Two-Step Synthesis of Bismuth-Based Hybrid Halide Perovskite Thin-Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of MABI Thin Films
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, H.; Dong, B.; Zhang, W. Low-toxic metal halide perovskites: Opportunities and future challenges. J. Mater. Chem. A 2017, 5, 11436–11449. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, Z.; Xiu, J.; Song, H.; Gatti, T.; He, Z. A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: Recent advances and challenges. J. Mater. Chem. A 2020, 8, 16166–16188. [Google Scholar] [CrossRef]
- Trifiletti, V.; Asker, C.; Tseberlidis, G.; Riva, S.; Zhao, K.; Tang, W.; Binetti, S.; Fenwick, O. Quasi-zero dimensional halide perovskite derivates: Synthesis, status, and opportunity. Front. Electron. 2021, 2, 758603. [Google Scholar] [CrossRef]
- Chu, L. Pseudohalide anion engineering for highly efficient and stable perovskite solar cells. Matter 2021, 4, 1762–1764. [Google Scholar] [CrossRef]
- Chu, L.; Ahmad, W.; Liu, W.; Yang, J.; Zhang, R.; Sun, Y.; Yang, J.; Li, X. Lead-free halide double perovskite materials: A new superstar toward green and stable optoelectronic applications. Nano-Micro Lett. 2019, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, K.; Zou, B. Bismuth halide perovskite-like materials: Current opportunities and challenges. ChemSusChem 2019, 12, 1612–1630. [Google Scholar] [CrossRef] [PubMed]
- Scholz, M.; Flender, O.; Oum, K.; Lenzer, T. Pronounced exciton dynamics in the vacancy-ordered bismuth halide perovskite (CH3NH3)3Bi2I9 observed by ultrafast uv–vis–nir transient absorption spectroscopy. J. Phys. Chem. C 2017, 121, 12110–12116. [Google Scholar] [CrossRef]
- Sarkar, A.; Acharyya, P.; Sasmal, R.; Pal, P.; Agasti, S.S.; Biswas, K. Synthesis of ultrathin few-layer 2d nanoplates of halide perovskite Cs3Bi2I9 and single-nanoplate super-resolved fluorescence microscopy. Inorg. Chem. 2018, 57, 15558–15565. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Anaya, M.; Abfalterer, A.; Stranks, S.D. Halide perovskite light-emitting diode technologies. Adv. Opt. Mater. 2021, 9, 2002128. [Google Scholar] [CrossRef]
- Long, X.; Pan, Z.; Zhang, Z.; Urban, J.J.; Wang, H. Solvent-free synthesis of organometallic halides CH3NH3PbI3 and (CH3NH3)3Bi2I9 and their thermoelectric transport properties. Appl. Phys. Lett. 2019, 115, 072104. [Google Scholar] [CrossRef]
- Tie, S.; Zhao, W.; Xin, D.; Zhang, M.; Long, J.; Chen, Q.; Zheng, X.; Zhu, J.; Zhang, W.H. Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit. Adv. Mater. 2020, 32, e2001981. [Google Scholar] [CrossRef]
- Zhang, M.; Xin, D.; Zheng, X.; Chen, Q.; Zhang, W.-H. Toward greener solution processing of perovskite solar cells. ACS Sustain. Chem. Eng. 2020, 8, 13126–13138. [Google Scholar] [CrossRef]
- Park, B.W.; Philippe, B.; Zhang, X.; Rensmo, H.; Boschloo, G.; Johansson, E.M. Bismuth based hybrid perovskites A3Bi2I9 (a: Methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806–6813. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Kulkarni, A.; Ikegami, M.; Miyasaka, T. Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3 Bi2I9 for photovoltaic applications. ACS Appl. Mater. Interfaces 2016, 8, 14542–14547. [Google Scholar] [CrossRef] [PubMed]
- Abulikemu, M.; Ould-Chikh, S.; Miao, X.; Alarousu, E.; Murali, B.; Ngongang Ndjawa, G.O.; Barbé, J.; El Labban, A.; Amassian, A.; Del Gobbo, S. Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9. J. Mater. Chem. A 2016, 4, 12504–12515. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Payne, J.; Irvine, J.T.S.; Pal, A.J. Bandgap bowing in a zero-dimensional hybrid halide perovskite derivative: Spin–orbit coupling versus lattice strain. J. Mater. Chem. A 2020, 8, 4416–4427. [Google Scholar] [CrossRef]
- Ahmad, K.; Ansari, S.N.; Natarajan, K.; Mobin, S.M. A (CH3NH3)3Bi2I9 perovskite based on a two-step deposition method: Lead-free, highly stable, and with enhanced photovoltaic performance. ChemElectroChem 2019, 6, 1192–1198. [Google Scholar] [CrossRef]
- Baranwal, A.K.; Masutani, H.; Sugita, H.; Kanda, H.; Kanaya, S.; Shibayama, N.; Sanehira, Y.; Ikegami, M.; Numata, Y.; Yamada, K.; et al. Lead-free perovskite solar cells using sb and bi-based A3B2X9 and A3BX6 crystals with normal and inverse cell structures. Nano Converg. 2017, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Trifiletti, V.; Cannavale, A.; Listorti, A.; Rizzo, A.; Colella, S. Sequential deposition of hybrid halide perovskite starting both from lead iodide and lead chloride on the most widely employed substrates. Thin Solid Films 2018, 657, 110–117. [Google Scholar] [CrossRef]
- Hamdeh, U.H.; Nelson, R.D.; Ryan, B.J.; Bhattacharjee, U.; Petrich, J.W.; Panthani, M.G. Solution-processed bii3 thin films for photovoltaic applications: Improved carrier collection via solvent annealing. Chem. Mater. 2016, 28, 6567–6574. [Google Scholar] [CrossRef] [Green Version]
- Banik, A.; Bohannan, E.W.; Switzer, J.A. Epitaxial electrodeposition of bii3 and topotactic conversion to highly ordered solar light-absorbing perovskite (CH3NH3)3Bi2I9. Chem. Mater. 2020, 32, 8367–8372. [Google Scholar] [CrossRef]
- Coutinho, N.F.; Cucatti, S.; Merlo, R.B.; Silva Filho, J.M.C.; Villegas, N.F.B.; Alvarez, F.; Nogueira, A.F.; Marques, F.C. The thermomechanical properties of thermally evaporated bismuth triiodide thin films. Sci. Rep. 2019, 9, 11785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Wan, L.; Kong, M.; Hu, H.; Gan, Y.; Wang, J.; Chen, F.; Guo, Z.; Eder, D.; Wang, S. Influence of rutile-TiO2 nanorod arrays on pb-free (CH3NH3)3Bi2I9-based hybrid perovskite solar cells fabricated through two-step sequential solution process. J. Alloys Compd. 2018, 738, 422–431. [Google Scholar] [CrossRef]
- Ran, C.; Wu, Z.; Xi, J.; Yuan, F.; Dong, H.; Lei, T.; He, X.; Hou, X. Construction of compact methylammonium bismuth iodide film promoting lead-free inverted planar heterojunction organohalide solar cells with open-circuit voltage over 0.8 v. J. Phys. Chem. Lett. 2017, 8, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Eckhardt, K.; Bon, V.; Getzschmann, J.; Grothe, J.; Wisser, F.M.; Kaskel, S. Crystallographic insights into (CH3NH3)3(Bi2I9): A new lead-free hybrid organic-inorganic material as a potential absorber for photovoltaics. Chem. Commun. 2016, 52, 3058–3060. [Google Scholar] [CrossRef] [Green Version]
- Lyu, M.; Yun, J.-H.; Cai, M.; Jiao, Y.; Bernhardt, P.V.; Zhang, M.; Wang, Q.; Du, A.; Wang, H.; Liu, G.; et al. Organic–inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 2016, 9, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Öz, S.; Hebig, J.-C.; Jung, E.; Singh, T.; Lepcha, A.; Olthof, S.; Jan, F.; Gao, Y.; German, R.; van Loosdrecht, P.H.M.; et al. Zero-dimensional (CH3NH3)3Bi2I9 perovskite for optoelectronic applications. Sol. Energy Mater. Sol. Cells 2016, 158, 195–201. [Google Scholar] [CrossRef]
- Bresolin, B.-M.; Hammouda, S.B.; Sillanpää, M. Methylammonium iodo bismuthate perovskite (CH3NH3)3Bi2I9 as new effective visible light-responsive photocatalyst for degradation of environment pollutants. J. Photochem. Photobiol. A Chem. 2019, 376, 116–126. [Google Scholar] [CrossRef]
- Hoefler, S.F.; Rath, T.; Fischer, R.; Latal, C.; Hippler, D.; Koliogiorgos, A.; Galanakis, I.; Bruno, A.; Fian, A.; Dimopoulos, T.; et al. A zero-dimensional mixed-anion hybrid halogenobismuthate(III) semiconductor: Structural, optical, and photovoltaic properties. Inorg. Chem. 2018, 57, 10576–10586. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, J.; Ratnasingham, S.; Liscio, F.; Chen, K.; Liu, T.; Wan, K.; Galindez, E.S.; Bilotti, E.; Reece, M.; et al. Substitutional doping of hybrid organic–inorganic perovskite crystals for thermoelectrics. J. Mater. Chem. A 2020, 8, 13594–13599. [Google Scholar] [CrossRef]
- McGettrick, J.D.; Hooper, K.; Pockett, A.; Baker, J.; Troughton, J.; Carnie, M.; Watson, T. Sources of Pb(0) artefacts during xps analysis of lead halide perovskites. Mater. Lett. 2019, 251, 98–101. [Google Scholar] [CrossRef]
BiI3—Thickness (nm) | Deviation (%) | Dipping Time (min) | MABI—Thickness (nm) | Deviation (%) |
---|---|---|---|---|
50 | 2 | 5 | 100 | 8 |
50 | 2 | 10 | 140 | 8 |
50 | 2 | 15 | 180 | 9 |
50 | 2 | 20 | 250 | 9 |
50 | 2 | 25 | 275 | 9 |
100 | 2 | 5 | 150 | 10 |
100 | 2 | 10 | 200 | 10 |
100 | 2 | 15 | 260 | 10 |
100 | 2 | 20 | 275 | 10 |
100 | 2 | 25 | 350 | 10 |
250 | 3 | 5 | 500 | 9 |
250 | 3 | 10 | 550 | 9 |
250 | 3 | 15 | 700 | 10 |
250 | 3 | 20 | 800 | 10 |
250 | 3 | 25 | 850 | 10 |
300 | 3 | 5 | 600 | 8 |
300 | 3 | 10 | 700 | 7 |
300 | 3 | 15 | 800 | 7 |
300 | 3 | 20 | 850 | 7 |
300 | 3 | 25 | 900 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trifiletti, V.; Luong, S.; Tseberlidis, G.; Riva, S.; Galindez, E.S.S.; Gillin, W.P.; Binetti, S.; Fenwick, O. Two-Step Synthesis of Bismuth-Based Hybrid Halide Perovskite Thin-Films. Materials 2021, 14, 7827. https://doi.org/10.3390/ma14247827
Trifiletti V, Luong S, Tseberlidis G, Riva S, Galindez ESS, Gillin WP, Binetti S, Fenwick O. Two-Step Synthesis of Bismuth-Based Hybrid Halide Perovskite Thin-Films. Materials. 2021; 14(24):7827. https://doi.org/10.3390/ma14247827
Chicago/Turabian StyleTrifiletti, Vanira, Sally Luong, Giorgio Tseberlidis, Stefania Riva, Eugenio S. S. Galindez, William P. Gillin, Simona Binetti, and Oliver Fenwick. 2021. "Two-Step Synthesis of Bismuth-Based Hybrid Halide Perovskite Thin-Films" Materials 14, no. 24: 7827. https://doi.org/10.3390/ma14247827