Changes on the Surface of the SiO2/C Composite, Leading to the Formation of Conductive Carbon Structures with Complex Nature of DC Conductivity
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Preparation of Layers
2.2. Characterization
3. Results and Discussion
3.1. Raman Spectroscopy
- The first one is located at 1604, 1608, and 1602 cm−1 for samples sintered at 600, 800, and 1000 °C, respectively. It comes from nanocrystalline graphite (NG) and is upshifted in samples sintered at 600 °C and 800 °C because of the small contribution of the D’ peak. With the rising temperature, graphene planes grow mainly in the planar direction, which explains the contribution to growth of in-plane defect mode D’. Only in the sample sintered at 1000 °C was it possible to separate the D’ peak, located at 1617 cm−1.
- The third G peak is at 1526, 1543, and 1553 cm−1 for samples sintered at 600, 800, and 1000 °C, respectively, and can be assigned to a:CH. The higher the temperature, the more upshifted the G peak is. This slight upshift can be a result of larger tension in bonds [22].
3.2. FTIR Spectroscopy
3.3. SEM and EDS
3.4. XPS Analysis
3.5. Electric Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Katumba, G.; Lu, J.; Olumekor, L.; Westin, G.; Wäckelgård, E. Low cost selective solar absorber coatings: Characteristics of carbon-in-silica synthesized with sol-gel technique. J. Sol Gel Sci. Technol. 2005, 36, 33–43. [Google Scholar] [CrossRef]
- Nasir, S.; Hussein, M.Z.; Zainal, Z.; Yusof, N.A. Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties and some applications. Materials 2018, 11, 295. [Google Scholar] [CrossRef] [PubMed]
- Karthik, P.S.; Himaja, A.L.; Singh, S.P. Carbon-allotropes: Synthesis methods, applications and future perspectives. Carbon Lett. 2014, 15, 219–237. [Google Scholar] [CrossRef]
- Robertson, J. Amorphous carbon. Adv. Phys. 1986, 35, 317–374. [Google Scholar] [CrossRef]
- Buckley, A.M.; Greenblatt, M. The sol-gel preparation of silica gels. J. Chem. Educ. 1994, 71, 599–602. [Google Scholar] [CrossRef]
- Dislich, H.; Hinz, P. History and principles of the sol-gel process, and some new multicomponent oxide coatings. J. Non. Cryst. Solids 1982, 48, 11–16. [Google Scholar] [CrossRef]
- Mai, L.; Tian, X.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862. [Google Scholar] [CrossRef]
- Deng, D. Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 2015, 3, 385–418. [Google Scholar] [CrossRef]
- Phadatare, M.; Patil, R.; Blomquist, N.; Forsberg, S.; Örtegren, J.; Hummelgård, M.; Meshram, J.; Hernández, G.; Brandell, D.; Leifer, K.; et al. Silicon-Nanographite Aerogel-Based Anodes for High Performance Lithium Ion Batteries. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Dufresne, C.D.M.; King, P.L.; Dyar, M.D.; Dalby, K.N. Effect of SiO2, total FeO, Fe3+/Fe2+ and alkali elements in basaltic glasses on mid-infrared spectra. Am. Miner. 2009, 94, 1580–1590. [Google Scholar] [CrossRef]
- Brasil, M.C.; Benvenutti, E.V.; Gregório, J.R.; Gerbase, A.E. Iron acetylacetonate complex anchored on silica xerogel polymer. React. Funct. Polym. 2005, 63, 135–141. [Google Scholar] [CrossRef]
- Ahlskog, M.; Reghu, M.; Heeger, A.J. The temperature dependence of the conductivity in the critical regime of the metal-insulator transition in conducting polymers. J. Phys. Condens. Matter 1997, 9, 4145–4156. [Google Scholar] [CrossRef]
- Ahlskog, M.; Reghu, M. Magnetoconductivity in doped poly (p-phenylenevinylene). J. Phys. Condens. Matter 1998, 833, 833–845. [Google Scholar] [CrossRef]
- Hulea, I.N.; Brom, H.B.; Mukherjee, A.K.; Menon, R. Doping, density of states, and conductivity in polypyrrole and poly (p-phenylene vinylene). Phys. Rev. B Condens. Matter Mater. Phys. 2005, 72, 3–6. [Google Scholar] [CrossRef]
- Kaneko, H.; Ishiguro, T. Electrical conductance in metallic phases of fully doped polyacetylene. Synth. Met. 1994, 65, 141–148. [Google Scholar] [CrossRef]
- Sakamoto, A.; Furukawa, Y.; Tasumi, M.; Noguchi, T.; Ohnishi, T. Resonance Raman spectra of SO3-doped poly(p-phenylenevinylene). Synth. Met. 1995, 69, 439–440. [Google Scholar] [CrossRef]
- Mertens, R.; Nagels, P.; Callaerts, R.; Briers, J.; Geise, H.J. Electrical conductivity of poly(paraphenylene vinylene) films doped with FeCl3. Synth. Met. 2020, 57, 3538–3543. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef]
- Chu, P.K.; Li, L. Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. 2006, 96, 253–277. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Maghsoumi, A.; Brambilla, L.; Castiglioni, C.; Müllen, K.; Tommasini, M. Overtone and combination features of G and D peaks in resonance Raman spectroscopy of the C78H26 polycyclic aromatic hydrocarbon. J. Raman Spectrosc. 2015, 46, 757–764. [Google Scholar] [CrossRef]
- Castiglioni, C.; Tommasini, M.; Zerbi, G. Raman spectroscopy of polyconjugated molecules and materials: Confinement effect in one and two dimensions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2004, 362, 2425–2459. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2004, 362, 2477–2512. [Google Scholar] [CrossRef]
- Sulistyo, J.; Hata, T.; Marsoem, S.N. The Changes in Microstructure and Thermal Constant in Conversion of Carbonized Wood to Silicon Carbide Composite. Wood Res. J. 2015, 6, 30–36. [Google Scholar] [CrossRef]
- Caņado, L.G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y.A.; Mizusaki, H.; Jorio, A.; Coelho, L.N.; Magalhães-Paniago, R.; Pimenta, M.A. General equation for the determination of the crystallite size la of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 1–4. [Google Scholar] [CrossRef]
- Ali, M. Raman Characterization of Structural Properties of Thermally Modified Nanographite; Department of Physics, Umeå University: Umeå, Sweden, 2015. [Google Scholar]
- Qiu, Y.; Yu, Y.; Zhang, L.; Qian, Y.; Ouyang, Z. An investigation of reverse flotation separation of sericite from graphite by using a surfactant: MF. Minerals 2016, 6, 57. [Google Scholar] [CrossRef]
- Rubio, F.; Rubio, J.; Oteo, J.L. A FT-IR study of the hydrolysis of Tetraethylorthoselicate (TEOS). Spectrosc. Lett. 1998, 31, 199–219. [Google Scholar] [CrossRef]
- Miyazawa, T. Theory of normal vibrations of helical polymers and vibrational assignment of the infrared spectra of isotactic polypropylene. J. Polym. Sci. Part C Polym. Symp. 2007, 7, 59–84. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. Encycl. Anal. Chem. 2004, 10815–10837. [Google Scholar] [CrossRef]
- Tejedor-Tejedor, M.I.; Paredes, L.; Anderson, M.A. Evaluation of ATR-FTIR spectroscopy as an “in situ” tool for following the hydrolysis and condensation of alkoxysilanes under rich H2O conditions. Chem. Mater. 1998, 10, 3410–3421. [Google Scholar] [CrossRef]
- Sivakumar, S.; Ravisankar, R.; Raghu, Y.; Chandrasekaran, A.; Chandramohan, J. FTIR Spectroscopic Studies on Coastal Sediment Samples from Cuddalore District, Tamilnadu, India. Indian J. Adv. Chem. Sci. 2012, 1, 40–46. [Google Scholar]
- Veerasingam, S.; Venkatachalapathy, R. Estimation of carbonate concentration and characterization of marine sediments by Fourier Transform Infrared Spectroscopy. Infrared Phys. Technol. 2014, 66, 136–140. [Google Scholar] [CrossRef]
- Ojima, J. Determining of crystalline silica in respirable dust samples by Infrared Spectrophotometry in the presence of interferences. J. Occup. Health 2003, 45, 94–103. [Google Scholar] [CrossRef]
- Ganesan, K.; Ghosh, S.; Gopala Krishna, N.; Ilango, S.; Kamruddin, M.; Tyagi, A.K. A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures. Phys. Chem. Chem. Phys. 2016, 18, 22160–22167. [Google Scholar] [CrossRef]
- Johra, F.T.; Lee, J.W.; Jung, W.G. Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 2014, 20, 2883–2887. [Google Scholar] [CrossRef]
- Briggs, D.; Beamson, G. Primary and Secondary Oxygen-Induced C1s Binding Energy Shifts in X-ray Photoelectron Spectroscopy of Polymers. Anal. Chem. 1992, 64, 1729–1736. [Google Scholar] [CrossRef]
- Blume, R.; Rosenthal, D.; Tessonnier, J.P.; Li, H.; Knop-Gericke, A.; Schlögl, R. Characterizing Graphitic Carbon with X-ray Photoelectron Spectroscopy: A Step-by-Step Approach. ChemCatChem 2015, 7, 2871–2881. [Google Scholar] [CrossRef]
- Kim, S.G.; Lee, S.S.; Lee, E.; Yoon, J.; Lee, H.S. Kinetics of hydrazine reduction of thin films of graphene oxide and the determination of activation energy by the measurement of electrical conductivity. RSC Adv. 2015, 5, 102567–102573. [Google Scholar] [CrossRef]
- Whitener, K.E. Rapid synthesis of thin amorphous carbon films by sugar dehydration and dispersion. AIMS Mater. Sci. 2016, 3, 1309–1320. [Google Scholar] [CrossRef]
- Canevari, T.C.; Raymundo-Pereira, P.A.; Landers, R.; Benvenutti, E.V.; Machado, S.A.S. Sol-gel thin-film based mesoporous silica and carbon nanotubes for the determination of dopamine, uric acid and paracetamol in urine. Talanta 2013, 116, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Gardella, J.; Ferguson, S.A.; Chin, R.L. pi * <- pi Shakeup Satellites for the Analysis of Structure and Bonding in Aromatic Polymers by X-Ray Photoelectron Spectroscopy. Appl. Spectrosc. 1986, 40, 224–232. [Google Scholar] [CrossRef]
- Paparazzo, E.; Fanfoni, M.; Severini, E. Studies on the structure of the SiOx/SiO2 interface. Appl. Surf. Sci. 1992, 56–58, 866–872. [Google Scholar] [CrossRef]
- Finster, J. SiO2 in 6:3 (stishovite) and 4:2 Co-ordination—Characterization by core level spectroscopy (XPS/XAES). Surf. Interface Anal. 1988, 12, 309–314. [Google Scholar] [CrossRef]
- Brundle, C.R.; Chuang, T.J.; Wandelt, K. Core and valence level photoemission studies of iron oxide surfaces and the oxidation of iron. Surf. Sci. 1977, 68, 459–468. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Mott, N.F.; Davis, E.A. Electronic Processes In Non-Crystalline Material; Oxford University Press: New York, NY, USA, 1979; ISBN 978-0-19-964533-6. [Google Scholar]
- Lee, P.A.; Ramakrishnan, T.V. Disordered electronic systems. Rev. Mod. Phys. 1985, 57, 287–337. [Google Scholar] [CrossRef]
- Le, T.H.; Kim, Y.; Yoon, H. Electrical and electrochemical properties of conducting polymers. Polymers 2017, 9, 150. [Google Scholar] [CrossRef]
- Malhotra, B.D. Handbook of Polymers in Electronics; Rapra Technology Limited: Shawbury, UK, 2002; ISBN 1859572863. [Google Scholar]
- Bourdo, S.E.; Warford, B.A.; Viswanathan, T. Electrical and thermal properties of graphite/polyaniline composites. J. Solid State Chem. 2012, 196, 309–313. [Google Scholar] [CrossRef]
- Wang, Y.J.; Pan, Y.; Zhang, X.W.; Tan, K. Impedance spectra of carbon black filled high-density polyethylene composites. J. Appl. Polym. Sci. 2005, 98, 1344–1350. [Google Scholar] [CrossRef]
- Jović, N.; Dudić, D.; Montone, A.; Antisari, M.V.; Mitrić, M.; Djoković, V. Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scr. Mater. 2008, 58, 846–849. [Google Scholar] [CrossRef]
- Menon, R.; Yoon, C.O.; Moses, D.; Heeger, A.J.; Cao, Y. Transport in polyaniline near the critical regime of the metal-insulator transition. Phys. Rev. B 1993, 48, 17685–17694. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Bin, Y.; Chen, R.; Matsuo, M. Evaluation by tunneling effect for the temperature-dependent electric conductivity of polymer-carbon fiber composites with visco-elastic properties. Polym. J. 2013, 45, 1120–1134. [Google Scholar] [CrossRef]
- Matsuo, M.; Bin, Y.; Xu, C.; Ma, L.; Nakaoki, T.; Suzuki, T. Relaxation mechanism in several kinds of polyethylene estimated by dynamic mechanical measurements, positron annihilation, X-ray and 13C solid-state NMR. Polymer 2003, 44, 4325–4340. [Google Scholar] [CrossRef]
- Mertens, M.; Lin, I.N.; Manoharan, D.; Moeinian, A.; Brühne, K.; Fecht, H.J. Structural properties of highly conductive ultra-nanocrystalline diamond films grown by hot-filament CVD. AIP Adv. 2017, 7. [Google Scholar] [CrossRef]
- Sharma, S.; Shyam Kumar, C.N.; Korvink, J.G.; Kübel, C. Evolution of Glassy Carbon Microstructure: In Situ Transmission Electron Microscopy of the Pyrolysis Process. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
Atomic Percent (±1%) | |||
---|---|---|---|
Element | 600 °C | 800 °C | 1000 °C |
C | 19% | 43% | 0% |
O | 54% | 34% | 61% |
Si | 25% | 22% | 36% |
Fe | 3% | 2% | 3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okoczuk, P.; Łapiński, M.; Miruszewski, T.; Kupracz, P.; Wicikowski, L. Changes on the Surface of the SiO2/C Composite, Leading to the Formation of Conductive Carbon Structures with Complex Nature of DC Conductivity. Materials 2021, 14, 2158. https://doi.org/10.3390/ma14092158
Okoczuk P, Łapiński M, Miruszewski T, Kupracz P, Wicikowski L. Changes on the Surface of the SiO2/C Composite, Leading to the Formation of Conductive Carbon Structures with Complex Nature of DC Conductivity. Materials. 2021; 14(9):2158. https://doi.org/10.3390/ma14092158
Chicago/Turabian StyleOkoczuk, Piotr, Marcin Łapiński, Tadeusz Miruszewski, Piotr Kupracz, and Leszek Wicikowski. 2021. "Changes on the Surface of the SiO2/C Composite, Leading to the Formation of Conductive Carbon Structures with Complex Nature of DC Conductivity" Materials 14, no. 9: 2158. https://doi.org/10.3390/ma14092158
APA StyleOkoczuk, P., Łapiński, M., Miruszewski, T., Kupracz, P., & Wicikowski, L. (2021). Changes on the Surface of the SiO2/C Composite, Leading to the Formation of Conductive Carbon Structures with Complex Nature of DC Conductivity. Materials, 14(9), 2158. https://doi.org/10.3390/ma14092158