The Effect of (Mg, Zn)12Ce Phase Content on the Microstructure and the Mechanical Properties of Mg–Zn–Ce–Zr Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure and Compounds of As-Cast Alloy
3.2. Microstructure and Compounds of Homogeneous Alloy
3.3. Hot Deformation Microstructure and Mechanical Properties
4. Discussion
4.1. Effect of Ce and Zn Content on the Formation of the (Mg, Zn)12Ce Phase
4.2. Effect of the (Mg, Zn)12Ce Phase Content on Dynamic Recrystallization
4.3. Effect of (Mg, Zn)12Ce Phase Content on Mechanical Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, Y.; Xx, A.; Jing, C.A.; Xpa, B.; Dc, C.; Fpa, B. Research advances in magnesium and magnesium alloys worldwide in 2020. J. Magnes. Alloy. 2021, 9, 705–747. [Google Scholar]
- Song, J.; She, J.; Chen, D.; Pan, F. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloy. 2020, 8, 1–41. [Google Scholar] [CrossRef]
- Liu, H.; Huang, H.; Wang, C.; Sun, J.; Bai, J.; Xue, F.; Ma, A.; Chen, X.B. Recent Advances in LPSO-Containing Wrought Magnesium Alloys: Relationships between Processing, Microstructure, and Mechanical Properties. JOM 2019, 71, 3314–3327. [Google Scholar] [CrossRef]
- Tan, J.; Ramakrishna, S. Applications of Magnesium and Its Alloys: A Review. Appl. Sci. 2021, 11, 6861. [Google Scholar] [CrossRef]
- Jamari, J. Tresca Stress Simulation of Metal-on-Metal Total Hip Arthroplasty during Normal Walking Activity. Materials 2021, 14, 7554. [Google Scholar]
- Fu, Y.; Liu, C.; Hao, H.; Xu, Y.D.; Zhu, X.R. Effect of ageing treatment on microstructures, mechanical properties and corrosion behavior of Mg–Zn-RE-Zr alloy micro-alloyed with Ca and Sr. China Foundry 2021, 18, 131–140. [Google Scholar] [CrossRef]
- Yzda, B.; Djla, B.; Yfga, B.; Blja, B. Effects of deformation parameters on microstructure and texture of Mg–Zn–Ce alloy. Trans. Nonferrous Met. Soc. China 2020, 30, 2658–2668. [Google Scholar]
- Zhao, L.; Ma, G.; Jin, P.; Yu, Z. Role of Y on the microstructure, texture and mechanical properties of Mg–Zn–Zr alloys by powder metallurgy. J. Alloy. Compd. 2019, 810, 151843. [Google Scholar] [CrossRef]
- Hadadzadeh, A.; Mokdad, F.; Amirkhiz, B.S.; Wells, M.A.; Williams, B.W.; Chen, D.L. Bimodal grain microstructure development during hot compression of a cast-homogenized Mg–Zn–Zr alloy—ScienceDirect. Mater. Sci. Eng. A 2018, 724, 421–430. [Google Scholar] [CrossRef]
- You, S.; Huang, Y.; Kainer, K.U.; Hort, N. Recent research and developments on wrought magnesium alloys. J. Magnes. Alloy. 2017, 5, 239–253. [Google Scholar] [CrossRef]
- Alhartomi, M. Thermodynamic Modeling and Mechanical Properties of Mg–Zn–{Y, Ce} Alloys: Review. Crystals 2021, 11, 1592. [Google Scholar]
- Huang, M.L.; Li, H.X.; Ding, H. Study on the Intermetallics (Mg, Zn)12Ce and (Mg, Zn)11Ce. J. Northeast. Univ. (Nat. Sci.) 2015, 36, 786–799, 810. [Google Scholar]
- Huang, M.L.; Hong-Xiao, L.I.; Ding, H.; Bao, L.; Hao, S.M. Intermetallics and phase relations of Mg–Zn–Ce alloys at 400 °C. Trans. Nonferrous Met. Soc. China 2012, 22, 539–545. [Google Scholar] [CrossRef]
- Yu, H.; Kim, Y.M.; You, B.S.; Yu, H.S.; Park, S.H. Effects of cerium addition on the microstructure, mechanical properties and hot workability of ZK60 alloy. Mater. Sci. Eng. A 2013, 559, 798–807. [Google Scholar] [CrossRef]
- Du, Y.; Zheng, M.; Qiao, X.; Jiang, B. Enhancing the Strength and Ductility in Mg–Zn–Ce Alloy through Achieving High Density Precipitates and Texture Weakening. Adv. Eng. Mater. 2017, 19, 1700487. [Google Scholar] [CrossRef]
- Liu, L.; Pan, F.; Chen, X.; Huang, Y.; Hort, N. The effect of Y addition on recrystallization and mechanical properties of Mg–6Zn–xY–0.5Ce–0.4Zr alloys. Vacuum 2018, 155, 445–455. [Google Scholar] [CrossRef]
- He, M.L.; Luo, T.J.; Liu, Y.T.; Lin, T.; Zhou, J.X.; Yang, Y.S. Effects of Cu and Ce co-addition on the microstructure and mechanical properties of Mg–6Zn–0.5Zr alloy. J. Alloy. Compd. 2018, 767, 1216–1224. [Google Scholar] [CrossRef]
- Yu, F.U.; Wang, H.; Liu, X.; Hao, H. Effect of calcium addition on microstructure, casting fluidity and mechanical properties of Mg–Zn–Ce–Zr magnesium alloy. J. Rare Earths 2017, 35, 503–509. [Google Scholar]
- Lee, G.G.; Jin, H.H.; Chang, K.; Lim, S.; Kim, M.C.; Lee, B.S.; Kwon, J. Atom probe tomography analysis of nanostructure evolution in Ni-Cr-Mo low alloy steel under neutron irradiation. J. Mech. Sci. Technol. 2017, 31, 3675–3678. [Google Scholar] [CrossRef]
- Dumitraschkewitz, P.; Gerstl, S.S.A.; Uggowitzer, P.J.; Löffler, J.F.; Pogatscher, S. Atom Probe Tomography Study of As-Quenched Al-Mg-Si Alloys. Adv. Eng. Mater. 2016, 19, 1600668. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Guo, F.; Gao, X.; Feng, H. Study on solid-solution interaction and existing forms of alloying elements in Mg–Al–Zn-Gd alloy. J. Alloy. Compd. 2020, 854, 156209. [Google Scholar]
- Kevorkov, D.; Pekguleryuz, M. Experimental study of the Ce–Mg–Zn phase diagram at 350 °C via diffusion couple techniques. J. Alloy. Compd. 2009, 478, 427–436. [Google Scholar] [CrossRef]
- Bambach, M. Implications from the Poliak–Jonas criterion for the construction of flow stress models incorporating dynamic recrystallization. Acta Mater. 2013, 61, 6222–6233. [Google Scholar] [CrossRef]
- Robson, J.D.; Henry, D.T.; Davis, B. Particle effects on recrystallization in magnesium–manganese alloys: Particle-stimulated nucleation. Acta Mater. 2009, 57, 2739–2747. [Google Scholar] [CrossRef]
- Wang, Q.; Du, W.; Ke, L.; Wang, Z.; Li, S.; Kai, W. Microstructure, texture and mechanical properties of as-extruded Mg–Zn–Er alloys. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2013, 581, 31–38. [Google Scholar] [CrossRef]
- Park, S.H.; Yu, H.; Bae, J.H.; Chang, D.Y.; You, B.S. Microstructural evolution of indirect-extruded ZK60 alloy by adding Ce. J. Alloy. Compd. 2012, 545, 139–143. [Google Scholar] [CrossRef]
Alloy Code | Nominal Alloys | Composition (wt.%) | |||
---|---|---|---|---|---|
Zn | Ce | Zr | Mg | ||
ZCI | Mg–3Zn–0.5Ce–0.5Zr | 2.599 | 0.619 | 0.517 | Bal. |
ZCII | Mg–3Zn–1.0Ce–0.5Zr | 3.042 | 0.936 | 0.522 | Bal. |
ZCIII | Mg–3Zn–1.5Ce–0.5Zr | 2.697 | 1.525 | 0.513 | Bal. |
ZCⅣ | Mg–6Zn–0.5Ce–0.5Zr | 5.410 | 0.533 | 0.570 | Bal. |
ZCⅤ | Mg–6Zn–1.0Ce–0.5Zr | 5.900 | 1.055 | 0.510 | Bal. |
ZCⅥ | Mg–6Zn–1.5Ce–0.5Zr | 5.560 | 1.412 | 0.540 | Bal. |
Mark Position | Composition (at.%) | |||
---|---|---|---|---|
Zn | Ce | Zr | Mg | |
A | 17.93 | 7.21 | 74.86 | |
B | 71.80 | 28.20 | ||
C | 22.73 | 6.95 | 70.32 | |
D | 59.46 | 40.54 |
ZCI | ZCII | ZCIII | ZCIV | ZCV | ZCVI | |
---|---|---|---|---|---|---|
(Mg, Zn)12Ce phase | 3.586 | 4.875 | 5.262 | 3.950 | 6.617 | 7.040 |
Compound | ZCI | ZCII | ZCIII | ZCIV | ZCV | ZCVI |
---|---|---|---|---|---|---|
(Mg, Zn)12Ce phase | 2.093 | 2.884 | 3.183 | 4.990 | 7.045 | 7.253 |
ZCI | ZCII | ZCIII | ZCIV | ZCV | ZCVI | |
---|---|---|---|---|---|---|
Average diameter (μm) | 4.703 | 4.578 | 4.056 | 5.056 | 4.791 | 3.856 |
Average area (μm2) | 6.885 | 5.706 | 5.593 | 8.344 | 6.866 | 5.608 |
Area fraction (%) | 4.068 | 5.073 | 5.616 | 6.098 | 9.868 | 16.760 |
ZCI | ZCII | ZCIII | ZCIV | ZCV | ZCVI | |
---|---|---|---|---|---|---|
0.09693 | 0.09307 | 0.09120 | 0.15520 | 0.10496 | 0.09206 | |
67.089 | 60.982 | 60.636 | 70.596 | 64.278 | 62.183 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Guo, F.; Cai, H.; Wang, Y.; Liu, L. The Effect of (Mg, Zn)12Ce Phase Content on the Microstructure and the Mechanical Properties of Mg–Zn–Ce–Zr Alloy. Materials 2022, 15, 4420. https://doi.org/10.3390/ma15134420
Li Y, Guo F, Cai H, Wang Y, Liu L. The Effect of (Mg, Zn)12Ce Phase Content on the Microstructure and the Mechanical Properties of Mg–Zn–Ce–Zr Alloy. Materials. 2022; 15(13):4420. https://doi.org/10.3390/ma15134420
Chicago/Turabian StyleLi, Yuguang, Feng Guo, Huisheng Cai, Yiwei Wang, and Liang Liu. 2022. "The Effect of (Mg, Zn)12Ce Phase Content on the Microstructure and the Mechanical Properties of Mg–Zn–Ce–Zr Alloy" Materials 15, no. 13: 4420. https://doi.org/10.3390/ma15134420
APA StyleLi, Y., Guo, F., Cai, H., Wang, Y., & Liu, L. (2022). The Effect of (Mg, Zn)12Ce Phase Content on the Microstructure and the Mechanical Properties of Mg–Zn–Ce–Zr Alloy. Materials, 15(13), 4420. https://doi.org/10.3390/ma15134420