Investigation of Surface Integrity Induced by Various Finishing Processes of AISI 52100 Bearing Rings
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure Analysis
3.2. Residual Stresses
3.3. Rolling Contact Fatigue (RCF) Performance
4. Conclusions
- White layers induced by precision hard turning (<1 μm) and grinding (5 μm) possess compressive residual stresses.
- Subsurface compressive residual stress is the major difference between finishing processes. Grinding and sequential grinding and honing exhibit maximum and compressive residual stresses at the machined surface (−186 and −290 MPa, respectively) and tensile at the subsurface depth of 15 μm. Precision hard turning exhibits compressive residual stresses at the machined surface and maximum compressive value (−680 MPa) at the subsurface depth of 25 μm.
- Sequential grinding and honing improve the fatigue life of bearing rings by 2.6 times in comparison with grinding due to the improvement in surface roughness.
- Precision hard turning produces the longest fatigue life (5.2 million cycles) due to subsurface compressive residual stresses.
- The changes in subsurface residual stresses after the running-in process and after the spalling of bearing rings finished by grinding, which has the shortest fatigue life (1.2 million cycles), reveal that subsurface residual stresses are changed from a moderate level of tensile stresses to compressive ones, and such a change can positively affect the fatigue life.
- Subsurface compressive residual stresses originating from the finishing process, as well as low surface roughness, are the key parameters for extending bearing fatigue life.
- The future challenge will be the development of novel technology to enhance the fatigue performance of bearing rings. Thus, the effect of adding a honing operation after precision hard turning will be experimentally studied.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klocke, F.; Brinksmeier, E.; Weinert, K. Capability profile of hard cutting and grinding processes. CIRP Ann. 2005, 54, 22–45. [Google Scholar] [CrossRef]
- Suresh, R.; Basavarajappa, S.; Gaitonde, V.N.; Samuel, G.L.; Davim, J.P. State-of-the-art research in machinability of hardened steels. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 227, 191–209. [Google Scholar] [CrossRef]
- Liao, Z.; la Monaca, A.; Murray, J.; Speidel, A.; Ushmaev, D.; Clare, A.; Axinte, D.; M’Saoubi, R. Surface integrity in metal machining—Part I: Fundamentals of surface characteristics and formation mechanisms. Int. J. Mach. Tools Manuf. 2020, 162, 103687. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, Y.; Lu, H.; Liu, J.; Cai, G. Surface integrity and corrosion resistance of 42CrMo4 high-strength steel strengthened by hard turning. Materials 2021, 14, 6995. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, F.; Yamaguchi, H.; Krajnik, P.; Wegener, K.; Chaudhari, R.; Hoffmeister, H.-W.; Kuster, F. Abrasive fine-finishing technology. CIRP Ann. 2016, 65, 597–620. [Google Scholar] [CrossRef]
- Maiß, O.; Denkena, B.; Grove, T. Hybrid machining of roller bearing inner rings by hard turning and deep rolling. J. Mater. Process. Technol. 2016, 230, 211–216. [Google Scholar] [CrossRef]
- Revel, P.; Jouini, N.; Thoquenne, G.; Lefebvre, F. High precision hard turning of AISI 52100 bearing steel. Precis. Eng. 2016, 43, 24–33. [Google Scholar] [CrossRef]
- Arsalani, M.; Razfar, M.R.; Abdullah, A.; Khajehzadeh, M. Fatigue behavior improvement of hardened parts using sequential hard turning, grinding, and ball burnishing operations. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2020, 235, 87–99. [Google Scholar] [CrossRef]
- Kang, J.H.; Hosseinkhani, B.; Rivera-Díaz-del-Castillo, P.E.J. Rolling contact fatigue in bearings: Multiscale overview. Mater. Sci. Technol. 2012, 28, 44–49. [Google Scholar] [CrossRef]
- Sadeghi, F.; Jalalahmadi, B.; Slack, T.S.; Raje, N.; Arakere, N.K. A review of rolling contact fatigue. J. Tribol. 2009, 131, 041403. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Steels for bearings. Prog. Mater. Sci. 2012, 57, 268–435. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Akbar, I.; Basri, H.; van der Heide, E.; Jamari, J. Tresca stress simulation of metal-on-metal total hip arthroplasty during normal walking activity. Materials 2021, 14, 7554. [Google Scholar] [CrossRef] [PubMed]
- Tönshoff, H.K.; Arendt, C.; Amor, R.B. Cutting of hardened steel. CIRP Ann. Manuf. Technol. 2000, 49, 547–566. [Google Scholar] [CrossRef]
- Akcan, S.; Shah, W.S.; Moylan, S.P.; Chandrasekar, S.; Chhabra, P.N.; Yang, H.T.Y. Formation of white layers in steels by machining and their characteristics. Met. Mater. Trans. A 2002, 33, 1245–1254. [Google Scholar] [CrossRef]
- Mao, C.; Zhou, Z.; Zhang, J.; Huang, X.; Gu, D. An experimental investigation of affected layers formed in grinding of AISI 52100 steel. Int. J. Adv. Manuf. Technol. 2011, 54, 515–523. [Google Scholar] [CrossRef]
- Hossain, R.; Pahlevani, F.; Witteveen, E.; Banerjee, A.; Joe, B.; Prusty, B.G.; Dippenaar, R.; Sahajwalla, V. Hybrid structure of white layer in high carbon steel—Formation mechanism and its properties. Sci. Rep. 2017, 7, 13288. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.B.; Thuvander, M.; Klement, U.; Sundell, G.; Ryttberg, K. Atomic-scale investigation of carbon atom migration in surface induced white layers in high-carbon medium chromium (AISI 52100) bearing steel. Acta Mater. 2017, 130, 155–163. [Google Scholar] [CrossRef]
- Hosseini, S.B.; Klement, U. A descriptive phenomenological model for white layer formation in hard turning of AISI 52100 bearing steel. CIRP J. Manuf. Sci. Technol. 2021, 32, 299–310. [Google Scholar] [CrossRef]
- Zhang, F.-Y.; Duan, C.-Z.; Wang, M.-J.; Sun, W. White and dark layer formation mechanism in hard cutting of AISI52100 steel. J. Manuf. Process. 2018, 32, 878–887. [Google Scholar] [CrossRef]
- Guo, Y.B.; Warren, A.W.; Hashimoto, F. The basic relationships between residual stress, white layer, and fatigue life of hard turned and ground surfaces in rolling contact. CIRP J. Manuf. Sci. Technol. 2010, 2, 129–134. [Google Scholar] [CrossRef]
- Smith, S.; Melkote, S.N.; Lara-Curzio, E.; Watkins, T.R.; Allard, L.; Riester, L. Effect of surface integrity of hard turned AISI 52100 steel on fatigue performance. Mater. Sci. Eng. A 2007, 459, 337–346. [Google Scholar] [CrossRef]
- Shen, Y.; Moghadam, S.M.; Sadeghi, F.; Paulson, K.; Trice, R.W. Effect of retained austenite—Compressive residual stresses on rolling contact fatigue life of carburized AISI 8620 steel. Int. J. Fatigue 2015, 75, 135–144. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Hashimoto, F.; Lahoti, G. Surface integrity generated by precision hard turning. CIRP Ann. Manuf. Technol. 1999, 48, 59–62. [Google Scholar] [CrossRef]
- Wang, D.; Sun, S.; Jiang, J.; Liu, X. From the grain/workpiece interaction to the coupled thermal-mechanical residual stresses: An integrated modeling for controlled stress grinding of bearing ring raceway. Int. J. Adv. Manuf. Technol. 2019, 101, 475–499. [Google Scholar] [CrossRef]
- Pape, F.; Coors, T.; Poll, G. Studies on the influence of residual stresses on the fatigue life of rolling bearings in dependence on the production processes. Front. Mech. Eng. 2020, 6, 56. [Google Scholar] [CrossRef]
- Revel, P.; Khanfir, H.; Fillit, R.-Y. Surface characterization of aluminum alloys after diamond turning. J. Mater. Process. Technol. 2006, 178, 154–161. [Google Scholar] [CrossRef]
- Jouini, N.; Revel, P.; Bigerelle, M. Relevance of roughness parameters of surface finish in precision hard turning. Scanning 2014, 36, 86–94. [Google Scholar] [CrossRef]
- Jouini, N.; Revel, P.; Thoquenne, G. Influence of surface integrity on fatigue life of bearing rings finished by precision hard turning and grinding. J. Manuf. Process. 2020, 57, 444–451. [Google Scholar] [CrossRef]
- EN-15305; Non-destructive Testing—Test Method for Residual Stress analysis by X-ray Diffraction. British Standard: London, UK, 2009.
- Attanasio, A.; Umbrello, D.; Cappellini, C.; Rotella, G.; M’Saoubi, R. Tool wear effects on white and dark layer formation in hard turning of AISI 52100 steel. Wear 2012, 286–287, 98–107. [Google Scholar] [CrossRef]
- Čilliková, M.; Mičietová, A.; Čep, R.; Jacková, M.; Minárik, P.; Neslušan, M.; Kouřil, K. Analysis of surface state after turning of high tempered bearing steel. Materials 2022, 15, 1718. [Google Scholar] [CrossRef]
- Schwach, D.W.; Guo, Y.B. A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue. Int. J. Fatigue 2006, 28, 1838–1844. [Google Scholar] [CrossRef]
- Guo, Y.B.; Sahni, J. A comparative study of hard turned and cylindrically ground white layers. Int. J. Mach. Tools Manuf. 2004, 44, 135–145. [Google Scholar] [CrossRef]
- Barbacki, A.; Kawalec, M.; Hamrol, A. Turning and grinding as a source of microstructural changes in the surface layer of hardened steel. J. Mater. Process. Technol. 2003, 133, 21–25. [Google Scholar] [CrossRef]
- Hosseini, S.B.; Ryttberg, K.; Kaminski, J.; Klement, U. Characterization of the surface integrity induced by hard turning of bainitic and martensitic AISI 52100 steel. Procedia CIRP 2012, 1, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Pape, F.; Neubauer, T.; Maiß, O.; Denkena, B.; Poll, G. Influence of residual stresses introduced by manufacturing processes on bearing endurance time. Tribol. Lett. 2017, 65, 70. [Google Scholar] [CrossRef]
- Breidenstein, B.; Denkena, B.; Krödel, A.; Prasanthan, V.; Poll, G.; Pape, F.; Coors, T. Production-related surface and subsurface properties and fatigue life of hybrid roller bearing components. Metals 2020, 10, 1339. [Google Scholar] [CrossRef]
- Voskamp, A.P.; Österlund, R.; Becker, P.C.; Vingsbo, O. Gradual changes in residual stress and microstructure during contact fatigue in ball bearings. Met. Technol. 1980, 7, 14–21. [Google Scholar] [CrossRef]
- Voskamp, A.P. Microstructural Changes During Rolling Contact Fatigue. Ph.D. Thesis, Technical University of Delft, Delft, The Netherlands, 1996. [Google Scholar]
Parameter | Value |
---|---|
Chemical composition (wt%) | 1.040% C; 0.32% Si; 0.34% Mn; 0.04% Ni; 1.52% Cr; 0.007% Mo. |
Young’s modulus E (GPa) | 210 |
Poisson ratio | 0.3 |
Hardness (HRC) | 61 ± 1 |
Normal Load (daN) | ||
---|---|---|
600 | 1100 | |
Initial Hertzian pressure (GPa) | 3.8 | 4.5 |
Hertzian pressure after running-in (GPa) | 3.6 | 3.8 |
RCF life (number of cycles) | 2.6 × 106 | 1.3 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jouini, N.; Revel, P.; Thoquenne, G. Investigation of Surface Integrity Induced by Various Finishing Processes of AISI 52100 Bearing Rings. Materials 2022, 15, 3710. https://doi.org/10.3390/ma15103710
Jouini N, Revel P, Thoquenne G. Investigation of Surface Integrity Induced by Various Finishing Processes of AISI 52100 Bearing Rings. Materials. 2022; 15(10):3710. https://doi.org/10.3390/ma15103710
Chicago/Turabian StyleJouini, Nabil, Philippe Revel, and Guillaume Thoquenne. 2022. "Investigation of Surface Integrity Induced by Various Finishing Processes of AISI 52100 Bearing Rings" Materials 15, no. 10: 3710. https://doi.org/10.3390/ma15103710
APA StyleJouini, N., Revel, P., & Thoquenne, G. (2022). Investigation of Surface Integrity Induced by Various Finishing Processes of AISI 52100 Bearing Rings. Materials, 15(10), 3710. https://doi.org/10.3390/ma15103710