Effect of Processed Oil on Asphalt Binder Properties
Abstract
:1. Introduction
2. Experimental Design
2.1. Materials
2.2. Production and Sample Preparation of Processed Oil Asphalt Binders
2.2.1. Basic Characteristics Tests
2.2.2. Statistical Analysis Method
3. Result and Discussion
3.1. Rotational Viscosity
3.2. Rutting Properties
3.3. Fatigue Cracking
3.4. Low-Temperature Cracking Properties
4. Summary and Conclusions
- The addition of processed oil reduced the viscosity at all testing temperatures, as expected. Two base binders containing processed oil appeared to have a lower viscosity than the control binders with no oil. Therefore, it is thought that the addition of processed oil improves workability, including pumping and compaction.
- On the basis of the DSR test, it was observed that increasing the processed oil content made it possible to reduce G*/sin δ in both original and short-term aging conditions. Moreover, G*/sin δ gradually decreased with increasing oil content. Based on these results, the application of processed oil negatively affects the rutting resistance in both aging states.
- The value of G*sin δ for the processed-oil-modified binders was observed to have a decreasing trend with increasing oil content. Moreover, this was an almost proportionally increasing trend with increasing oil content. Therefore, processed oil is found to be effective at improving fatigue cracking performance for both binder types.
- The results of the BBR test showed that incorporating processed oil made it possible to steadily decrease the stiffness. Additionally, the addition of processed oil showed a positive effect on the m-value with increasing oil content. These results verified that processed oil plays a role in increasing thermal cracking resistance at low temperatures.
- The application of processed oil generally impacted binder performances, including rutting and cracking. The addition of processed oil had an undesirable effect on rutting, while the cracking performances were considerably improved. Therefore, it is necessary to conduct deeper analysis to figure out the properties of processed oil when incorporating various polymer additives. Future studies would be desirable in order to investigate the effects of the addition of processed oil in conjunction with common modifiers (e.g., SBR, SBS, SIS, CRM). Additionally, it is necessary to conduct experimental tests on asphalt mixtures modified using processed oil.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chopra, T.; Parida, M.; Kwatra, N.; Chopra, P. Development of pavement distress deterioration prediction models for urban road network using genetic programming. Adv. Civ. Eng. Civ. Eng. 2018, 2018, 1253108. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Yang, W. Effect of thickness of gravel base and asphalt pavement on road deformation. Adv. Civ. Eng. 2018, 2018, 2076597. [Google Scholar] [CrossRef]
- Li, N.; Zhan, H.; Yu, X.; Tang, W.; Yu, H.; Dong, F. Research on the high temperature performance of asphalt pavement based on field cores with different rutting development levels. Mater. Struct. 2021, 54, 70. [Google Scholar] [CrossRef]
- Garba, R. Permanent Deformation Properties of Asphalt Concrete Mixtures. Available online: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/231328 (accessed on 15 March 2022).
- Tabatabaee, H.A.; Velasquez, R.; Bahia, H.U. Predicting low temperature physical hardening in asphalt binders. Constr. Build. Mater. 2012, 34, 162–169. [Google Scholar] [CrossRef]
- Zhou, W.Y.; Chen, Z.G.; Chen, Z.N.; Qin, W.J.; Yi, J.Y. Generation and propagation of reflective cracking and thermal cracking of asphalt pavement in cold regions of China. In Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields; CRC Press: Leiden, The Netherlands, 2021; Volume 1, pp. 78–86. [Google Scholar] [CrossRef]
- Halle, M.; Rukavina, T.; Domitrovic, J. Influence of temperature on asphalt stiffness modulus. In Proceedings of the 5th Eurasphalt Eurobitume Congress, Istanbul, Turkey, 13-15 June 2012; pp. 13–15. [Google Scholar]
- Kim, H.H.; Mazumder, M.; Lee, S.J.; Lee, M.S. Characterization of recycled crumb rubber modified binders containing wax warm additives. J. Traffic Transp. Eng. 2017, 5, 197–206. [Google Scholar] [CrossRef]
- Kim, H.H.; Mazumder, M.; Torres, A.; Lee, S.J.; Lee, M.S. Characterization of CRM binders with wax additives using an atomic force microscopy (AFM) and an optical microscopy. Adv. Civ. Eng. Mater. 2017, 6, 504–525. [Google Scholar] [CrossRef]
- Borhan, M.N.; Suja, F.; Ismail, A.; Rahmat RA, O.K. The effects of used cylinder oil on asphalt mixes. Eur. J. Sci. Res. 2009, 28, 398–411. [Google Scholar]
- Woszuk, A.; Wróbel, M.; Franus, W. Influence of waste engine oil addition on the properties of zeolite-foamed asphalt. Materials 2019, 12, 2265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonibare, K.; Rucker, G.; Zhang, L. Molecular dynamics simulation on vegetable oil modified model asphalt. Constr. Build. Mater. 2021, 270, 121687. [Google Scholar] [CrossRef]
- Shoukat, T.; Yoo, P.J. Rheology of asphalt binder modified with 5W30 viscosity grade waste engine oil. Appl. Sci. 2018, 8, 1194. [Google Scholar] [CrossRef] [Green Version]
- Król, J.B.; Khan, R.; Collop, A.C. The study of the effect of internal structure on permeability of porous asphalt. Road Mater. Pavement Des. 2018, 19, 935–951. [Google Scholar] [CrossRef]
- Asphalt Institute. Individual Asphalt Binder Tests; Asphalt Institute: Lexington, KY, USA, 2003; Available online: https://interstatetesting.com/binder-lab/ (accessed on 19 November 2021).
Aging States | Test Properties | Standard | PG 64-22 | PG 76-22 |
---|---|---|---|---|
No aging binder | Viscosity @ 135 °C (cP) | AASHTO PP6 | 538 | 1870 |
G*/sin δ @ 64 °C (kPa) | AASHTO PP6 | 2.2 | 4.8 | |
RTFO aged residual | G*/sin δ @ 64 °C (kPa) | AASHTO PP6 | 3.4 | 9.9 |
RTFO+PAV aged residual | G*sin δ @ 25 °C (kPa) | AASHTO PP6 | 5000 | 3186 |
Stiffness @ −12 °C (MPa) | AASHTO PP6 | 300 | 177 | |
m-value @ −12°C | AASHTO PP6 | 0.300 | 0.314 |
Test Item | Condition | Unit | Result | Standard |
---|---|---|---|---|
Specific gravity | @ 15 °C | 1.0049 | ASTM D4052 | |
Flash Point | COC | °C | 228 | ASTM D 92 |
Kinematic Viscosity | @98.9 °C | mm2/S | 22.59 | ASTM D 445 |
@100 °C | mm2/S | 21.53 | ASTM D 445 | |
Pour point | °C | +15 | ASTM D 97 | |
Viscosity Gravity Constant | 0.9555 | ASTM D 2140 | ||
Hydrocarbon type | Ca (Aromatic) | % | 41.9 | ASTM D 2140 |
Cn (Naphtenic) | % | 26.2 | ASTM D 2140 | |
Cp (paraffinic) | % | 31.9 | ASTM D 2140 |
Viscosity | 135 °C | 150 °C | 165 °C | 180 °C | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PO% | 0 | 3 | 6 | 9 | 12 | 0 | 3 | 6 | 9 | 12 | 0 | 3 | 6 | 9 | 12 | 0 | 3 | 6 | 9 | 12 | |
135 °C | 0 | - | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
3 | - | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | ||
6 | - | S | S | N | S | S | S | S | S | S | S | S | S | S | S | S | S | S | |||
9 | - | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | ||||
12 | - | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | |||||
150 °C | 0 | - | S | S | S | S | S | S | S | S | S | S | S | S | S | S | |||||
3 | - | S | S | S | S | S | S | S | S | S | S | S | S | S | |||||||
6 | - | S | S | S | S | S | S | S | S | S | S | S | S | ||||||||
9 | - | S | N | S | S | S | S | S | S | S | S | S | |||||||||
12 | - | S | N | S | S | S | S | S | S | S | S | ||||||||||
165 °C | 0 | - | S | S | S | S | S | S | S | S | S | ||||||||||
3 | - | S | S | S | S | S | S | S | S | ||||||||||||
6 | - | S | S | N | S | S | S | S | |||||||||||||
9 | - | S | N | S | S | S | S | ||||||||||||||
12 | - | S | N | S | S | S | |||||||||||||||
180 °C | 0 | - | S | S | S | S | |||||||||||||||
3 | - | N | S | S | |||||||||||||||||
6 | - | S | S | ||||||||||||||||||
9 | - | S | |||||||||||||||||||
12 | - |
Viscosity | 135 °C | 150 °C | 165 °C | 180 °C | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PO% | 0 | 3 | 6 | 9 | 12 | 0 | 3 | 6 | 9 | 12 | 0 | 3 | 6 | 9 | 12 | 0 | 3 | 6 | 9 | 12 | |
135 °C | 0 | - | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
3 | - | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | ||
6 | - | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | |||
9 | - | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | ||||
12 | - | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | |||||
150 °C | 0 | - | S | S | S | S | S | S | S | S | S | S | S | S | S | S | |||||
3 | - | S | S | S | S | S | S | S | S | S | S | S | S | S | |||||||
6 | - | S | S | S | S | S | S | S | S | S | S | S | S | ||||||||
9 | - | S | S | S | S | S | S | S | S | S | S | S | |||||||||
12 | - | S | S | S | S | S | S | S | S | S | S | ||||||||||
165 °C | 0 | - | S | S | S | S | S | S | S | S | S | ||||||||||
3 | - | S | S | S | S | S | S | S | S | ||||||||||||
6 | - | S | S | S | S | S | S | S | |||||||||||||
9 | - | S | S | S | S | S | S | ||||||||||||||
12 | - | S | S | S | S | S | |||||||||||||||
180 °C | 0 | - | S | S | S | S | |||||||||||||||
3 | - | S | S | S | |||||||||||||||||
6 | - | S | S | ||||||||||||||||||
9 | - | S | |||||||||||||||||||
12 | - |
G*/Sin δ | PO % | 0 | 3 | 6 | 9 | 12 |
---|---|---|---|---|---|---|
PG 64-22 | 0 | - | S | S | S | S |
3 | - | S | S | S | ||
6 | - | S | S | |||
9 | - | S | ||||
12 | - | |||||
PG 76-22 | 0 | - | S | S | S | S |
3 | - | S | S | S | ||
6 | - | S | S | |||
9 | - | S | ||||
12 | - |
G*/Sin δ | PO % | 0 | 3 | 6 | 9 | 12 |
---|---|---|---|---|---|---|
PG 64-22 | 0 | - | S | S | S | S |
3 | - | N | S | S | ||
6 | - | S | S | |||
9 | - | N | ||||
12 | - | |||||
PG 76-22 | 0 | - | S | S | S | S |
3 | - | S | S | S | ||
6 | - | S | S | |||
9 | - | S | ||||
12 | - |
G* Sin δ | PO % | 0 | 3 | 6 | 9 | 12 |
---|---|---|---|---|---|---|
PG 64-22 | 0 | - | S | S | S | S |
3 | - | S | S | S | ||
6 | - | S | S | |||
9 | - | S | ||||
12 | - | |||||
PG 76-22 | 0 | - | S | S | S | S |
3 | - | S | S | S | ||
6 | - | S | S | |||
9 | - | S | ||||
12 | - |
Stiffness | PO % | 0 | 3 | 6 | 9 | 12 |
---|---|---|---|---|---|---|
PG 64-22 | 0 | - | S | S | S | S |
3 | - | N | S | S | ||
6 | - | S | S | |||
9 | - | S | ||||
12 | - | |||||
PG 76-22 | 0 | - | S | S | S | S |
3 | - | N | S | S | ||
6 | - | S | S | |||
9 | - | N | ||||
12 | - |
Stiffness | PO % | 0 | 3 | 6 | 9 | 12 |
---|---|---|---|---|---|---|
PG 64-22 | 0 | - | N | S | S | S |
3 | - | N | N | S | ||
6 | - | N | S | |||
9 | - | S | ||||
12 | - | |||||
PG 76-22 | 0 | - | N | S | S | S |
3 | - | N | S | S | ||
6 | - | N | S | |||
9 | - | N | ||||
12 | - |
m-Value | PO % | 0 | 3 | 6 | 9 | 12 |
---|---|---|---|---|---|---|
PG 64-22 | 0 | - | S | S | S | S |
3 | - | N | S | S | ||
6 | - | S | S | |||
9 | - | S | ||||
12 | - | |||||
PG 76-22 | 0 | - | S | S | S | S |
3 | - | N | S | S | ||
6 | - | S | S | |||
9 | - | N | ||||
12 | - |
m-Value | PO % | 0 | 3 | 6 | 9 | 12 |
---|---|---|---|---|---|---|
PG 64-22 | 0 | - | N | S | S | S |
3 | - | S | S | S | ||
6 | - | S | S | |||
9 | - | S | ||||
12 | - | |||||
PG 76-22 | 0 | - | S | S | S | S |
3 | - | N | S | S | ||
6 | - | S | S | |||
9 | - | N | ||||
12 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemmati, N.; Yun, J.; Kim, H.; Lee, M.-S.; Lee, S.-J. Effect of Processed Oil on Asphalt Binder Properties. Materials 2022, 15, 3739. https://doi.org/10.3390/ma15113739
Hemmati N, Yun J, Kim H, Lee M-S, Lee S-J. Effect of Processed Oil on Asphalt Binder Properties. Materials. 2022; 15(11):3739. https://doi.org/10.3390/ma15113739
Chicago/Turabian StyleHemmati, Navid, Jihyeon Yun, Hyunhwan Kim, Moon-Sup Lee, and Soon-Jae Lee. 2022. "Effect of Processed Oil on Asphalt Binder Properties" Materials 15, no. 11: 3739. https://doi.org/10.3390/ma15113739
APA StyleHemmati, N., Yun, J., Kim, H., Lee, M.-S., & Lee, S.-J. (2022). Effect of Processed Oil on Asphalt Binder Properties. Materials, 15(11), 3739. https://doi.org/10.3390/ma15113739