Soft Active Materials. Adv. Intell. Syst. 2020, 2, 8. [Google Scholar] [CrossRef]
- Golod, S.V.; Gayduk, A.E.; Kurus, N.N.; Kubarev, V.V.; Prinz, V.Y. 3D micro/nanoshaping of metal strip arrays by direct imprinting for chiral metasurfaces. Nanotechnology 2020, 31, 435302. [Google Scholar] [CrossRef] [PubMed]
- Cheang, U.K.; Kim, M.J. Self-assembly of robotic micro- and nanoswimmers using magnetic nanoparticles. J. Nanopart. Res. 2015, 17, 3. [Google Scholar] [CrossRef]
- Zhang, L.; Abbott, J.J.; Dong, L.; Peyer, K.E.; Kratochvil, B.E. Characterizing the Swimming Properties of Artificial Bacterial Flagella. Nano Lett. 2009, 9, 3663. [Google Scholar] [CrossRef]
- Prinz, V.Y.; Seleznev, V.; Samoylov, V.; Gutakovsky, A. Nanoscale engineering using controllable formation of ultra-thin cracks in heterostructures. Microelectron. Eng. 1996, 30, 439. [Google Scholar]
- Prinz, V.Y.; Seleznev, V.A.; Gutakovsky, A.K.; Chehovskiy, A.V.; Preobrazhenskii, V.V.; Putyato, M.A.; Gavrilova, T.A. Free-standing and overgrown InGaAs = GaAs nanotubes. Phys. E Low Dimens. Syst. Nanostruct. 2000, 6, 828. [Google Scholar] [CrossRef]
- Walker, D.; Käsdorf, B.H.; Jeong, H.H.; Lieleg, O.O.; Fischer, P. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci. Adv. 2015, 1, e1500501. [Google Scholar] [CrossRef]
- Wu, Z.; Troll, J.; Jeong, H.-H.; Wei, Q.; Stang, M.; Ziemssen, F.; Wang, Z.; Dong, M.; Schnichels, S.; Qiu, T. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 2018, 4, eaat4388. [Google Scholar]
- Alcântara CC, J.; Kim, S.; Lee, S.; Jang, B.; Thakolkaran, P.; Kim, J.Y.; Choi, H.; Nelson, B.J.; Pané, S. 3D Fabrication of Fully Iron Magnetic Microrobots. Small 2019, 15, 16. [Google Scholar] [CrossRef]
- De Teresa, J.M.; Fernández-Pacheco, A.; Córdoba, R.; Serrano-Ramón, L.; Sangiao, S.; Ibarra, M.R. Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID). J.Phys. D 2016, 49, 24. [Google Scholar] [CrossRef]
- Zamay, T.N.; Zamay, G.S.; Belyanina, I.V.; Zamay, S.S.; Denisenko, V.V.; Kolovskaya, O.S.; Ivanchenko, T.I.; Grigorieva, V.L.; Garanzha, I.V.; Veprintsev, D.V. Noninvasive microsurgery using aptamer-functionalized magnetic microdisks for tumor cell eradication. Nucleic Acid Ther. 2017, 27, 105. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Zamay, S.; Zamay, T.; Prokopenko, V.; Kolovskaya, O.; Zamay, G.; Princ, V.Y.; Seleznev, V.; Komonov, A.; Spivak, E. The Antitumor Effect of Magnetic Nanodisks and DNA Aptamer Conjugates. Dok. Biochem. Biophys. 2016, 466, 66. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Gao, W.; Wang, X. A novel magneto-mechanical metamaterial cell structure with large, reversible and rapid two-way shape alteration. Smart Mater. Struc. 2021, 30, 035018. [Google Scholar] [CrossRef]
- Park, J.; Jin, C.; Lee, S.; Kim, J.Y.; Choi, H. Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv. Healthc. Mater. 2019, 8, 1900213. [Google Scholar] [CrossRef] [PubMed]
- Khalil, I.S.M.; Dijkslag, H.C.; Abelmann, L.; Misra, S. MagnetoSperm: A microrobot that navigates using weak magnetic fields. Appl. Phys. Lett. 2014, 104, 22. [Google Scholar]
- Jiang, W.; Ye, G.; Chen, B.; Liu, H. A dual-driven biomimetic microrobot based on optical and magnetic propulsion. J. Micromech. Microeng. 2021, 31, 035003. [Google Scholar] [CrossRef]
- Jang, B.; Gutman, E.; Stucki, N.; Seitz, B.F.; Wendel-Garcia, P.D.; Newton, T.; Pokki, J.; Ergeneman, O.; Pane, S.; Or, Y.; et al. Undulatory Locomotion of Magnetic Multilink Nanoswimmers. Nano Lett. 2015, 15, 4829. [Google Scholar]
- Liao, P.; Xing, L.; Zhang, S.; Sun, D. Magnetically driven undulatory microswimmers integrating multiple rigid segments. Small 2019, 15, 1901197. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, D.; Cong, J.; Piao, H.G.; Huang, X.; Xu, Y.; Lu, G.; Pan, L.; Liu, M. Magnetically Powered Annelid-Worm-Like Microswimmers. Small 2018, 14, 1704546. [Google Scholar]
- Li, J.; Sattayasamitsathit, S.; Dong, R.; Gao, W.; Tam, R.; Feng, X.; Ai, S.; Wang, J. Template electrosynthesis of tailored-made helical nanoswimmers. Nanoscale 2014, 6, 9415–9420. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, H.; Yasa, I.C.; Yasa, O.; Tabak, A.F.; Giltinan, J.; Sitti, M. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 2019, 13, 3353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Abott, J.J.; Dong, A.L.; Kratochvil, B.E.; Bell, D.; Nelson, B.J. Artificial bacterial flagella: Fabrication and magnetic control. Appl. Phys. Lett. 2009, 94, 064107. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; Lee, J.; Nelson, B.J.; Zhang, L.; Choi, H. Fabrication and Manipulation of Ciliary Microrobots with Non-reciprocal Magnetic Actuation. Sci. Rep. 2016, 6, 30713. [Google Scholar] [CrossRef]
- Cheang, U.K.; Meshkati, F.; Kim, H.; Lee, K.; Fu, H.C.; Kim, M.J. Versatile microrobotics using simple modular subunits. Sci. Rep. 2016, 6, 30472. [Google Scholar] [CrossRef]
- Chen, W.; Fan, X.; Sun, M.; Xie, H. The cube-shaped hematite microrobot for biomedical application. Mechatronics 2021, 74, 102498. [Google Scholar]
- Yu, S.; Ma, N.; Yu, H.; Sun, H.; Chang, X.; Wu, Z.; Deng, J.; Zhao, S.; Wang, W.; Zhang, G.; et al. Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field. Nanomaterials 2019, 9, 12. [Google Scholar]
- Soto, F.; Chrostowski, R. Frontiers of Medical Micro/Nanorobotics: In vivo Applications and Commercialization Perspectives Toward Clinical Uses. Front. Bioeng. Biotechnol. 2018, 6, 170. [Google Scholar] [CrossRef]
- Erkoc, P.; Yasa, I.C.; Ceylan, H.; Yasa, O.; Alapan, Y.; Sitti, M. Mobile Microrobots for Active Therapeutic Delivery. Adv. Ther. 2019, 2, 1. [Google Scholar] [CrossRef]
- Suhail, M.; Khan, A.; Abdur Rahim, M.; Naeem, A.; Fahad, M.; Badshah, S.F.; Jabar, A.; Janakiraman, A.K. Micro and nanorobot-based drug delivery: An overview. J. Drug Target. 2021, 30, 349–358. [Google Scholar] [CrossRef]
- Peyer, K.E.; Zhang, L.; Nelson, B.J. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 2013, 5, 1259. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Nelson, B.J. Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications. Engineering 2015, 1, 021. [Google Scholar] [CrossRef]
- Prinz, A.; Prinz, V.Y.; Seleznev, V. Semiconductor micro-and nanoneedles for microinjections and ink-jet printing. Microelectron. Eng. 2003, 67, 782. [Google Scholar] [CrossRef]
- Chen, X.-Z.; Hoop, M.; Mushtaq, F.; Siringil, E.; Hu, C.; Nelson, B.J.; Pané, S. Recent developments in magnetically driven micro- and nanorobots. Appl. Mater. Today 2017, 9, 37. [Google Scholar] [CrossRef]
- Belharet, K.; Folio, D.; Ferreira, A. Simulation and planning of a magnetically actuated microrobot navigating in the arteries. IEEE Trans. Biomed. Eng. 2012, 60, 994. [Google Scholar]
- Zhou, H.; Mayorga-Martinez, C.C.; Pané, S.; Zhang, L.; Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 2021, 121, 4999. [Google Scholar] [CrossRef]
- Kim, Y.; Zhao, X. Magnetic Soft Materials and Robots. Chem. Rev. 2022, 122, 5317–5364. [Google Scholar] [CrossRef]
- Honda, T.; Arai, K.I.; Ishiyama, K. Micro Swimming Mechanisms Propelled by External Magnetic Fields. IEEE Trans. Magn. 1996, 32, 5085. [Google Scholar]
- Qiu, T.; Lee, T.C.; Mark, A.G.; Morozov, K.I.; Munster, R.; Mierka, O.; Turek, S.; Leshansky, A.M.; Fischer, P. Swimming by reciprocal motion at low Reynolds number. Nat. Commun. 2014, 5, 5119. [Google Scholar] [CrossRef]
- Xie, F.; Li, Z.; Ding, Y.; Zhong, Y.; Du, R. An experimental study on the fish body flapping patterns by using a biomimetic robot fish. IEEE Robot. Autom. Lett. 2019, 5, 64. [Google Scholar]
- Williams, B.J.; Anand, S.V.; Rajagopalan, J.; Saif, M.T. A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 2014, 5, 3081. [Google Scholar] [CrossRef]
- Mirkovic, T.; Foo, M.L.; Arsenault, A.C.; Fournier-Bidoz, S.; Zacharia, N.S.; Ozin, G.A. Hinged nanorods made using a chemical approach to flexible nanostructures. Nat. Nanotechnol. 2007, 2, 565. [Google Scholar] [CrossRef] [PubMed]
- Gadêlha, H. On the optimal shape of magnetic swimmers. Regul. Chaotic Dyn. 2013, 18, 75. [Google Scholar] [CrossRef]
- Mandal, P.; Ghosh, A. Observation of enhanced diffusivity in magnetically powered reciprocal swimmers. Phys. Rev. Lett. 2013, 111, 248101. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Cheang, U.K.; Martindale, J.D.; Jabbarzadeh, M.; Fu, H.C.; Jun Kim, M. Bacteria-inspired nanorobots with flagellar polymorphic transformations and bundling. Sci. Rep. 2017, 7, 14098. [Google Scholar] [CrossRef]
- Zhang, J.; Diller, E. Millimeter-Scale Magnetic Swimmers Using Elastomeric Undulations. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015. [Google Scholar]
- Manamanchaiyaporn, L.; Xu, T.; Wu, X. Magnetic Soft Robot With the Triangular Head–Tail Morphology Inspired By Lateral Undulation. IEEE/ASME Trans. Mechatron. 2020, 25, 2688. [Google Scholar] [CrossRef]
- Qi, S.; Guo, H.; Fu, J.; Xie, Y.; Zhu, M.; Yu, M. 3D printed shape-programmable magneto-active soft matter for biomimetic applications. Compos. Sci. Technol. 2020, 188, 107973. [Google Scholar] [CrossRef]
- Zhang, J.; Diller, E. Untethered miniature soft robots: Modeling and design of a millimeter-scale swimming magnetic sheet. Soft Robot. 2018, 5, 761. [Google Scholar] [CrossRef]
- Lum, G.Z.; Ye, Z.; Dong, X.; Marvi, H.; Erin, O.; Hu, W.; Sitti, M. Shape-programmable magnetic soft matter. Proc. Natl. Acad. Sci. USA 2016, 113, E6007. [Google Scholar] [CrossRef]
- Niu, H.; Feng, R.; Xie, Y.; Jiang, B.; Sheng, Y.; Yu, Y.; Baoyin, H.; Zeng, X. MagWorm: A Biomimetic Magnet Embedded Worm-Like Soft Robot. Soft Robot. 2021, 8, 507. [Google Scholar] [CrossRef]
- Shinoda, H.; Azukizawa, S.; Maeda, K.; Tsumori, F. Bio-Mimic Motion of 3D-Printed Gel Structures Dispersed with Magnetic Particles. J. Electrochem. Soc. 2019, 166, B3235. [Google Scholar] [CrossRef]
- Zhan, X.; Fang, H.; Xu, J.; Wang, K.-W. Planar locomotion of earthworm-like metameric robots. Int. J. Robot. Res. 2019, 38, 1751. [Google Scholar] [CrossRef]
- Joyee, E.B.; Pan, Y. A fully three-dimensional printed inchworm-inspired soft robot with magnetic actuation. Soft Robot. 2019, 6, 333. [Google Scholar] [CrossRef] [PubMed]
- Schüler, D. Magnetoreception and Magnetosomes in Bacteria; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; p. 327. [Google Scholar]
- Shaw, J.; Boyd, A.; House, M.; Woodward, R.; Mathes, F.; Cowin, G.; Saunders, M.; Baer, B. Magnetic particle-mediated magnetoreception. J. R. Soc. Interface 2015, 12, 0499. [Google Scholar] [CrossRef] [PubMed]
- Klem, M.T.; Young, M.; Douglas, T. Biomimetic magnetic nanoparticles. Mater. Today 2005, 8, 28. [Google Scholar] [CrossRef]
- Ahmed, D.; Sukhov, A.; Hauri, D.; Rodrigue, D.; Maranta, G.; Harting, J.; Nelson, B.J. Bioinspired acousto-magnetic microswarm robots with upstream motility. Nat. Mach. Intell. 2021, 3, 116. [Google Scholar] [PubMed]
- Cabanach, P.; Pena-Francesch, A.; Sheehan, D.; Bozuyuk, U.; Yasa, O.; Borros, S.; Sitti, M. Zwitterionic 3D-Printed Non-Immunogenic Stealth Microrobots. Adv. Mater. 2020, 32, e2003013. [Google Scholar] [CrossRef]
- Seleznev, V.; Yamaguchi, H.; Hirayama, Y.; Prinz, V. Single-turn GaAs/InAs nanotubes fabricated using the supercritical CO2 drying technique. Jpn. J.Appl. Phys. 2003, 42, L791. [Google Scholar] [CrossRef]
- Zhang, L.; Ruh, E.; Grutzmacher, D. Anomalous Coiling of SiGe/Si and SiGe/Si/Cr Helical Nanobelts. Nano Lett. 2006, 6, 1311. [Google Scholar] [CrossRef]
- Ghosh, A.; Fische, P. Controlled Propulsion of Artificial Magnetic Nanostructured Propellers. Nano Lett. 2009, 9, 2243. [Google Scholar] [CrossRef]
- Streubel, R.; Fischer, P.; Kronast, F.; Kravchuk, V.P.; Sheka, D.D.; Gaididei, Y.; Schmidt, O.G.; Makarov, D. Magnetism in curved geometries. J. Phys. D Appl. Phys. 2016, 49, 36. [Google Scholar] [CrossRef]
- Vorob’ev, A.; Chesnitskiy, A.; Toropov, A.; Prinz, V. Three-axis Hall transducer based on semiconductor microtubes. Appl. Phys. Lett. 2013, 103, 173513. [Google Scholar] [CrossRef]
- Chesnitskiy, A.; Mikhantiev, E. The detection limit of curved InGaAs/AlGaAs/GaAs hall bars. Russ. Microelectron. 2016, 45, 105. [Google Scholar] [CrossRef]
- Mönch, I.; Makarov, D.; Koseva, R.; Baraban, L.; Karnaushenko, D.; Kaiser, C.; Arndt, K.-F.; Schmidt, O.G. Rolled-up magnetic sensor: Nanomembrane architecture for in-flow detection of magnetic objects. ACS Nano 2011, 5, 7436. [Google Scholar] [CrossRef]
- Smith, E.J.; Makarov, D.; Sanchez, S.; Fomin, V.M.; Schmidt, O.G. Magnetic microhelix coil structures. Phys. Rev. Lett. 2011, 107, 097204. [Google Scholar] [CrossRef] [PubMed]
- Tottori, S.; Nelson, B.J. Artificial helical microswimmers with mastigoneme-inspired appendages. Biomicrofluidics 2013, 7, 61101. [Google Scholar] [CrossRef]
- Tiantian, X.; Gilgueng, H.; Andreff, N.; Regnier, S. The rotational propulsion characteristics of scaled-up helical microswimmers with different heads and magnetic positioning. In Proceedings of the 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, NSW, Australia, 9–12 July 2013; Volume 1, p. 1114. [Google Scholar]
- Hwang, G.; Haliyo, S.; Régnier, S. Remotely powered propulsion of helical nanobelts. Robot. Sci. Syst. 2010. [CrossRef]
- Tottori, S.; Zhang, L.; Qiu, F.; Krawczyk, K.K.; Franco-Obregon, A.; Nelson, B.J. Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv. Mater. 2012, 24, 811. [Google Scholar] [CrossRef]
- Lester, B.T.; Baxevanis, T.; Chemisky, Y.; Lagoudas, D.C. Review and perspectives: Shape memory alloy composite systems. Acta Mech. 2015, 226, 3907. [Google Scholar] [CrossRef]
- Santosh, S.; Thomas, J.; Pavithran, M.; Nithyanandh, G.; Ashwath, J. An experimental analysis on the influence of CO2 laser machining parameters on a copper-based shape memory alloy. Opt. Laser Technol. 2022, 153, 108210. [Google Scholar] [CrossRef]
- Santosh, S.; Nithyanandh, G.; Ashwath, J.; Lalith Kishore, K. Comparison of internal friction measurements on Ni-Ti reinforced smart composites prepared by additive manufacturing. J. Alloys Compd. 2022, 924, 166027. [Google Scholar]
- Jinsong, L.; Xin, L.; Yanju, L.; Shanyi, D. Shape-memory polymers and their composites: Stimulus methods and applications. Prog. Mater. Sci. 2011, 56, 1077. [Google Scholar]
- Zhao, F.; Rong, W.; Wang, L.; Sun, L. Magnetic Actuated Shape-memory Helical Microswimmers with Programmable Recovery Behaviors. J. Bionic Eng. 2021, 18, 799. [Google Scholar]
- Migliavacca, F.; Petrini, L.; Massarotti, P.; Schievano, S.; Auricchio, F.; Dubini, G. Stainless and shape memory alloy coronary stents: A computational study on the interaction with the vascular wall. Biomech. Model Mechanobiol. 2004, 2, 205. [Google Scholar] [CrossRef]
- Nan, A.; Turcu, R.; Tudoran, C.; Sofronie, M.; Chiriac, A. Analysis of Functionalized Ferromagnetic Memory Alloys from the Perspective of Developing a Medical Vascular Implant. Polymers 2022, 14, 1397. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, S.; Xi, W.; Solovev, A.A.; Soler, L.; Magdanz, V.; Schmidt, O.G. Tubular Micro-Nanorobots: Smart Design for Bio-Related Applications Workshop at the IEEE International Conference on Robotics and Automation; Springer: Berlin/Heidelberg, Germany, 2014; pp. 16–27. [Google Scholar]
- Sanchez, M.; Schwarz, M.; Meyer, L.; Hebenstreit, A.K.; Schmidt, O.G. Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors. Nano Lett. 2016, 16, 555. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; Magdanz, V.; Guix, M.; Fomin, V.; Schmidt, O. Swimming Microrobots: Soft, Reconfigurable, and Smart. Adv. Funct. Mater. 2018, 28, 25. [Google Scholar]
- Xiaohui, Y.; Qi, Z.; Vi, M.; Yan, D.; Yu, J.; Xu, J.; Xu, T.; Tang, T.; Bian, L. Multifunctional biohybrid magnetite microrobots for imagingguided therapy. Sci. Robot. 2017, 2, 1. [Google Scholar]
- Goyal, G.; Bhakta, S.; Mishra, P. Surface Molecularly Imprinted Biomimetic Magnetic Nanoparticles for Enantioseparation. ACS Appl. Nano Mater. 2019, 2, 6747. [Google Scholar]
- Blaney, L. Magnetite (Fe3O4)—Properties Synthesis and Applications. Lehigh Rev. 2007, 15, 5. [Google Scholar]
- Pala, R.; Mohieldin, A.M.; Sherpa, R.T.; Kathem, S.H.; Shamloo, K.; Luan, Z.; Zhou, J.; Zheng, J.G.; Ahsan, A.; Nauli, S.M. Ciliotherapy: Remote Control of Primary Cilia Movement and Function by Magnetic Nanoparticles. ACS Nano 2019, 13, 3555. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Angsantikul, P.; Liu, W.; de Ávila, B.E.-F.; Chang, X.; Sandraz, E.; Liang, Y.; Zhu, S.; Zhang, Y.; Chen, C. Biomimetic Platelet-Camouflaged Nanorobots for Binding and Isolation of Biological Threats. Adv. Mater. 2018, 30, 1704800. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Sebastian, A.; Gwak, S.J.; Kim, S.H. Multimodal Locomotion and Active Targeted Thermal Control of Magnetic Agents for Biomedical Applications. Adv. Sci. 2022, 9, 2103863. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, M.; Yang, Y.; Huang, Q.; Fukuda, T.; Wang, Z.; Shen, Y. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat. Commun. 2018, 9, 3944. [Google Scholar] [CrossRef]
- Venkiteswaran, V.K.; Tan, D.K.; Misra, S. Tandem actuation of legged locomotion and grasping manipulation in soft robots using magnetic fields. Adv. Mater. 2020, 41, 101023. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, J.; Fu, X.; Zhang, D.; Zhao, Y. Tailoring Flexible Arrays for Artificial Cilia Actuators. Adv. Intell. Syst. 2021, 3, 2000225. [Google Scholar] [CrossRef]
- Sahadevan, V.; Panigrahi, B.; Chen, C.Y. Microfluidic Applications of Artificial Cilia: Recent Progress, Demonstration, and Future Perspectives. Micromachines 2022, 13, 735. [Google Scholar] [CrossRef]
- Jia, X.; Wang, W.; Han, Q.; Wang, Z.; Jia, Y.; Hu, Z. Micromixer Based Preparation of Functionalized Liposomes and Targeting Drug Delivery. ACS Med. Chem. Lett. 2016, 7, 429. [Google Scholar] [CrossRef]
- Ben, S.; Tai, J.; Ma, H.; Peng, Y.; Zhang, Y.; Tian, D.; Liu, K.; Jiang, L. Cilia-Inspired Flexible Arrays for Intelligent Transport of Viscoelastic Microspheres. Adv. Funct. Mater. 2018, 28, 16. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, L.; Ye, G.; Chen, B.; Yin, L.; Shi, Y.; Liu, H. Biomimetic magnetic-responsive cilia-like soft device: Surface energy control and external field actuation. J. Mater. Sci. Mater. Electron. 2019, 30, 3767. [Google Scholar] [CrossRef]
- Timonen, J.V.; Johans, C.; Kontturi, K.; Walther, A.; Ikkala, O.; Ras, R.H. A facile template-free approach to magnetodriven, multifunctional artificial cilia. ACS Appl. Mater. Interfaces 2010, 2, 2226. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, Y.; Wyss, H.; Anderson, P.; den Toonder, J. Out of the cleanroom, self-assembled magnetic artificial cilia. Lab Chip 2013, 13, 3360. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Ni, Y.; Zhou, Q.; Lu, C.; Kou, J.; Xu, Z. Design of inner-motile ZnO@TiO2 mushroom arrays on magnetic cilia film with enhanced photocatalytic performance. J. Photochem. Photobiol. A 2017, 332, 150. [Google Scholar] [CrossRef]
- Luo, Z.; Evans, B.A.; Chang, C.H. Magnetically Actuated Dynamic Iridescence Inspired by the Neon Tetra. ACS Nano 2019, 13, 4657. [Google Scholar] [CrossRef]
- Chesnitskiy, A.V.; Gayduk, A.E.; Prinz, V.Y. Transverse magneto-optical Kerr effect in strongly coupled plasmon gratings. Plasmonics 2018, 13, 885. [Google Scholar] [CrossRef]
- Gayduk, A.E.; Prinz, V.Y.; Seleznev, V.A.; Rechkunov, S.N. Large-area multilayer infrared nano-wire grid polarizers. Infrared Phys. Technol. 2016, 75, 77. [Google Scholar] [CrossRef]
- Golod, S.V.; Seyfi, V.A.; Buldygin, A.F.; Gayduk, A.E.; Prinz, V.Y. Large-Area 3D-Printed Chiral Metasurface Composed of Metal Helices. Adv. Opt. Mater. 2018, 6, 1800424. [Google Scholar] [CrossRef]
- Semchenko, I.V.; Khakhomov, S.A.; Asadchy, V.; Golod, S.; Naumova, E.; Prinz, V.Y.; Goncharenko, A.; Sinitsyn, G.; Lyakhnovich, A.; Malevich, V. Investigation of electromagnetic properties of a high absorptive, weakly reflective metamaterial—Substrate system with compensated chirality. J. Appl. Phys. 2017, 121, 015108. [Google Scholar] [CrossRef]
- Vukusic, P.; Sambles, J.R. Photonic structures in biology. Nature 2003, 424, 852. [Google Scholar] [CrossRef]
- Didari, A.; Mengüç, M.P. A biomimicry design for nanoscale radiative cooling applications inspired by Morpho didius butterfly. Sci. Rep. 2018, 8, 16891. [Google Scholar] [CrossRef]
- Zyla, G.; Kovalev, A.; Heisterkamp, S.; Esen, C.; Gurevich, E.L.; Gorb, S.; Ostendorf, A. Biomimetic structural coloration with tunable degree of angle-independence generated by two-photon polymerization. Opt. Mater. Express 2019, 9, 2630. [Google Scholar] [CrossRef]
- Barrera-Patiño, C.; Vollet-Filho, J.; Teixeira-Rosa, R.; Quiroz, H.; Dussan, A.; Inada, N.; Bagnato, V.; Rey-González, R. Photonic effects in natural nanostructures on Morpho cypris and Greta oto butterfly wings. Sci. Rep. 2020, 10, 5786. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Santos, T.A.P. Sensors and biosensors based on magnetic nanoparticles. Trends Anal. Chem. 2014, 62, 28. [Google Scholar]
- Schroeder, P.; Schotter, J.; Shoshi, A.; Eggeling, M.; Bethge, O.; Hutten, A.; Bruckl, H. Artificial cilia of magnetically tagged polymer nanowires for biomimetic mechanosensing. Bioinspir. Biomim. 2011, 6, 046007. [Google Scholar] [CrossRef]
- Alfadhel, A.; Kosel, J. Magnetic Nanocomposite Cilia Tactile Sensor. Adv. Mater. 2015, 27, 7888. [Google Scholar]
- Alfadhel, A.; Khan, M.A.; Cardoso, S.; Leitao, D.; Kosel, J. A Magnetoresistive Tactile Sensor for Harsh Environment Applications. Sensors 2016, 16, 5. [Google Scholar]
- Liu, D.; Liu, X.; Chen, Z.; Zuo, Z.; Tang, X.; Huang, Q.; Arai, T. Magnetically Driven Soft Continuum Microrobot for Intravascular Operations in Microscale. Cyborg Bionic Syst. 2022. [CrossRef]
- Subendran, S.; Wang, C.F.; Loganathan, D.; Lu, Y.H.; Chen, C.Y. An aquatic microrobot for microscale flow manipulation. Sci. Rep. 2022, 12, 1. [Google Scholar]
- Gong, D.; Celi, N.; Zhang, D.; Cai, J. Magnetic Biohybrid Microrobot Multimers Based on Chlorella Cells for Enhanced Targeted Drug Delivery. ACS Appl. Mater. Interfaces 2022, 14, 6320. [Google Scholar]
- Wu, Z.; Zhang, Y.; Ai, N.; Chen, H.; Ge, W.; Xu, Q. Magnetic Mobile Microrobots for Upstream and Downstream Navigation in Biofluids with Variable Flow Rate. Adv. Intell. Syst. 2022, 2100266. [Google Scholar] [CrossRef]
- Liu, J.; Yu, S.; Xu, B.; Tian, Z.; Zhang, H.; Liu, K.; Shi, X.; Zhao, Z.; Liu, C.; Lin, X.; et al. Magnetically propelled soft microrobot navigating through constricted microchannels. Appl. Mater. Today 2021, 25, 101237. [Google Scholar] [CrossRef]
- Li, S.; Liu, D.; Hu, Y.; Su, Z.; Zhang, X.; Guo, R.; Li, D.; Lu, Y. Soft Magnetic Microrobot Doped with Porous Silica for Stability-Enhanced Multimodal Locomotion in a Nonideal Environment. ACS Appl. Mater. Interfaces 2022, 14, 10856. [Google Scholar] [CrossRef] [PubMed]
- Wavhale, R.D.; Dhobale, K.D.; Rahane, C.S.; Chate, G.P.; Tawade, B.V.; Patil, Y.N.; Gawade, S.S.; Banerjee, S.S. Water-powered self-propelled magnetic nanobot for rapid and highly efficient capture of circulating tumor cells. Commun. Chem. 2021, 4, 1. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Han, Y.; Gong, X. Micro/Nanorobots for Medical Diagnosis and Disease Treatment. Micromachines 2022, 13, 648. [Google Scholar] [CrossRef]
- Lee, H.; Lee, D.; Jeon, S. A Two-Dimensional Manipulation Method for a Magnetic Microrobot with a Large Region of Interest Using a Triad of Electromagnetic Coils. Micromachines 2022, 13, 416. [Google Scholar] [CrossRef] [PubMed]
- Rechkunov, S.; Prinz, A.; Seleznev, V.; Golod, S.; Soots, R.; Ivanov, A.; Ratushnyak, A.; Prinz, V.Y. Neurointerfaces: Review and development. Russ. J. Genet. Appl. Res. 2015, 5, 552. [Google Scholar] [CrossRef]
- Prinz, V.Y.; Mutilin, S.V.; Yakovkina, L.V.; Gutakovskii, A.K.; Komonov, A.I. A new approach to the fabrication of VO2 nanoswitches with ultra-low energy consumption. Nanoscale 2020, 12, 3443. [Google Scholar] [CrossRef]
- Mirzaali, M.J.; Moosabeiki, V.; Rajaa, S.M.; Zhou, J.; Zadpoor, A.A. Additive Manufacturing of Biomaterials—Design Principles and Their Implementation. Materials 2022, 15, 5457. [Google Scholar] [CrossRef]
- Kim, J.W.; Lee, J.B.; Koh, Y.H.; Kim, H.E. Digital light processing of freeze-cast ceramic layers for macroporous calcium phosphate scaffolds with tailored microporous frameworks. Materials 2019, 12, 2893. [Google Scholar] [CrossRef]
Type | Body Length, μm | Maximum Speed, μm/s | Non-Dimensional Speed, Body Lengths per Second | Reference |
---|---|---|---|---|
Biological Micromotors | ||||
Bovine sperm | 30 ÷ 80 | 10 ÷ 70 | ~1 | - |
Flagellate bacteria | 3 ÷ 15 | 20 ÷ 200 | ~20 | - |
Infusoria slipper | 100 ÷ 300 | 2000 | 7 ÷ 20 | - |
Magnetic Microrobots and Micromotors | ||||
Single-link flexible swimmer | 322 | 158 | 0.5 | Khalil et al. (2014) [74] |
Fish-like microrobot | 90 | 220 | 2.4 | Jiang et al.(2021) [75] |
Multilink flexible swimmer | 15.5 | 14 | 0.9 | Jang et al. (2015) [76] |
Multilink-eel-like swimmer | 120 | 25 | 0.2 | Liao et al. (2019) [77] |
Annelid-worm-like microswimmer | 20 | 100 | 5 | Liu et al. (2018) [78] |
Helical nanoswimmer | 3 | 15 | 5 | Li et al. (2014) [79] |
Biodegradable microswimmer | 20 | 3.5 | 0.2 | Ceylan et al. (2019) [80] |
Degradable hyperthermia microrobot | 120 | 114 | 1 | Palagi et al. (2019) [73] |
Rigid helical swimmer | 38 | 1.8 | 0.05 | Zhang et al. (2009) [81] |
Ciliated microrobot | 220 | 340 | 1.6 | Kim et al. (2016) [82] |
Magnetic microparticle chains | 57 | 18 | 0.3 | Cheang et al. (2016) [83] |
Magnetic nanoparticle chains | 2.8 | 9.8 | 3.5 | Cheang et al. (2015) [62] |
Cube-shaped microrobot | 2 | 20.8 | 10.4 | Chen et al. (2021) [84] |
Janus microdimers | 10 | 133 | 13.3 | Yu et al. (2019) [85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chesnitskiy, A.V.; Gayduk, A.E.; Seleznev, V.A.; Prinz, V.Y. Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field. Materials 2022, 15, 7781. https://doi.org/10.3390/ma15217781
Chesnitskiy AV, Gayduk AE, Seleznev VA, Prinz VY. Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field. Materials. 2022; 15(21):7781. https://doi.org/10.3390/ma15217781
Chicago/Turabian StyleChesnitskiy, Anton V., Alexey E. Gayduk, Vladimir A. Seleznev, and Victor Ya Prinz. 2022. "Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field" Materials 15, no. 21: 7781. https://doi.org/10.3390/ma15217781
APA StyleChesnitskiy, A. V., Gayduk, A. E., Seleznev, V. A., & Prinz, V. Y. (2022). Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field. Materials, 15(21), 7781. https://doi.org/10.3390/ma15217781