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Abstract: The hyperbranched epoxy resins (HBE) composed of bisphenol A (BPA) and polyethylene
glycol (PEG) as reactants and pentaerythritol as branching point were successfully synthesized via
A2 + B4 polycondensation reaction at various BPA/PEG ratios. The 13C NMR spectra revealed that
the synthesized HBE mainly had a dendritic structure as confirmed by the high degree of branching
(DB). The addition of PEG in the resin enhanced degree of branching (DB) (from 0.82 to 0.90), epoxy
equivalent weight (EEW) (from 697 g eq−1 to 468 g eq−1) as well as curing reaction. Adding 5–10 wt.%
PEG in the resin decreased the onset and peak curing temperatures and glass transition temperature;
however, adding 15 wt.% PEG in the resin have increased these thermal properties due to the lowest
EEW. The curing kinetics were evaluated by fitting the experimental data of the curing behavior of
all resins with the Šesták–Berggren equation. The activation energy increased with the increase of
PEG in the resins due to HBE’s steric hindrance, whereas the activation energy of HBE15P decreased
due to a large amount of equivalent active epoxy group per mass sample. The curing behavior and
thermal properties of obtained hyperbranched BPA/PEG epoxy resin would be suitable for using in
electronics application.
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1. Introduction

Epoxy thermoset has become the most recognized adhesive and is widely used in demanding
industries such as aerospace, automotive, building and construction, and electrical and electronics
industries. For the electrical and electronics industries, especially hard disk drive (HDD) production,
thermoset epoxy has been used to adhere the important parts, such as head gimbal assembly (HGA)
used for reading and writing the digital data on a disk in HDD. The physical, thermal, mechanical,
thermomechanical, and rheological properties of the thermoset epoxy used in HDD should be
investigated in order to match the HGA process in HDD production. Generally, the commercial epoxy
adhesive is based on diglycidyl ether of bisphenol A (DGEBA) because of high thermal and mechanical
properties, good weather and chemical resistances, low shrinkage, and high adhesion strength [1–3].
However, the unmodified epoxy has some disadvantageous properties, i.e., inherent brittleness and
low toughness, limiting its utilization for the advanced applications which require high mechanical
performance. Thus, the modification of epoxy by an incorporation of toughening agent and plasticizer
was investigated and the natures of these fillers are of great importance affecting the final properties of
the cured epoxy-based adhesive products.

In the present, hyperbranched polymers are novel three-dimensional macromolecules and are
produced in a one-step procedure by multiplicative growth from a multi-functional core to form the
repeated branching units via polycondensation of ABx monomers [4–9]. If x ≥ 2 and functional group
of A molecule reacts only with functional group of B molecule, the production of highly branched
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polymers is ensured. Hyperbranched epoxy resins are easy to synthesize, have low viscosity, high
solubility and large number of end functional groups; therefore, they are widely produced and
developed for industrial scale productions and applications, such as oil field chemical, additive and
resin for waterborne applications, dispersion agent, rheology modifier, and crosslinker for elastomer [9].
The most important feature of hyperbranched polymer is their degree of branching (DB) and branching
factor classified into dendritic (D), linear (L), and terminal (T) units in the macromolecular structure [10].

Furthermore, glass transition temperature (Tg) is the most important thermal property for a
dendritic polymer. There is a relationship between DB and Tg [11–14]. It can be found that Tg gradually
decreased with increasing DB. This can be explained by the fact that a greater degree of branching
means more junction points and terminal units which lead to large numbers of free volume between
branching chains, resulting in high flexibility [11–16]. Recently, there was a study to control epoxy
equivalent weight (EEW) and performance of hyperbranched epoxy resins. It was found that Tg and
mechanical properties of the cured hyperbranched epoxy/DGEBA composites were tuned by the EEW
of hyperbranched epoxy resin and these properties were firstly increased and then decreased [17].
Moreover, it was found that the hyperbranched resin can act as toughener to enhance the mechanical
property of the thermoset [18–22].

De and Karak [4,5] synthesized the hyperbranched epoxy resins by A2 + B3 and A2 + B4

polycondensation reactions between triethanol amine and in situ prepared diglycidyl ether of bisphenol
A (DGEBA), and between pentaerythritol and in situ prepared DGEBA, respectively. It was found
that the hyperbranched epoxy resin which was synthesized via one-step polycondensation and
the aliphatic–aromatic moiety in the hyperbranched structure offer a high-performance toughened
thermoset. Moreover, both reaction time and amount of B4 moiety affected DB, EEW, as well as thermal
and mechanical properties. These properties were firstly enhanced and then reduced with increase in
reaction time and the amount of B4 moiety. The properties of A2B4 hyperbranched epoxy thermoset
were better than the properties of A2B3 hyperbranched epoxy thermoset, especially lower curing time
and mechanical properties, such as toughness, elongation at break and adhesion strength.

There are several studies examining the addition of polyethylene glycol in the epoxy resins to
improve low impact resistance of DGEBA by decreasing Tg of the thermoset [23–26]. However, in
epoxy blended with low epoxy content, crystallization can occur when PEG content increases and
it can decrease and hinder the cure reaction. In addition, if PEG is excessively added in the system,
melting occurs, which reduces the thermal stability of the thermoset [26,27]. The physical properties
of the cured epoxy depend on the structure of crosslinking network, curing temperature and curing
time [28–31]. The relationship between network formation and final properties of the epoxy network
is important in order to achieve the desired high-performance thermoset. The curing kinetics of the
epoxy adhesive has been studied and analyzed via different techniques such as differential scanning
calorimetry (DSC), dielectric relaxation spectroscopy, and gel permeation chromatography (GPC) [32].

This research aimed to obtain the epoxy adhesive whose properties are suitable for electronics
application. The hyperbranched epoxy resins (HBE) were synthesized through A2 + B4

polycondensation reaction varying the ratios of aliphatic PEG and aromatic-containing bisphenol A
(BPA) in A2 part. The chemical structures and degree of branching of the synthesized HBE resins were
confirmed by FTIR, 1H and 13C NMR, and GPC. The curing behavior of HBE having different PEG
fractions in their structures was also investigated by DSC. The curing kinetics was evaluated by fitting
the experimental data with the auto-catalyzed reaction model.

2. Materials and Methods

2.1. Materials

Bisphenol A (BPA) used as A2 monomer for preparing the in-situ generated DGEBA monomer was
purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan) and was purified by recrystallization
from toluene before using. Epichlorohydrin (ECH) as epoxidation reagent was obtained from Tokyo
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Chemical Industry Co., Ltd. Pentaerythritol (PE) used as B4 branch generating unit for reacting with
the in-situ generated DGEBA was purchased from Tokyo Chemical Industry Co., Ltd., Japan and was
purified by recrystallization from ethanol prior to use. Polyethylene glycol (PEG400, Mw = 400 g/mol)
as A2 monomer was purchased from Sigma-Aldrich, St. Louis, MI, USA. Sodium hydroxide (NaOH) as
base catalyst and sodium chloride (NaCl) were obtained from Ajax Finechem, Australia. Hydrobromic
acid (HBr), acetic acid, potassium hydrogen phthalate, methyl violet, and chlorobenzene were used to
determine epoxy equivalent weight (EEW) of the hyperbranched epoxy resins and were purchased
from Tokyo Chemical Industry Co., Ltd., Japan. Diethylenetriamine (DETA) as amine curing agent
was brought from Tokyo Chemical Industry Co., Ltd., Japan. Solvents were analytical grades and used
as received.

2.2. Synthesis of HBE Resins

The hyperbranched epoxy resins were synthesized via the A2 + B4 polycondensation reaction [5]
using BPA and PEG400 as A2 monomers and PE as B4 monomer (10 wt.% of total A2 monomer
content). Mass ratios of BPA and PEG400 were varied at 100:0, 95:5, 90:10 and 85:15. The molar
ratio of A2 monomer to ECH was fixed at 1:2. Five grams of BPA, 0.50 g of PE and 10.82 g of ECH
were stirred using a magnetic bar in a two-necked round bottom-flask equipped with condenser and
dropping funnel. When the mixture temperature was reached from room temperature to 60 ◦C, 5N
aqueous NaOH solution (1.852 g equivalent to the hydroxyl groups) was added into the mixture drop
wisely through the dropping funnel until the mixture temperature reached 110 ◦C (addition time was
about 30 min). The reaction temperature was kept at 110 ◦C for 4 h. Afterwards, the mixture was
immediately quenched in an ice bath to terminate the reaction and allowed to settle in a separation
funnel. The organic layer was separated from the aqueous layer and purified by shaking with 15 wt.%
NaCl solution followed by distilled water until its pH was 8–9. Eventually, the organic solution was
dried under vacuum at 70 ◦C until the weight of the dried sample was constant. The synthesized resins
were the viscous transparent liquids. The formulations for the synthesis of hyperbranched epoxy resins
are tabulated in Table 1.

Table 1. The mixture composition for synthesis of hyperbranched epoxy resins and for curing reaction.

Resin

Synthesis Curing a

B4 A2 End Group
DETA (g)

PE (g) BPA (g) PEG (g) ECH (g)

HBE 0.50 5.00 - 10.82 0.059
HBE5P 0.50 4.75 0.25 10.65 0.062

HBE10P 0.50 4.50 0.50 10.48 0.073
HBE15P 0.50 4.25 0.75 10.30 0.088

a weight of the resin was 2.00 g.

2.3. Preparation of Cured HBE

The synthesized HBE resins were homogenously mixed with DETA by mechanically stirring
at room temperature for 10 min. The ratio of HBE to DETA was 1:1 molar ratio of active functional
groups. The weight of amine curing agent of each system could be calculated by Equation (1). Epoxy
Wt is weight of epoxy and phr amine is evaluated by Equation (2). Moreover, epoxy equivalent weight
(EEW) of the mixture and NH-group equivalent can be calculated by Equations (3) and (4), respectively.
Table 1 shows the composition of different formulations with respect to epoxy equivalent weight
of resin.

curing agent Wt =
epoxy Wt× phr amine

100
(1)



Polymers 2019, 11, 1545 4 of 16

phr amine =
NH equivalent

EEW
× 100 (2)

EEW of mixture =
Total Wt

Wta
EEWa

+ Wtb
EEWb

(3)

NH equivalent =
Mw of amine curing agent

Amount of NH-group
(4)

2.4. Characterization of HBE Resins

FT-IR spectra of the synthesized HBE resins were recorded by a PerkinElmer FT-IR System in
a wavenumber range of 400–4000 cm−1, attenuated total reflectance (ATR) mode and resolution of
±2 cm−1. NMR (500 MHz) spectrometer from Varian Unity Inova was used to record the 1H NMR and
13C NMR spectra of the resins by using CDCl3 as solvent and TMS as reference. For degree of branching
(DB), the degree of branching of a linear polymer equals 0, while a perfect dendrimer has a DB of 1.
DB is the ratio of the sum of integration of dendritic and terminal units to the sum of integration of all
repeating units in the structure, measured from 13C NMR technique [4,5,8,9], as shown in Equation (5).

DB (%) =
D + T

D + T + L
× 100 (5)

The epoxy equivalent weight (EEW) of the resins was calculated using the standard test
methods (ASTM D 1652) [33]. The molecular weight distribution was measured by gel permeation
chromatography (GPC), Shimadzu/LC-10ADvp, using a refractive index (RI) detector and CH3Cl as
mobile phase operated at 40 ◦C with 1 mL/min. The Mark–Houwink calibration curve correction
method was used for standard calibration.

The curing behavior of HBE resins was characterized by differential scanning calorimetry (DSC),
DSC 1 STARe Mettler-Toledo, under a nitrogen atmosphere. First, the non-isothermal curing behavior
was measured in a range of 25–200 ◦C and a heating rate of 10 ◦C/min in order to evaluate the suitable
curing temperature [34]. Isothermal curing kinetics was performed at various curing temperatures
ranging from 70 to 100 ◦C. Moreover, the glass transition temperature (Tg) of the cured epoxy adhesive
was also measured by non-isothermal DSC measurement from −30 to 200 ◦C at a heating rate of
10 ◦C/min.

2.5. Kinetic Analysis

This research determined the kinetic parameters of thermal curing under isothermal condition,
which is a conventional method to monitor the curing kinetics [35]. The kinetic parameters included
pre-exponential factor (A), activation energy (Ea), and reaction order (n).

Both overall heat released and cure rate from heat flow can be measured via DSC. The curing
kinetics can be expressed in the following equation:

dQ
dt

= Qr
dα
dt

= Qrk(T)f(α) (6)

where dQ/dt is the heat flow, Qr is the total heat released after the reaction was complete, dα/dt is
the rate of reaction or curing rate, α is the degree of cure, k(T) is the rate constant, T is the absolute
temperature, and f(α) is the reaction model. The degree of cure at time t from the isothermal analysis
was defined as,

α =
H(t)
HT

(7)
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when H(t) is the heat of reaction at a certain time t and HT is the total heat of reaction. The rate constant
can be replaced by an Arrhenius equation. Therefore, Equation (6) can be rearranged as shown in
Equation (8):

dα
dt

= Aexp(−
Ea

RT
)f(α) (8)

where A is the pre-exponential factor, Ea is the activation energy, and R is the gas constant
(8.314 kJ kmol−1 K−1).

The kinetic parameters will be meaningless if the reaction model is not suitably used [36]. Generally,
three reaction models are classified by characteristic of reaction profile. Vyazovkin et al. recommended
how to decide the reaction model by visually inspecting the isothermal reaction profile [37]. The first
model is the accelerating model in which the rate increases continuously with rising degree of cure and
approaches maximum at the end of the cure state. This type can be explained by a power law model:

f(α) = nα(n−1)/n (9)

where n is a constant. The second model is the decelerating model in which the maximum rate is at the
initial reaction and it decreases continuously while the degree of cure increases. This type is a common
reaction model as expressed in Equation (10):

f(α) = (1−α)n (10)

where n is the reaction order. The third model is a sigmoidal model in which the rate has the accelerating
and decreasing behaviors at the initial and final stages, respectively. This type is the auto-catalyzed
reactions, which is known as Šesták–Berggren model [38] as shown in Equation (11):

f(α) = α
m(1−α)n (11)

where n and m are the reaction orders relating to the effects of unreacted reactants and catalytic effect
of the product of the reaction, respectively.

Generally, the curing kinetics of the epoxy system can be explained by the autocatalytic model [39]
as expressed by Kamal’s equation:

dα
dt

= (k 1(T) + k2(T)α
m)(1−α)n (12)

where k1(T) and k2(T) are the rate constants and m and n are the reaction orders. When combining
Equations (8), (11) and (12) and simplifying the calculations [40], the curing kinetics could best be
described by Šesták–Berggren model [41] and the kinetic model is shown in Equation (13).

dα
dt

= k(T)αm(1−α)n (13)

k(T), m and n can be calculated by MATLAB program (version: R2018b) and the activation energy (Ea)
can be determined from taking natural logarithm to Arrhenius’s equation as shown in Equation (14):

lnk(T) = lnA−
Ea

RT
(14)

Ea and lnA can be evaluated from the slope and y-intersection of graph plotted between lnk(T)
versus 1/T.
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3. Results and Discussions

3.1. Synthesis and Characterization of the Hyperbranched Epoxy Resins

The synthesis of HBE resin began with the polymerization of BPA and PEG using NaOH as base
catalyst. The possible synthesized products included diglycidyl ether of polyethylene glycol (DGEPEG),
diglycidyl ether of bisphenol A, and diglycidyl ether copolymer of bisphenol A and polyethylene
glycol (DGECBAPEG) [42] as displayed in Scheme 1. These in situ products were produced at reaction
temperature of 60 ◦C. When the reaction temperature was heated at 110 ◦C, A2 monomers reacted
with pentaerythritol (B4) monomer via A2 + B4 polycondensation reaction to form the hyperbranched
epoxy resins, as shown in Scheme 2. Concurrently, epichlorohydrin as epoxidation reagent converted
the terminal hydroxyl groups of HBE resins to terminal epoxy groups. The features of the synthesized
epoxy resin were investigated by FT-IR and NMR techniques. The FT-IR spectra showed the important
functional groups of all resins (Figure 1). There were the stretching vibrations (νmax/cm−1) of the
following feature: 3450 (O–H), 3050 (aromatic C–H), 2970 (aliphatic C-H), 1620 (aromatic C=C), 1249
(C–O), 1040 (C–C), and 915 (oxirane) [4,5]. The FT-IR results of all samples were similar, and it was
hardly inspected to identify new chemical bonds. Therefore, the inspection of the chemical bond
should be identified via NMR analysis.
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Figure 1. FTIR spectra of hyperbranched epoxy resins (HBE) at various polyethylene glycol
(PEG) contents.

The 1H-NMR spectra (Figure 2), δH (ppm), of HBE resin implied the following structural feature:
1.62 (3H, CH3), 2.76 and 2.90 (2H, oxirane), 3.38 (1H, oxirane), 3.65 (2H, CH2–pentaerythritol unit),
3.70–3.80 (2H, 4CH2 of the substituted and unsubstituted pentaerythritol), 3.9 (2H, CH2–oxirane), 4.10
(2H, CH2–bisphenol-A unit), and 4.15 (1H, OH), 4.20 (1H, CHOH), 6.82 (4H, Ph), and 7.08 (4H, Ph).
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The 1H-NMR spectra (Figure 3), δH (ppm), of HBE5P resin implied the following structural
feature: 1.62 (3H, CH3), 2.78 and 2.90 (2H, oxirane), 3.38 (1H, oxirane), 3.60 (2H, CH2-polyethylene
glycol), 3.65 (2H, CH2–pentaerythritol unit), 3.70–3.80 (2H, 4CH2 of the substituted and unsubstituted
pentaerythritol), 3.9 (2H, CH2–oxirane), 4.08 (2H, CH2–bisphenol-A unit), and 4.15 (1H, OH), 4.20 (1H,
CHOH), 6.82 (4H, Ph), and 7.08 (4H, Ph).
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The 13C NMR spectrum (Figure 5), δC (ppm), of HBE5P resin implied the following structural
feature: 31.0 (CH3, bisphenol-A unit), 41.0 (C, isopropylidiene of bisphenol-A unit), 44.0 (CH2, oxirane),
44.0–47.0 (central C of pentaerythritol unit), 50.0 (CH, oxirane), 51.0 (CH2–oxirane), 62.0–67.0 (CH2–O
units and CHOH unit), 68.0 (CH2, pentaerythritol unit), and 114.0, 127.0, 143.0 and 156.0 (4C, Ph).
For the 1H-NMR and 13C NMR spectra of HBE10P and HBE15P resins, there were the same peak,
indicating the important chemical bonding; therefore, this research shows only the spectrum of
HBE5P resins.
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The degree of branching (DB) of the hyperbranched epoxy resins with various ratios of BPA and
PEG was investigated from the 13C NMR spectra (Figures 4 and 5) using the four units of central
carbon atoms of pentaerythritol [5] (δC(HBE) = 44.9, 45.6, 45.9, and 46.8 ppm and δC(HBE5P) = 44.8,
45.6, 45.8, and 46.7 ppm). The DB was calculated using Equation (5) and the integration values of
these peaks were tabulated in Table 2. It was found that all synthesized resins had the hyperbranched
structure because DB > 0.5 [9]. The DB values of each formula with and without polyethylene glycol in
their structure were hardly different; however, dendritic units decreased and terminal units increased
because in situ DGECBAPEG was formed and it might reduce the amount of in situ epoxide group,
hindering the generation of branching unit.

Number average molecular weight (Mn), weight average molecular weight (Mw) and dispersity
(Ð) of the resins are listed in Table 2. The molecular weight of the resin decreased when adding 5 wt %
PEG and increased when the PEG amount was further increased (10–15 wt.%), implying an increase of
molecular weight. Moreover, the glass transition temperature of the resin decreased with increase of
PEG due to the effect of branching density [43] and the internal plasticized effect of PEG.

Table 2. Dendritic (D), linear (L), and terminal (T) units (%), degree of branching (DB), and physical
properties of HBE, HBE5P, HBE10P, and HBE15P resins.

Resin
Branching Structure

MW (g mol−1) Mn (g mol−1) Ð Tg (◦C) EEW (g eq−1)
D (%) L (%) T (%) DB

HBE 77.80 18.14 4.06 0.82 4148 3425 1.211 −9 697
HBE5P 64.65 17.23 18.12 0.83 4014 3363 1.194 −14 663
HBE10P 73.13 10.15 16.72 0.90 4049 3384 1.197 −19 564
HBE15P 76.86 10.92 12.23 0.89 4124 3386 1.218 −20 468

3.2. Curing Behavior of the Hyperbranched Epoxy

The curing study of the hyperbranched epoxy resins cured with diethylenetriamine was
investigated by DSC technique. Firstly, curing behavior should be determined to obtain the onset and
peak temperatures as well as the heat of reaction of epoxy mixture by non-isothermal DSC method,
as shown in Figure 6 and Table 3. Even though chain entanglement occurred in every system, the
onset and peak temperatures decreased with increase of PEG in the resins in the case of the resin with
0–10 wt.% PEG because the long-chain structure of PEG acted as plasticizer, increasing the mobility of
the polymer chains. However, at 15 wt.% PEG in the resin, the effect of chain entanglement during
crosslinking dominated; therefore, the onset and peak temperatures of the resin with 15 wt.% PEG
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obviously increased [44]. Moreover, the high concentration of PEG chains in the system would delay
the curing reaction [45]. Moreover, the heat of reaction increased with increase of PEG due to reduced
EEW of the resins in which the active epoxide ring increased. In addition, glass transition temperature
(Tg) of the epoxy thermoset with 0–10 wt.% PEG decreased because of more flexible PEG and an
increase in DB [12–14], whereas Tg of HBE15P thermoset increased exceedingly owing to high crosslink
density which could be interpreted from high heat of reaction [46].
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3.3. Curing Kinetics of the Hyperbranched Epoxy

The curing time of the hyperbranched epoxy at 70, 80, 90, and 100 ◦C as tabulated in Table 3
was determined by isothermal DSC method. The curing time of all cured hyperbranched epoxy
mixtures decreased with increasing curing temperature. This can be attributed to high mobility of
epoxy molecules which decreased viscosity, accelerated the rate of cure and reduced the curing time [1].

Table 3. The curing behavior and thermal properties of HBE, HBE5P, HBE10P, and HBE15P.

Parameter HBE HBE5P HBE10P HBE15P

Onset temperature (◦C) 50.74 48.10 46.16 53.44
Peak temperature (◦C) 79.96 76.95 75.47 85.43
Heat of reaction (J g−1) 205.16 242.65 258.19 307.13

Curing time at 70 ◦C (sec) 1,058 1,055 872 1,173
Curing time at 80 ◦C (sec) 933 968 817 997
Curing time at 90 ◦C (sec) 870 911 700 735

Curing time at 100 ◦C (sec) 613 773 597 515
Tg (◦C) 77.90 72.79 51.82 109.41

The kinetic parameters (k, n, and m) were evaluated by fitting the experimental data (cure rate
and degree of cure) with Equation (13) via MATLAB program. The results of fitting the data and
the equation model are shown in Table 4 and Figure 7. In order to avoid the relative experimental
errors for model fitting, the degree of cure should be selected in a range of 0.05–0.95 [37]. It was found
that the coefficient of determination (r2) of all results was high enough (>0.90), indicating that the
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experimental data can fit well with the theoretical model in which the rate has the accelerating and
decreasing behaviors at the initial and final stages, respectively. It was suggested that the rate constant
(k) was a function of curing temperature in which it increased when the temperature increased.

Table 4. The curing kinetic parameters of the hyperbranched epoxy at several curing temperatures.

Parameter HBE HBE5P HBE10P HBE15P

70 ◦C

k 0.115 0.297 0.145 0.118
n 0.894 1.288 0.882 0.944
m 0.040 0.281 0.059 0.064
r2 0.999 0.990 0.998 0.999

80 ◦C

k 0.201 0.899 0.349 0.268
n 1.143 1.630 1.120 1.253
m 0.050 0.278 0.122 0.142
r2 0.999 0.987 0.998 0.998

90 ◦C

k 0.311 1.943 0.631 0.410
n 1.321 2.060 1.302 1.242
m 0.047 0.490 0.160 0.061
r2 0.999 0.991 0.996 0.997

100 ◦C

k 0.725 2.401 1.308 0.889
n 1.646 1.928 1.622 1.493
m 0.257 0.262 0.147 0.136
r2 0.994 0.947 0.927 0.982

Ea (kJ mol−1) 63.38 75.56 76.52 69.02
r2 0.975 0.936 0.996 0.987

Moreover, the rate constant of the HBE with PEG resins was higher than those without PEG
(i.e., HBE) because of a high degree of branching and low entangle structure [47]. The rate constant of
HBE5P was the highest, meaning that its cure rate was very fast; however, its curing time was not
the lowest because high crosslink network structures slowed down the cure reaction. Furthermore, n
order (effect of unreacted materials on the reaction) and m order (catalytic effect of the products on the
reaction) of each cured hyperbranched epoxy at the same isothermal temperature were insignificantly
different, except HBE5P whose n and m values increased when the temperature increased. The n and
m values of HBE5P were higher than those in other systems. It implied that the cure rate of HBE5P is
the fastest in the initial stage and then the rate was the slowest at the final stage due to the diffusion
control from high crosslink structure [34,48]. In addition, the activation energy of the epoxy at several
curing temperatures was calculated from Equation (14) and listed in Table 4. It was found that the
activation energy increased with increase of PEG in the resins due to the steric hindrance of PEG
structure [49,50], whereas the activation energy of HBE15P decreased because HBE15P had a large
amount of equivalent active epoxy group per mass sample (low EEW) which facilitated the curing
reaction due to the weakening in the interaction of the molecular chain [17,51].
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4. Conclusions

In this study, the hyperbranched epoxy resins were synthesized by A2 + B4 polycondensation
reaction with various ratios of polyethylene glycol (PEG) to bisphenol A (BPA). The characterization
and feature of synthesized resins were evidently identified by FTIR and NMR analysis. The addition of
PEG in the resin enhanced degree of branching, epoxy equivalent weight, and curing reaction. Adding
5–10 wt.% PEG in the resin reduced the onset and peak curing temperatures and glass transition
temperature; however, the resin with 15 wt.% PEG showed the increase in these thermal properties due
to the lowest epoxy equivalent weight. The curing behavior of all resins followed the auto-catalyzed
reaction model (Šesták–Berggren equation). The activation energy increased with increase of PEG
in the resins due to the steric hindrance of PEG structure, whereas the activation energy of HBE15P
decreased due to a large amount of equivalent active epoxy group per mass sample.
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