Magnetic Collapse in Fe3Se4 under High Pressure
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyubutin, I.S.; Gavriliuk, A.G. High and Ultra-High Pressure Research on Phase Transformations in 3d-Metal Oxides: Current Progress. Uspekhi Fiz. Nauk 2009, 179, 1047. [Google Scholar] [CrossRef]
- Gavriliuk, A.G.; Trojan, I.A.; Lyubutin, I.S.; Ovchinnikov, S.G.; Sarkissian, V.A. High-Pressure Magnetic Properties and P-T Phase Diagram of Iron Borate. J. Exp. Theor. Phys. 2005, 100, 688. [Google Scholar] [CrossRef]
- Mao, H.-K.; Takahashi, T.; Bassett, W.A.; Kinsland, G.L.; Merrill, L. Isothermal Compression of Magnetite to 320 KB and Pressure-Induced Phase Transformation. J. Geophys. Res. 1974, 79, 1165. [Google Scholar] [CrossRef]
- Pasternak, M.P.; Nasu, S.; Wada, K.; Endo, S. High-Pressure Phase of Magnetite. Phys. Rev. B 1994, 50, 6446. [Google Scholar] [CrossRef]
- Okazaki, A.; Hirakawa, K. Structural Study of Iron Selenides FeSex. I Ordered Arrangment of Defects of Fe Atoms. J. Phys. Soc. Japan 1956, 11, 930. [Google Scholar] [CrossRef]
- Tewari, G.C.; Srivastava, D.; Pohjonen, R.; Mustonen, O.; Karttunen, A.J.; Linden, J.; Karppinen, M. Fe3Se4: A Possible Ferrimagnetic Half-Metal? J. Phys. Condens. Matter 2020, 32, 455801. [Google Scholar] [CrossRef]
- Lambert-Andron, B.; Berodias, G. Etude Par Diffraction Neutronique de Fe3Se4. Solid State Commun. 1969, 7, 623. [Google Scholar] [CrossRef]
- Adachi, K. Magnetic Anisotropy Energy in Nickel Arsenide Type Crystals. J. Phys. Soc. Jpn. 1961, 16, 2187. [Google Scholar] [CrossRef]
- Pohjonen, R.; Mustonen, O.; Karppinen, M.; Lindén, J. Mössbauer Study of Magnetism in Fe3Se4. J. Alloys Compd. 2018, 746, 135. [Google Scholar] [CrossRef]
- Andresen, A.F. A Neutron Diffraction Investigation of Fe3Se4. Asta Chem. Scand. 1968, 22, 827. [Google Scholar] [CrossRef]
- Chang, L.; Roberts, A.P.; Tang, Y.; Rainford, B.D.; Muxworthy, A.R.; Chen, Q. Fundamental Magnetic Parameters from Pure Synthetic Greigite (Fe3S4). J. Geophys. Res. 2008, 113, B06104. [Google Scholar] [CrossRef] [Green Version]
- Lyubutin, I.S.; Starchikov, S.S.; Lin, C.R.; Lu, S.Z.; Shaikh, M.O.; Funtov, K.O.; Dmitrieva, T.V.; Ovchinnikov, S.G.; Edelman, I.S.; Ivantsov, R. Magnetic, Structural, and Electronic Properties of Iron Sulfide Fe3S4 Nanoparticles Synthesized by the Polyol Mediated Process. J. Nanopart. Res. 2013, 15, 1397. [Google Scholar] [CrossRef]
- Singh, D.; Gupta, S.K.; He, H.; Sonvane, Y. First-Principles Study of the Electronic, Magnetic and Optical Properties of Fe3Se4 in Its Monoclinic Phase. J. Magn. Magn. Mater. 2020, 498, 166157. [Google Scholar] [CrossRef]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the Exchange Screening Parameter on the Performance of Screened Hybrid Functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, X.W.; Huo, C.F.; Guo, W.P.; Cao, D.B.; Peng, Q.; Dearden, A.; Gonze, X.; Yang, Y.; Wang, J.; et al. When Density Functional Approximations Meet Iron Oxides. J. Chem. Theory Comput. 2016, 12, 5132. [Google Scholar] [CrossRef]
- Noh, J.; Osman, O.I.; Aziz, S.G.; Winget, P.; Brédas, J.L. A Density Functional Theory Investigation of the Electronic Structure and Spin Moments of Magnetite. Sci. Technol. Adv. Mater. 2014, 15, 044202. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Abtew, T.A.; Cai, T.; Sun, Y.Y.; Zhang, S.; Zhang, P. On the Applicability of Hybrid Functionals for Predicting Fundamental Properties of Metals. Solid State Commun. 2016, 234–235, 10. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272. [Google Scholar] [CrossRef]
- Wang, V.; Xu, N.; Liu, J.C.; Tang, G.; Geng, W.T. VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Long, G.; Zhang, H.; Li, D.; Sabirianov, R.; Zhang, Z.; Zeng, H. Magnetic Anisotropy and Coercivity of Fe3Se4 Nanostructures. Appl. Phys. Lett. 2011, 99, 202103. [Google Scholar] [CrossRef]
- Persson, K. Materials Data on Fe3Se4 (SG:12) by Materials Project. 2016. Available online: https://materialsproject.org/materials/mp-569176/ (accessed on 2 May 2022).
- Roldan, A.; Santos-Carballal, D.; de Leeuw, N.H. A comparative DFT study of the mechanical and electronic properties of greigite Fe3S4 and magnetite Fe3O4. J. Chem. Phys. 2013, 138, 204712. [Google Scholar] [CrossRef]
- Guo, S.; Liu, B. Stable half-metallic ferromagnetism in nonstoichiometric cubic binary chromium chalcogenides. Europhys. Lett. 2009, 88, 67007. [Google Scholar] [CrossRef]
Structural Parameters | Magnetic Moment (/f.u.) | Ref. | |||
---|---|---|---|---|---|
Lattice Constant (Å) | Angle (°) | ||||
a | b | c | |||
6.202 | 3.532 | 11.331 | 91.825° | - | [9] |
6.113 | 3.486 | 11.139 | 91.66° | - | [10] |
6.16 | 3.53 | 11.10 | 92.0° | - | [5] |
- | - | - | - | 1.17 | [6] |
- | - | - | - | 0.9 | [7] |
- | - | - | - | 0.69 | [8] |
6.071 | 3.377 | 11.174 | 92.818° | 2.128 | This work |
Strain (%) | Bond or Distance (Å) | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
0 | 2.468 | 2.413 | 2.390 | 2.374 | 2.545 | 2.581 | 2.996 | 5.277 |
2 | 2.419 | 2.364 | 2.349 | 2.355 | 2.503 | 2.516 | 2.895 | 5.151 |
3 | 2.396 | 2.342 | 2.325 | 2.344 | 2.480 | 2.481 | 2.849 | 5.091 |
3.5 | 2.384 | 2.333 | 2.312 | 2.338 | 2.467 | 2.465 | 2.828 | 5.066 |
4 | 2.381 | 2.335 | 2.291 | 2.324 | 2.440 | 2.446 | 2.825 | 5.068 |
4.5 | 2.370 | 2.319 | 2.283 | 2.323 | 2.426 | 2.428 | 2.796 | 5.044 |
5 | 2.346 | 2.301 | 2.281 | 2.316 | 2.424 | 2.429 | 2.756 | 4.994 |
5.5 | 2.338 | 2.280 | 2.268 | 2.330 | 2.416 | 2.393 | 2.729 | 4.967 |
6 | 2.325 | 2.276 | 2.264 | 2.305 | 2.397 | 2.400 | 2.700 | 4.943 |
6.5 | 2.314 | 2.262 | 2.253 | 2.303 | 2.387 | 2.382 | 2.671 | 4.916 |
7 | 2.306 | 2.245 | 2.239 | 2.311 | 2.379 | 2.352 | 2.645 | 4.888 |
8 | 2.282 | 2.220 | 2.220 | 2.298 | 2.358 | 2.327 | 2.588 | 4.829 |
9 | 2.258 | 2.196 | 2.202 | 2.283 | 2.337 | 2.301 | 2.535 | 4.767 |
10 | 2.235 | 2.172 | 2.183 | 2.266 | 2.315 | 2.274 | 2.483 | 4.705 |
11 | 2.212 | 2.147 | 2.164 | 2.250 | 2.294 | 2.248 | 2.432 | 4.644 |
12 | 2.189 | 2.123 | 2.145 | 2.231 | 2.272 | 2.222 | 2.385 | 4.582 |
13 | 2.166 | 2.100 | 2.127 | 2.211 | 2.250 | 2.195 | 2.337 | 4.519 |
14 | 2.143 | 2.078 | 2.109 | 2.189 | 2.277 | 2.169 | 2.292 | 4.455 |
Strain (%) | Fe Moment | Fe Moment | Total Moment |
---|---|---|---|
0 | 2.071 | −2.042 | 2.135 |
2 | 1.778 | −1.631 | 1.969 |
3 | 1.556 | −1.417 | 1.759 |
3.5 | 1.387 | −1.318 | 1.460 |
4 | 0.602 | −1.334 | 0.157 |
4.5 | 0.282 | −1.214 | 0.692 |
5 | 0.764 | −0.462 | 1.061 |
5.5 | 0.493 | −0.297 | 0.673 |
6 | 0.266 | −0.209 | 0.368 |
6.5 | 0.053 | −0.041 | 0.075 |
7 | 0.463 | 0.666 | 1.626 |
8 | 0.352 | 0.540 | 1.286 |
9 | 0.282 | 0.425 | 1.038 |
10 | 0.225 | 0.328 | 0.823 |
11 | 0.162 | 0.230 | 0.585 |
12 | 0.068 | 0.094 | 0.243 |
13 | 0.004 | 0.005 | 0.009 |
14 | 0.000 | 0.000 | 0.000 |
Lattice Constant | External Pressure (GPa) | ||||||
---|---|---|---|---|---|---|---|
2.0 | 3.0 | 4.5 | 4.8 | 5.0 | 7.5 | 8.0 | |
a (Å) | 6.016 | 5.993 | 5.962 | 5.883 | 5.892 | 5.857 | 5.850 |
b (Å) | 3.341 | 3.327 | 3.311 | 3.423 | 3.477 | 3.460 | 3.455 |
c (Å) | 11.065 | 11.014 | 10.929 | 10.382 | 10.048 | 10.002 | 9.987 |
Pressure (GPa) | Bond or Distance (Å) | |||||||
---|---|---|---|---|---|---|---|---|
2.0 | 2.440 | 2.391 | 2.371 | 2.364 | 2.529 | 2.543 | 2.936 | 5.232 |
3.0 | 2.429 | 2.382 | 2.363 | 2.360 | 2.521 | 2.528 | 2.912 | 5.214 |
4.5 | 2.414 | 2.369 | 2.350 | 2.353 | 2.511 | 2.505 | 2.878 | 5.184 |
4.8 | 2.380 | 2.339 | 2.310 | 2.337 | 2.499 | 2.432 | 2.795 | 5.071 |
5.0 | 2.377 | 2.345 | 2.307 | 2.333 | 2.457 | 2.403 | 2.772 | 4.993 |
7.5 | 2.366 | 2.332 | 2.296 | 2.450 | 2.388 | 2.736 | 2.968 | 4.968 |
8.0 | 2.362 | 2.329 | 2.293 | 2.326 | 2.447 | 2.385 | 2.730 | 4.959 |
Pressure (GPa) | Fe Moment | Fe Moment | Total Moment |
---|---|---|---|
2.0 | 1.942 | −1.829 | 2.097 |
3.0 | 1.884 | −1.738 | 2.068 |
4.5 | 1.786 | −1.596 | 2.009 |
4.8 | 1.065 | 0.544 | 2.617 |
5.0 | 0.077 | 0.005 | 0.146 |
7.5 | 0.013 | 0.001 | 0.017 |
8.0 | 0.000 | 0.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begunovich, L.V.; Korshunov, M.M.; Ovchinnikov, S.G. Magnetic Collapse in Fe3Se4 under High Pressure. Materials 2022, 15, 4583. https://doi.org/10.3390/ma15134583
Begunovich LV, Korshunov MM, Ovchinnikov SG. Magnetic Collapse in Fe3Se4 under High Pressure. Materials. 2022; 15(13):4583. https://doi.org/10.3390/ma15134583
Chicago/Turabian StyleBegunovich, Lyudmila V., Maxim M. Korshunov, and Sergey G. Ovchinnikov. 2022. "Magnetic Collapse in Fe3Se4 under High Pressure" Materials 15, no. 13: 4583. https://doi.org/10.3390/ma15134583
APA StyleBegunovich, L. V., Korshunov, M. M., & Ovchinnikov, S. G. (2022). Magnetic Collapse in Fe3Se4 under High Pressure. Materials, 15(13), 4583. https://doi.org/10.3390/ma15134583