Lignosulfonate-Based Polyurethane Adhesives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. LS-Based Adhesive Synthesis
2.3. Adhesive Characterization
3. Results and Discussion
3.1. Chemical and Thermal Characterization of LS-Based PU Adhesives
3.2. Evaluation of the Adhesion Strength of LS-Based PU Adhesives
3.3. Kinetic Study of the Curing Process of LS-based PU Adhesive Containing PEG200
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, W.F. Wood-based composites and laminates. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons Inc.: New York, NY, USA, 2011; pp. 1–47. [Google Scholar]
- Stark, N.M.; Ai, Z.; Carll, C. Wood-based composite materials. In Wood Handbook: Wood as an Engineering Material; General Technical Report, FPL-GTR-190; Ross, R.J., Ed.; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; pp. 11.1–11.28. [Google Scholar]
- Frihart, C.R.; Hunt, C.G. Adhesives with wood materials. In Wood Handbook: Wood as an Engineering Material; General Technical Report FPL-GTR-190; Ross, R.J., Ed.; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; pp. 10.1–10.24. [Google Scholar]
- Ormondroyd, G.A. Adhesives for wood composites. In Wood Composites (Woodhead Publishing Series in Composites Science and Engineering); Elsevier Ltd.: Waltham, MA, USA, 2015; pp. 47–66. ISBN 9781782424772. [Google Scholar]
- Lithner, D.; Larsson, A.; Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 2011, 409, 3309–3324. [Google Scholar] [CrossRef]
- Pizzi, A. Natural adhesives, binders and matrices for wood and fiber composites: Chemistry and technology. In Lignocellulosic Fibers and Wood Handbook: Renewable Materials for Today’s Environment; Belgacem, N., Pizzi, A., Eds.; Scrivener Publishing LLC.: Hoboken, NJ, USA, 2016; pp. 277–303. [Google Scholar]
- Roffael, E. Volatile organic compounds and formaldehyde in nature, wood and wood based panels. Holz als Roh Werkst. 2006, 64, 144–149. [Google Scholar] [CrossRef]
- Engels, H.-W.; Pirkl, H.-G.; Albers, R.; Albach, R.W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges. Angew. Chem. Int. Ed. 2013, 52, 9422–9441. [Google Scholar] [CrossRef]
- Fink, J.K. Reactive Polymers: Fundamentals and Applications: A Concise Guide to Industrial Polymers; Elsevier Inc.: Waltham, MA, USA, 2018; pp. 71–138. ISBN 9780128145098. [Google Scholar]
- Janik, H.; Sienkiewicz, M.; Kucinska-lipka, J. Polyurethanes. In Handbook of Thermoset Plastics; Dodiuk, H., Goodman, S.H., Eds.; Elsevier Inc.: Waltham, MA, USA, 2014; pp. 253–295. ISBN 9781455731077. [Google Scholar]
- Gama, N.V.; Ferreira, A.; Barros-Timmons, A. Polyurethane Foams: Past, Present, and Future. Materials 2018, 11, 1841. [Google Scholar] [CrossRef] [Green Version]
- Grand View Research. Polyurethane Market Size, Share & Trends Analysis Report—Sample Report. Available online: https://www.grandviewresearch.com/industry-analysis/polyurethane-pu-market# (accessed on 7 October 2021).
- Gama, N.; Ferreira, A.; Timmons, A.B. Cure and performance of castor oil polyurethane adhesive. Int. J. Adhes. Adhes. 2019, 95, 102413. [Google Scholar] [CrossRef]
- Bresolin, D.; Valerio, A.; Oliveira, D.; Lenzi, M.K.; Sayer, C.; De Araújo, P.H.H. Polyurethane Foams Based on Biopolyols from Castor Oil and Glycerol. J. Polym. Environ. 2017, 26, 2467–2475. [Google Scholar] [CrossRef]
- Carriço, C.S.; Fraga, T.; Pasa, V.M. Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur. Polym. J. 2016, 85, 53–61. [Google Scholar] [CrossRef]
- Cinelli, P.; Anguillesi, I.; Lazzeri, A. Green synthesis of flexible polyurethane foams from liquefied lignin. Eur. Polym. J. 2013, 49, 1174–1184. [Google Scholar] [CrossRef]
- Tavares, L.B.; Boas, C.R.S.V.; Schleder, G.; Nacas, A.; Rosa, D.D.S.; Santos, L.T. Bio-based polyurethane prepared from Kraft lignin and modified castor oil. Express Polym. Lett. 2016, 10, 927–940. [Google Scholar] [CrossRef]
- Cassales, A.; Ramos, L.A.; Frollini, E. Synthesis of bio-based polyurethanes from Kraft lignin and castor oil with simultaneous film formation. Int. J. Biol. Macromol. 2019, 145, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Y.; Liang, H.; Liang, D.; Cao, H.; Liu, C.; Qian, Y.; Lu, Q.; Zhang, C. High bio-content castor oil based waterborne polyurethane/sodium lignosulfonate composites for environmental friendly UV absorption application. Ind. Crop. Prod. 2019, 142, 111836. [Google Scholar] [CrossRef]
- Ekkaphan, P.; Sooksai, S.; Chantarasiri, N.; Petsom, A. Bio-Based Polyols from Seed Oils for Water-Blown Rigid Polyurethane Foam Preparation. Int. J. Polym. Sci. 2016, 2016, 1–11. [Google Scholar] [CrossRef]
- Stirna, U.; Fridrihsone, A.; Lazdiņa, B.; Misane, M.; Vilsone, D. Biobased Polyurethanes from Rapeseed Oil Polyols: Structure, Mechanical and Thermal Properties. J. Polym. Environ. 2012, 21, 952–962. [Google Scholar] [CrossRef]
- Mizera, K.; Ryszkowska, J. Thermal properties of polyurethane elastomers from soybean oil-based polyol with a different isocyanate index. J. Elastomers Plast. 2018, 51, 157–174. [Google Scholar] [CrossRef]
- Gama, N.V.; Soares, B.; Freire, C.; Silva, R.; Ferreira, A.; Barros-Timmons, A. Effect of unrefined crude glycerol composition on the properties of polyurethane foams. J. Cell. Plast. 2017, 54, 633–649. [Google Scholar] [CrossRef]
- Alinejad, M.; Henry, C.; Nikafshar, S.; Gondaliya, A.; Bagheri, S.; Chen, N.; Singh, S.K.; Hodge, D.B.; Nejad, M. Lignin-Based Polyurethanes: Opportunities for Bio-Based Foams, Elastomers, Coatings and Adhesives. Polymers 2019, 11, 1202. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Gao, L.; Guo, W. Effect of incorporation of lignin as bio-polyol on the performance of rigid lightweight wood–polyurethane composite foams. J. Wood Sci. 2020, 66. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, J.; Da Costa, C.L.; Tavares, L.B.; Dos Santos, D.J. Synthesis of Lignin-Based Polyurethanes: A Mini-Review. Mini-Rev. Org. Chem. 2019, 16, 345–352. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, G.; Xu, J.; Gao, C.; Wu, Y. Recent advances on lignin-derived polyurethane polymers. Rev. Adv. Mater. Sci. 2015, 40, 146–154. [Google Scholar]
- Xu, C.; Ferdosian, F. Lignin-Based Polyurethane (PU) resins and foams. In Conversion of Lignin into Bio-Based Chemicals and Materials; Springer: Berlin/Heidelberg, Germany, 2017; pp. 133–156. ISBN 9783662549599. [Google Scholar]
- Li, H.; Liang, Y.; Li, P.; He, C. Conversion of biomass lignin to high-value polyurethane: A review. J. Bioresour. Bioprod. 2020, 5, 163–179. [Google Scholar] [CrossRef]
- De Oliveira, F.; Ramires, E.C.; Frollini, E.; Belgacem, M.N. Lignopolyurethanic materials based on oxypropylated sodium lignosulfonate and castor oil blends. Ind. Crop. Prod. 2015, 72, 77–86. [Google Scholar] [CrossRef]
- Kazzaz, A.E.; Feizi, Z.H.; Fatehi, P. Grafting strategies for hydroxy groups of lignin for producing materials. Green Chem. 2019, 21, 5714–5752. [Google Scholar] [CrossRef] [Green Version]
- Cateto, C.A.; Barreiro, M.F.; Ottati, C.; Lopretti, M.; Rodrigues, A.E.; Belgacem, M.N. Lignin-based rigid polyurethane foams with improved biodegradation. J. Cell. Plast. 2013, 50, 81–95. [Google Scholar] [CrossRef]
- Cateto, C.; Barreiro, M.; Rodrigues, A. Monitoring of lignin-based polyurethane synthesis by FTIR-ATR. Ind. Crop. Prod. 2008, 27, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Evtuguin, D.; Andreolety, J.; Gandini, A. Polyurethanes based on oxygen-organosolv lignin. Eur. Polym. J. 1998, 34, 1163–1169. [Google Scholar] [CrossRef]
- Gandini, A.; Belgacem, M.N.; Guo, Z.X.; Montanari, S. Lignins as macromonomers for polyesters and polyurethanes. In Chemical Modification, Properties, and Usage of Lignin; Hu, T.Q., Ed.; Springer Science & Business Media: New York, NY, USA, 2002; pp. 57–80. ISBN 9781461351733. [Google Scholar]
- Hatakeyama, H. Polyurethanes containing lignin. In Chemical Modification, Properties, and Usage of Lignin; Hu, T.Q., Ed.; Springer Science & Business Media: New York, NY, USA, 2002; pp. 41–56. ISBN 978-1-4613-5173-3. [Google Scholar]
- Llovera, L.; Benjelloun-Mlayah, B.; Delmas, M. Organic Acid Lignin-based Polyurethane Films: Synthesis Parameter Optimization. BioResources 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liao, J.; Fang, X.; Bai, F.; Qiao, K.; Wang, L. Renewable High-Performance Polyurethane Bioplastics Derived from Lignin–Poly(ε-caprolactone). ACS Sustain. Chem. Eng. 2017, 5, 4276–4284. [Google Scholar] [CrossRef]
- Lang, J.M.; Shrestha, U.M.; Dadmun, M. The Effect of Plant Source on the Properties of Lignin-Based Polyurethanes. Front. Energy Res. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Griffini, G.; Passoni, V.; Suriano, R.; Levi, M.; Turri, S. Polyurethane Coatings Based on Chemically Unmodified Fractionated Lignin. ACS Sustain. Chem. Eng. 2015, 3, 1145–1154. [Google Scholar] [CrossRef]
- Nacas, A.M.; Ito, N.M.; de Sousa, R.R., Jr.; Spinacé, M.A.; Dos Santos, D.J. Effects of NCO:OH ratio on the mechanical properties and chemical structure of Kraft lignin–based polyurethane adhesive. J. Adhes. 2016, 93, 18–29. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X. Applications of Kinetic Methods in Thermal Analysis: A Review. Eng. Sci. 2020, 14, 1–13. [Google Scholar] [CrossRef]
- Marques, A.P.; Evtuguin, D.; Magina, S.; Amado, F.; Prates, A. Chemical Composition of Spent Liquors from Acidic Magnesium–Based Sulphite Pulping ofEucalyptus globulus. J. Wood Chem. Technol. 2009, 29, 322–336. [Google Scholar] [CrossRef]
- Fatehi, P.; Ni, Y. Integrated forest biorefinery—Sulfite process. In Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass (ACS Symposium Series); Zhu, J., Zhang, X., Pan, X., Eds.; American Chemical Society: Washington, DC, USA, 2011; Volume 1067, pp. 409–441. ISBN 9780841226432. [Google Scholar]
- Pereira, S.; Portugal-Nunes, D.J.; Evtuguin, D.; Serafim, L.; Xavier, A.M. Advances in ethanol production from hardwood spent sulphite liquors. Process. Biochem. 2013, 48, 272–282. [Google Scholar] [CrossRef]
- Magina, S.; Barros-Timmons, A.; Evtuguin, D.V. Changes in potentialities of acidic sulphite pulping spent liquors while re-profiling mill from paper-grade to dissolving pulps. In Proceedings of the 15th European Workshop on Lignocellulosics and Pulp (EWLP2018)—Posters Presentations, Aveiro, Portugal, 26–29 June 2018; pp. 303–306. [Google Scholar]
- Gautam, R.; Vanga, S.; Ariese, F.; Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2015, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Royall, P.G.; Huang, C.-Y.; Tang, S.-W.J.; Duncan, J.; Van-De-Velde, G.; Brown, M. The development of DMA for the detection of amorphous content in pharmaceutical powdered materials. Int. J. Pharm. 2005, 301, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Gmelin, E.; Sarge, S.M. Calibration of differential scanning calorimeters. Pure Appl. Chem. 1995, 67, 1789–1800. [Google Scholar] [CrossRef] [Green Version]
- Martins, J.A.; Cruz-Pinto, J.J.C. The temperature calibration on cooling of differential scanning calorimeters. Thermochim. Acta 1999, 332, 179–188. [Google Scholar] [CrossRef]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin Biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef]
- Calvo-Flores, F.G. Lignin: A Renewable Raw Material. Encycl. Renew. Sustain. Mater. 2020, 1–20. [Google Scholar] [CrossRef]
- Agarwal, U.P.; Atalla, R.H. Vibrational spectroscopy. In Lignin and Lignans: Advances in Chemistry; Heitner, C., Dimmel, D., Schmidt, J.A., Eds.; Taylor and Francis Group, LLC.: Boca Raton, FL, USA, 2010; pp. 103–136. ISBN 9781574444865. [Google Scholar]
- Hergert, H.L. Infrared spectra. In Lignins: Occurrence, Formation, Structure and Reactions; Sarkanen, K.V., Ludwig, C.H., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1971; pp. 267–297. ISBN 978-0471754220. [Google Scholar]
- Tejado, A.; Kortaberria, G.; Peña, C.; Labidi, J.; Echeverria, J.; Mondragon, I. Isocyanate curing of novolac-type ligno-phenol–formaldehyde resins. Ind. Crop. Prod. 2008, 27, 208–213. [Google Scholar] [CrossRef]
- Bellamy, L.J. The infrared spectra of complex molecules. In Advances in Infrared Group Frequencies, 2nd ed.; Chapmanand Hall: London, UK; New York, NY, USA, 1980; Volume 2, ISBN 978-94-011-6522-8. [Google Scholar]
- Jakab, E.; Faix, O.; Till, F.; Székely, T. Thermogravimetry/Mass Spectrometry of Various Lignosulfonates as well as of a Kraft and Acetosolv Lignin. Holzforschung 1991, 45, 355–360. [Google Scholar] [CrossRef]
- Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cellul. Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Zou, J.; Chen, Y.; Liang, M.; Zou, H. Effect of hard segments on the thermal and mechanical properties of water blown semi-rigid polyurethane foams. J. Polym. Res. 2015, 22, 120. [Google Scholar] [CrossRef]
- Menard, K. Dynamic Mechanical Analysis: A Practical Introduction, 2nd ed.; CRC Press, Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2008; ISBN 9781420053128. [Google Scholar]
- Sundararajan, S.; Kumar, A.; Chakraborty, B.C.; Samui, A.B.; Kulkarni, P.S. Poly(ethylene glycol) (PEG)-modified epoxy phase-change polymer with dual properties of thermal storage and vibration damping. Sustain. Energy Fuels 2018, 2, 688–697. [Google Scholar] [CrossRef]
- Boonlert-Uthai, T.; Samthong, C.; Somwangthanaroj, A. Synthesis, Thermal Properties and Curing Kinetics of Hyperbranched BPA/PEG Epoxy Resin. Polymers 2019, 11, 1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, H.; Mörck, R.; Kringstad, K.P.; Hatakeyama, H. Kraft lignin in polyurethanes. II. Effects of the molecular weight of kraft lignin on the properties of polyurethanes from a kraft lignin–polyether triol–polymeric MDI system. J. Appl. Polym. Sci. 1990, 40, 1819–1832. [Google Scholar] [CrossRef]
- Hunt, C.; Frihart, C.R.; Dunky, M.; Rohumaa, A. Understanding Wood Bonds–Going Beyond What Meets the Eye: A Critical Review. Rev. Adhes. Adhes. 2018, 6, 369–440. [Google Scholar] [CrossRef]
- Thring, R.W.; Ni, P.; Aharoni, S.M. Molecular weight effects of the soft segment on the ultimate properties of lignin-derived polyurethanes. Int. J. Polym. Mater. 2004, 53, 507–524. [Google Scholar] [CrossRef]
- Frihart, C.R.; Lorenz, L. Standard Test Method ASTM D 7998-19 for the Cohesive Strength Development of Wood Adhesives. J. Vis. Exp. 2020, e61184. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Kalita, H.; Mohanty, S.; Nayak, S.K. Meticulous study on curing kinetics of green polyurethane-clay nanocomposite adhesive derived from plant oil: Evaluation of decomposition activation energy using TGA analysis. J. Macromol. Sci. Part A 2017, 54, 819–826. [Google Scholar] [CrossRef]
- Singh, A.K.; Panda, B.P.; Mohanty, S.; Nayak, S.K.; Gupta, M.K. Thermokinetics behavior of epoxy adhesive reinforced with low viscous aliphatic reactive diluent and nano-fillers. Korean J. Chem. Eng. 2017, 34, 3028–3040. [Google Scholar] [CrossRef]
- Thanki, J.D.; Parsania, P.H. Dynamic DSC curing kinetics and thermogravimetric study of epoxy resin of 9,9′-bis(4-hydroxyphenyl)anthrone-10. J. Therm. Anal. Calorim. 2017, 130, 2145–2156. [Google Scholar] [CrossRef]
Formulation | LS (mg) | H2O (μL) | PEG200 (μL) | DBTDL (μL) | MDI (mg) | NCO/OH Molar Ratio * |
---|---|---|---|---|---|---|
1 | 500 | 400 | 0 | 50 | 900 | 3.2:1 |
2 | 500 | 400 | 50 | 50 | 900 | 2.6:1 |
3 | 500 | 400 | 100 | 50 | 900 | 2.2:1 |
4 | 500 | 400 | 150 | 50 | 900 | 1.9:1 |
5 | 500 | 400 | 0 | 50 | 1000 | 3.6:1 |
6 | 500 | 400 | 50 | 50 | 1000 | 2.9:1 |
7 | 500 | 400 | 100 | 50 | 1000 | 2.4:1 |
8 | 500 | 400 | 150 | 50 | 1000 | 2.1:1 |
Band (cm−1) | Assignment |
---|---|
3600–3200 | O–H stretching; N–H stretching (urethane group) |
2908/2842 | C–H stretching in –CH2–, –CH3 and O–CH3 groups |
2262 | C–N stretching (isocyanate group) |
1766 | C=O stretching (urethane group) |
1644 | C=O stretching (isocyanate group) |
1590 | N–H deformation (isocyanate group), lignin aromatic group |
1504 | N–H bending (urethane group), lignin aromatic group |
1406 | C–N stretching in amide (urethane group) |
1302 | C–N stretching (urethane group) |
1216 | C–N stretching (urethane group) |
1036 | C–O stretching in aliphatic OH |
808 | C–H deformation out-of-plane, aromatic ring |
α | Kissinger | Ozawa | ||
---|---|---|---|---|
Equation | R2 | Equation | R2 | |
0.1 | y = −6.582x + 12.811 | 0.940 | y = −7.186x + 26.232 | 0.950 |
0.2 | y = −6.395x + 11.283 | 0.962 | y = −7.022x + 24.780 | 0.969 |
0.3 | y = −6.643x + 11.424 | 0.980 | y = −7.287x + 24.974 | 0.983 |
0.4 | y = −7.122x + 12.378 | 0.983 | y = −7.779x + 25.968 | 0.986 |
0.5 | y = −7.677x + 13.604 | 0.967 | y = −8.346x + 27.228 | 0.972 |
0.6 | y = −8.186x + 14.712 | 0.934 | y = −8.864x + 28.365 | 0.943 |
0.7 | y = −8.599x + 15.545 | 0.889 | y = −9.286x + 29.224 | 0.903 |
0.8 | y = −8.879x + 15.979 | 0.839 | y = −9.576x + 29.686 | 0.858 |
0.9 | y = −8.845x + 15.459 | 0.773 | y = −9.552x + 29.197 | 0.799 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magina, S.; Gama, N.; Carvalho, L.; Barros-Timmons, A.; Evtuguin, D.V. Lignosulfonate-Based Polyurethane Adhesives. Materials 2021, 14, 7072. https://doi.org/10.3390/ma14227072
Magina S, Gama N, Carvalho L, Barros-Timmons A, Evtuguin DV. Lignosulfonate-Based Polyurethane Adhesives. Materials. 2021; 14(22):7072. https://doi.org/10.3390/ma14227072
Chicago/Turabian StyleMagina, Sandra, Nuno Gama, Luísa Carvalho, Ana Barros-Timmons, and Dmitry Victorovitch Evtuguin. 2021. "Lignosulfonate-Based Polyurethane Adhesives" Materials 14, no. 22: 7072. https://doi.org/10.3390/ma14227072
APA StyleMagina, S., Gama, N., Carvalho, L., Barros-Timmons, A., & Evtuguin, D. V. (2021). Lignosulfonate-Based Polyurethane Adhesives. Materials, 14(22), 7072. https://doi.org/10.3390/ma14227072