Synthesis of Three-Dimensional Carbon Nanosheets and Its Flux Pinning Mechanisms in C-Doped MgB2 Superconductors
Abstract
1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pęczkowski, P.; Łuszczek, M.; Szostak, E.; Muniraju, N.K.C.; Krztoń-Maziopa, A.; Gondek, Ł. Superconductivity and appearance of negative magnetocaloric effect in Ba1–xKxBiO3 perovskites, doped by Y, La and Pr. Acta Mater. 2022, 222, 137437. [Google Scholar] [CrossRef]
- Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 2001, 410, 63–64. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Patnaik, S.; Braccini, V.; Kim, K.H.; Mielke, C.; Song, X.; Cooley, L.D.; Bu, S.D.; Kim, D.M.; Choi, J.H.; et al. Very high upper critical fields in MgB2 produced by selective tuning of impurity scattering. Supercond. Sci. Technol. 2004, 17, 278–280. [Google Scholar] [CrossRef]
- Finnemore, D.K.; Ostenson, J.E.; Bud’ko, S.L.; Lapertot, G.; Canfield, P.C. Thermodynamic and transport properties of superconducting Mg10B2. Phys. Rev. Lett. 2001, 86, 2420. [Google Scholar] [CrossRef] [PubMed]
- Dadiel, J.L.; Naik, S.P.K.; Pęczkowski, P.; Sugiyama, J.; Ogino, H.; Sakai, N.; Kazuya, Y.; Warski, T.; Wojcik, A.; Oka, T.; et al. Synthesis of Dense MgB2 Superconductor via In Situ and Ex Situ Spark Plasma Sintering Method. Materials 2021, 14, 7395. [Google Scholar] [CrossRef]
- Çiçek, Ö.; Yakinci, K. Enhanced superconducting properties of multi-wall carbon nanotubes added YBCO-123 Superconducting System. J. Mol. Struct. 2020, 1211, 1228089. [Google Scholar] [CrossRef]
- Patel, P.; Maeda, M.; Choi, S.; Kim, S.J.; Shahabuddin, M.; Parakandy, J.M.; Hossain, M.S.A.; Kim, J.H. Multiwalled carbon nanotube-derived superior electrical, mechanical and thermal properties in MgB2 wires. Scr. Mater. 2014, 88, 13–16. [Google Scholar] [CrossRef]
- Anas, M.; Ebrahim, S.; Eldeen, I.G.; Awad, R.; Abou-Aly, A.I. Effect of single and multi-wall carbon nanotubes on the mechanical properties of Gd-123 superconducting phase. Chem. Phys. Lett. 2017, 686, 34–43. [Google Scholar] [CrossRef]
- Dou, S.X.; Shcherbakova, O.; Yeoh, W.K.; Kim, J.H.; Soltanian, S.; Wang, X.L.; Senatore, C.; Flukiger, R.; Dhalle, M.; Husnjak, O.; et al. Mechanism of enhancement in electromagnetic properties of MgB2 by nano SiC doping. Phys. Rev. Lett. 2007, 98, 139902. [Google Scholar] [CrossRef]
- Yeoh, W.K.; Kim, J.H.; Horvat, J.; Xu, X.; Qin, M.J.; Dou, S.X.; Jiang, C.H.; Nakane, T.; Kumakura, H.; Munroe, P. Control of nano carbon substitution for enhancing the critical current density in MgB2. Supercond. Sci. Technol. 2006, 19, 596–599. [Google Scholar] [CrossRef]
- Dou, S.X.; Yeoh, W.K.; Horvat, J.; Ionescu, M. Effect of carbon nanotube doping on critical current density of MgB2 superconductor. Appl. Phys. Lett. 2003, 83, 4996–4998. [Google Scholar] [CrossRef]
- Gao, Z.S.; Ma, Y.W.; Zhang, X.P.; Wang, D.L. Influence of oxygen contents of carbohydrate dopants on connectivity and critical current density in MgB2 tapes. Appl. Phys. Lett. 2007, 91, 162504. [Google Scholar] [CrossRef]
- Zhang, X.P.; Wang, D.L.; Gao, Z.S.; Wang, L.; Qi, Y.P.; Zhang, Z.Y.; Ma, Y.W.; Awaji, S.; Nishijima, G.; Watanabe, K.; et al. Doping with a special carbohydrate, C9H11NO, to improve the J(c)-B properties of MgB2 tapes. Supercond. Sci. Technol. 2010, 23, 025024. [Google Scholar] [CrossRef]
- Kim, J.H.; Zhou, S.; Hossain, M.S.A.; Pan, A.V.; Dou, S.X. Carbohydrate doping to enhance electromagnetic properties of MgB2 superconductors. Appl. Phys. Lett. 2006, 89, 142505. [Google Scholar] [CrossRef]
- Zhou, S.; Pan, A.V.; Wexler, D.; Dou, S.X. Sugar coating of boron powder for efficient carbon doping of MgB2 with enhanced current-carrying performance. Adv. Mater. 2007, 19, 1373–1376. [Google Scholar] [CrossRef]
- Li, C.Y.; Suo, H.L.; Liu, M.; Ma, L.; Wang, Y.; Tian, M.; Wan, B.C.; Cui, J.; Ji, Y.T. Effect of malonic acid and of different doping methods on the superconducting properties of MgB2 superconductors. Phys. C Supercond. 2018, 555, 60–65. [Google Scholar] [CrossRef]
- Xu, X.; Dou, S.X.; Wang, X.L.; Kim, J.H.; Stride, J.A.; Choucair, M.; Yeoh, W.K.; Zheng, R.K.; Ringer, S.P. Graphene doping to enhance the flux pinning and supercurrent carrying ability of a magnesium diboride superconductor. Supercond. Sci. Technol. 2010, 23, 085003. [Google Scholar] [CrossRef]
- De Silva, K.S.B.; Xu, X.; Li, W.X.; Zhang, Y.; Rindfleisch, M.; Tomsic, M. Improving superconducting properties of MgB2 by graphene doping. IEEE Trans. Appl. Supercond. 2011, 21, 2686–2689. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Zhao, Y.; Zhang, Y. The Comparison of graphene and reduced graphene oxide added to MgB2 prepared by diffusion method. IEEE Trans. Appl. Supercond. 2019, 29, 6800605. [Google Scholar] [CrossRef]
- Savaskan, B.; Koparan, E.T.; Celik, S.; Ozturk, K.; Yanmaz, E. Investigation on the levitation force behaviour of malic acid added bulk MgB2 superconductors. Phys. C Supercond. 2014, 502, 63–69. [Google Scholar] [CrossRef]
- Çakır, B.; Taylan Koparan, E.; Savaşkan, B. Relationship between pinning mechanism and excess conductivity analysis of x wt% C4H6O5 (x = 0.0, 4.0, and 6.0)-added bulk MgB2. J. Mater. Sci: Mater. Electron. 2021, 32, 20317–20326. [Google Scholar] [CrossRef]
- Barua, S.; Hossain, M.S.; Ma, Z.Q.; Dipak, P.; Mustapic, M.; Somer, M.; Acar, S.; Kokal, I.; Morawski, A.; Cetner, T.; et al. Superior critical current density obtained in MgB2 bulks through low-cost carbon-encapsulated boron powder. Scr. Mater. 2015, 104, 37–40. [Google Scholar] [CrossRef]
- Kim, J.H.; Oh, S.J.; Kumakura, K.; Matsumoto, A.; Heo, Y.-U.; Song, K.-S.; Kang, Y.M.; Maeda, M.; Rindfleisch, M.; Tomsic, M.; et al. Tailored materials for high-performance MgB2 wire. Adv. Mater. 2011, 23, 4942–4946. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Liu, Y.C.; Ma, Z.Q.; Yu, L. Comparison of carbon-doped MgB2 bulks fabricated from pre-synthesized Mg/CNT and Mg/amorphous carbon composites. Appl. Phys. A 2001, 114, 919–924. [Google Scholar] [CrossRef]
- Li, W.X.; Kang, J.X.; Liu, Y.; Zhu, M.Y.; Li, Y.; Qu, J.T.; Zhang, R.K.; Xu, J.Y.; Liu, B. Extrinsic two-dimensional flux pinning centers in MgB2 superconductors induced by graphene-coated boron. ACS Appl. Mater. Interfaces 2019, 11, 10818–10828. [Google Scholar] [CrossRef]
- Zhao, Q.; Jiao, C.J.; Zhu, Z.; Chen, Z.; Cui, S.H. In-situ synthesis of carbon capsulated Ni nanoparticles and their cooperative doping effects on superconducting properties of MgB2. J. Alloys Compd. 2016, 682, 441–446. [Google Scholar] [CrossRef]
- Sandu, V.; Aldica, G.; Popa, S.; Badica, P.; Cimpoiasu, E.; Dumitrache, F.; Sandu, E. Transport properties of superconducting MgB2 composites with carbon-encapsulated Fe nanospheres. J. Appl. Phys. 2011, 110, 123921. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, C.S.; Liu, E.Z.; He, F.; Ma, L.Y.; Li, Q.Y.; Li, J.J.; Bacsa, W.; Zhao, N.Q.; He, C.N. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network. Nanoscale 2017, 9, 11929–11938. [Google Scholar] [CrossRef]
- Qin, J.; Wang, T.S.; Liu, D.Y.; Liu, E.Z.; Zhao, N.Q.; Shi, C.S.; He, F.; Ma, L.Y.; He, C.N. A Top-Down strategy toward SnSb In-Plane nanoconfined 3D N-Doped porous graphene composite microspheres for high performance Na-Ion battery anode. Adv. Mater. 2018, 30, 1704670. [Google Scholar] [CrossRef]
- Liu, Z.N.; He, F.; Shi, C.S. Synthesis of interconnected carbon nanosheets anchored with Fe3O4 nanoparticles as broadband electromagnetic wave absorber. Chem. Phys. Lett. 2019, 716, 221–226. [Google Scholar] [CrossRef]
- Bean, C.P. Magnetization of hard superconductors. Phys. Rev. Lett. 1962, 8, 250–253. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Avdeev, M.; Jorgensen, J.D.; Ribeiro, R.A.; Budko, S.L.; Canfield, P.C. Crystal chemistry of carbon-substituted MgB2. Phys. C Supercond. 2003, 387, 301. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, Y.C.; Ma, Z.Q.; Cardwell, D.A. Fishtail effects and improved critical current density in polycrystalline bulk MgB2 containing carbon nanotubes. Phys. C Supercond. 2013, 492, 6–10. [Google Scholar] [CrossRef]
- Cai, Q.; Ma, Z.Q.; Liu, Y.C.; Yu, L.M. Enhancement of critical current density in glycine-doped MgB2 bulks. Mater. Chem. Phys. 2012, 136, 778–782. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, Y.C.; Ma, Z.Q.; Yu, L.M. Superconducting properties and growth mechanism of layered structure in MgB2 bulks with Cu/Y2O3 co-doping. J. Mater.Sci. Mater. Electron. 2013, 24, 1452–1457. [Google Scholar] [CrossRef]
- Jiao, C.J.; Zhao, Q.; Wang, L. Effect of graphene doping on the microstructure and properties of MgB2 bulk. J. Fun. Mater. 2017, 48, 11138–11140, 11146. [Google Scholar] [CrossRef]
- Martínez, E.; Mikheenko, P.; Martínez-López, M.; Millán, A.; Bevan, A.; Abell, J.S. Flux pinning force in bulk MgB2 with variable grain size. Phys. Rev. B 2007, 75, 134515. [Google Scholar] [CrossRef]
- Dew-Hughes, D. The role of grain boundaries in determining Jc in high-field high current superconductors. Philos. Mag. Part B 1987, 55, 459–479. [Google Scholar] [CrossRef]
- Higuchi, T.; Yoo, S.I.; Murakami, M. Comparative study of critical current densities and flux pinning among a flux-grown NdBa2Cu3Oy single crystal, melt-textured Nd-Ba-Cu-O, and Y-Ba-Cu-O bulks. Phys. Rev. B 1999, 59, 1514–1527. [Google Scholar] [CrossRef]
Sample | n(Mg): n(B): n(3D-CNS) | Temperature/°C | Duration/h | Size/mm |
---|---|---|---|---|
3D-CNS0 | 1:2:0 | 750 | 0.5 | Φ5 × 1.5 |
3D-CNS0.1 | 1:1.9:0.1 | |||
3D-CNS0.2 | 1:1.8:0.2 |
Sample | 2θ of (002) Peak | 2θ of (110) Peak | FWHM of (002) Peak | FWHM of (110) Peak | a/Å | c/Å | y in Mg(B1−yCy)2 |
---|---|---|---|---|---|---|---|
3D-CNS0 | 51.879 | 59.938 | 0.324 | 0.266 | 3.0859 | 3.5230 | / |
3D-CNS0.1 | 51.859 | 60.143 | 0.318 | 0.698 | 3.0777 | 3.5192 | 0.017 |
3D-CNS0.2 | 51.852 | 60.289 | 0.341 | 0.854 | 3.0581 | 3.5255 | 0.021 |
Sample | m | n | hpeak | R2 |
---|---|---|---|---|
Point pinning | 1 | 2 | 0.33 | / |
Surface pinning | 0.5 | 2 | 0.2 | / |
3D-CNS0 | 0.40 | 3.78 | 0.11 | 0.9913 |
3D-CNS0.1 | 0.95 | 5.45 | 0.15 | 0.9961 |
3D-CNS0.2 | 0.73 | 5.40 | 0.12 | 0.9856 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Chen, Y.; Qin, B.; Hu, C.; Xia, G.; Hao, L.; Ping, X. Synthesis of Three-Dimensional Carbon Nanosheets and Its Flux Pinning Mechanisms in C-Doped MgB2 Superconductors. Materials 2022, 15, 7530. https://doi.org/10.3390/ma15217530
Zhao Q, Chen Y, Qin B, Hu C, Xia G, Hao L, Ping X. Synthesis of Three-Dimensional Carbon Nanosheets and Its Flux Pinning Mechanisms in C-Doped MgB2 Superconductors. Materials. 2022; 15(21):7530. https://doi.org/10.3390/ma15217530
Chicago/Turabian StyleZhao, Qian, Yun Chen, Baojun Qin, Chunhao Hu, Guoqing Xia, Liang Hao, and Xuecheng Ping. 2022. "Synthesis of Three-Dimensional Carbon Nanosheets and Its Flux Pinning Mechanisms in C-Doped MgB2 Superconductors" Materials 15, no. 21: 7530. https://doi.org/10.3390/ma15217530
APA StyleZhao, Q., Chen, Y., Qin, B., Hu, C., Xia, G., Hao, L., & Ping, X. (2022). Synthesis of Three-Dimensional Carbon Nanosheets and Its Flux Pinning Mechanisms in C-Doped MgB2 Superconductors. Materials, 15(21), 7530. https://doi.org/10.3390/ma15217530